WO2017163902A1 - Molten pig iron pre-treatment method and molten pig iron pre-treatment control device - Google Patents

Molten pig iron pre-treatment method and molten pig iron pre-treatment control device Download PDF

Info

Publication number
WO2017163902A1
WO2017163902A1 PCT/JP2017/009453 JP2017009453W WO2017163902A1 WO 2017163902 A1 WO2017163902 A1 WO 2017163902A1 JP 2017009453 W JP2017009453 W JP 2017009453W WO 2017163902 A1 WO2017163902 A1 WO 2017163902A1
Authority
WO
WIPO (PCT)
Prior art keywords
hot metal
dephosphorization
carbon concentration
exhaust gas
amount
Prior art date
Application number
PCT/JP2017/009453
Other languages
French (fr)
Japanese (ja)
Inventor
健 岩村
兼安 孝幸
太一 中江
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to JP2018507205A priority Critical patent/JP6547901B2/en
Priority to CN201780003670.0A priority patent/CN108138246B/en
Priority to KR1020187010776A priority patent/KR102133215B1/en
Publication of WO2017163902A1 publication Critical patent/WO2017163902A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/02Dephosphorising or desulfurising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter

Definitions

  • the present invention relates to a hot metal pretreatment method and a hot metal pretreatment control device for estimating a carbon concentration in hot metal after dephosphorization in hot metal pretreatment using a converter.
  • the converter blowing in the steelmaking process is based on static control and sublance measurement in order to bring the molten steel component concentration (for example, carbon concentration, etc.) and the molten steel temperature to the target values at the time of blowing stop (at the end of decarburization treatment).
  • Blowing control combined with dynamic control is performed.
  • static control before starting smelting, based on hot metal data such as component concentration in hot metal, using a mathematical model based on the material balance and heat balance, the molten steel component concentration and molten steel temperature at the time of blowing The amount of blown oxygen and the amount of various auxiliary materials required to bring the target to the target value are determined, and blowing is performed according to this.
  • the molten steel component concentration and molten steel temperature are actually measured using a sublance, and based on these measured values, using a mathematical model based on the material balance and heat balance, etc.
  • the blown oxygen amount and the input amounts of various auxiliary materials determined by static control are updated, and blowing is performed using these updated values.
  • MURC MUlti Refining Converter
  • the static control is not performed based on the actual value of the carbon concentration in the hot metal at the start of the dephosphorization process, not at the start of the decarburization process. It is required to determine the amount of oxygen blown in and the amount of various auxiliary materials charged.
  • the carbon concentration in the hot metal may be greatly reduced or not significantly reduced from the initial assumption.
  • the carbon concentration in the molten steel after the decarburization treatment may greatly deviate from the target carbon concentration. Therefore, in order to reliably obtain molten steel having a target carbon concentration, it is necessary to perform static control based on the carbon concentration in the hot metal after the dephosphorization treatment, not before the dephosphorization treatment. Since it is difficult to directly measure the carbon concentration in the hot metal after the dephosphorization treatment, a technique for theoretically estimating the carbon concentration in the hot metal after the dephosphorization treatment is required.
  • Patent Document 1 a parameter regarding decarbonation efficiency is calculated using exhaust gas data discharged from a converter in a decarburization process, and the decarburization process is performed using the parameter in the molten steel.
  • a technique for estimating the carbon concentration is disclosed. In this technique, in the decarburization treatment, the blown oxygen and the carbon in the molten steel are in a ratio of approximately 1: 1 (here, the ratio of 1: 1 corresponds to 1: 1 in the molar ratio).
  • a model is used that combines the behavior in which the decarbonation efficiency is constant at the stage of the decarburization peak period that reacts with the behavior in which the decarbonation efficiency decreases when the carbon concentration in the molten steel falls below the critical value. Yes. Thereby, since the estimation of the carbon concentration reflecting the transition of the decarburization process is possible, the estimation accuracy of the carbon concentration in the molten steel and the molten steel temperature is improved.
  • the carbon concentration in the molten steel estimated by the technique described in Patent Document 1 is merely an estimate of the carbon concentration in the hot metal in the decarburization process.
  • the oxygen flow rate blown into the converter differs from the decarburization process. Specifically, in the decarburization process, oxygen is blown from the top lance at high speed for decarburization of the molten steel, but in the dephosphorization process, iron oxide slag is generated efficiently to promote dephosphorization. To do so, oxygen is blown at a low speed. When the flow rate of oxygen blown into the converter is different, the mechanism of the oxidation reaction occurring in the converter is also different.
  • Patent Document 1 Even if the technique related to the estimation of the carbon concentration disclosed in Patent Document 1 is applied as it is to the estimation of the carbon concentration in the hot metal in the dephosphorization process, the carbon concentration in the hot metal after the dephosphorization process is highly accurate. It is difficult to estimate.
  • the present invention has been made in view of the above problems, and an object of the present invention is a novel and improved technique capable of accurately estimating the carbon concentration in hot metal after dephosphorization. Another object is to provide a hot metal pretreatment method and a hot metal pretreatment control device.
  • hot metal data relating to hot metal before dephosphorization treatment and exhaust gas discharged from the converter during dephosphorization treatment are provided.
  • a data acquisition step for acquiring exhaust gas data including components and exhaust gas flow rate, and a correction for calculating the decarburization amount at the time of dephosphorization processing calculated based on the exhaust gas data based on the operating factors at the time of the dephosphorization processing is provided.
  • a hot metal pretreatment method that includes a carbon concentration estimation step that corrects using a value and estimates a carbon concentration after dephosphorization based on the corrected decarburization amount and the hot metal data.
  • the correction value may be calculated by a regression equation having the operation factor as an explanatory variable.
  • the operation factor during the dephosphorization treatment may include an operation factor indicating the hatching status of the slag during the dephosphorization treatment.
  • the operation factor indicating the hatching status of the slag may include an operation factor related to acoustic information in the converter.
  • the target carbon concentration after the dephosphorization process and the amount of oxygen blown into the converter in the decarburization process performed after the dephosphorization process are further acquired.
  • the method may further include an oxygen amount correction step of correcting the blown oxygen amount based on a comparison result of the estimated carbon concentration after the dephosphorization treatment and the target carbon concentration after the dephosphorization treatment.
  • hot metal pretreatment control apparatus for controlling hot metal pretreatment using a converter, hot metal data relating to hot metal before dephosphorization treatment, A data acquisition unit that acquires exhaust gas data including exhaust gas components and exhaust gas flow rate discharged from the converter during the phosphorus treatment, and a decarburization amount calculated based on the exhaust gas data for the dephosphorization treatment.
  • a carbon concentration estimator that corrects using a correction value calculated based on the operating factor of the time and estimates the carbon concentration after dephosphorization based on the corrected decarburization amount and the molten iron data
  • a hot metal pretreatment control device is provided.
  • the hot metal preliminary treatment method uses a corrected decarburization amount obtained by correcting the decarburization amount obtained using the exhaust gas data with a correction value expressed by a regression equation with the operating factors during dephosphorization as explanatory variables. Estimate the carbon concentration in the hot metal after phosphorus treatment. Thereby, the carbon concentration in the hot metal after the dephosphorization process can be estimated with high accuracy without performing the sublance measurement after the dephosphorization process. Therefore, it becomes possible to more reliably obtain molten steel having a target carbon concentration after decarburization treatment.
  • FIG. 3 is a diagram illustrating an estimation error of a carbon concentration C deP in Example 1. It is a figure which shows the estimation error of the carbon concentration CdeP in Example 2.
  • FIG. 3 is a diagram illustrating an estimation error of a carbon concentration C deP in Example 1. It is a figure which shows the estimation error of the carbon concentration CdeP in Example 2.
  • pig iron or steel may be present in the converter at the time of decarburization depending on the carbon concentration, but in the following explanation, in order to avoid complicated explanation, For convenience, the molten steel will be referred to as molten steel.
  • the word hot metal is used for the dephosphorization process.
  • “after dephosphorization” is used to mean “when dephosphorization is completed (when dephosphorization is completed)” unless otherwise specified. That is, “after the dephosphorization process” does not include the time point after the start of the decarburization process.
  • the hot metal pretreatment method according to an embodiment of the present invention assumes that the carbon concentration in the hot metal after the dephosphorization process by MURC is estimated
  • the present invention is not limited to such an example.
  • the hot metal pretreatment method according to an embodiment of the present invention is a carbon in hot metal after dephosphorization treatment using another converter blowing method such as SRP (Simple Refining Process). It is also possible to estimate the concentration. That is, the hot metal pretreatment method according to one embodiment of the present invention estimates the carbon concentration in the hot metal after dephosphorization regardless of the converter blowing method used for hot metal pretreatment (particularly, dephosphorization). It is possible.
  • FIG. 1 is a diagram showing a configuration example of a hot metal pretreatment system 1 according to an embodiment of the present invention.
  • a hot metal preliminary treatment system 1 according to the present embodiment includes a converter blowing equipment 10, a hot metal preliminary treatment control device 20, and a measurement control device 30.
  • the converter blowing facility 10 includes a converter 11, a flue 12, an upper blowing lance 13, an exhaust gas component analyzer 101, and an exhaust gas flow meter 102.
  • the converter blowing facility 10 may further include a sound meter 111 and a sound collecting microphone 112.
  • the converter blowing facility 10 starts and stops the supply of oxygen to the hot metal by the top blowing lance 13, inputs the cold material, and converts the converter 11 based on the control signal output from the measurement control device 30. Performs processing related to hot metal and slag drainage.
  • the converter blowing equipment 10 is a sub lance for measuring the hot metal component density
  • a general converter such as a cold material charging device having a drive system for charging a cold material to 11 and an auxiliary material charging device having a drive system for charging an auxiliary material to the converter 11
  • Various devices used for blowing can be provided.
  • An upper blowing lance 13 used for blowing is inserted from the furnace port of the converter 11, and oxygen 14 sent from the acid feeding device is supplied to the molten iron in the furnace through the upper blowing lance 13.
  • an inert gas such as nitrogen gas or argon gas can be introduced from the bottom of the converter 11 as the bottom blowing gas 15 for stirring the hot metal.
  • hot metal discharged from the blast furnace a small amount of iron scrap, a cold material for adjusting the hot metal temperature, and auxiliary raw materials for slag formation such as quick lime are charged / input.
  • the auxiliary material is powder, it may be supplied into the converter 11 together with the oxygen 14 through the top blowing lance 13.
  • the carbon in the hot metal undergoes an oxidation reaction with oxygen supplied from the top blowing lance 13 (decarburization reaction). Thereby, CO or CO 2 exhaust gas is generated. These exhaust gases are discharged from the converter 11 to the flue 12.
  • the blown oxygen reacts with carbon, phosphorus, silicon, or the like in the hot metal to produce an oxide.
  • the generated oxide is discharged as exhaust gas or stabilized as slag.
  • Carbon is removed by an oxidation reaction in blowing, and phosphorus and the like are taken into and removed from the slag, thereby producing a steel with low carbon and less impurities.
  • a sub lance (not shown) can be inserted into the furnace from the furnace port of the converter 11.
  • the component concentration in the molten steel including the carbon concentration, the molten steel temperature, and the like are measured.
  • This measurement of the component concentration and / or molten steel temperature by the sublance is called sublance measurement.
  • the result of the sublance measurement is transmitted to the hot metal preliminary processing control device 20 via the measurement control device 30.
  • unmelted scrap may be present in the converter 11, and thus the sublance measurement is not performed, but the sublance measurement can be performed at a predetermined timing during the decarburization process.
  • the exhaust gas generated by blowing flows into a flue 12 provided outside the converter 11.
  • the flue 12 is provided with an exhaust gas component analyzer 101 and an exhaust gas flow meter 102.
  • the exhaust gas component analyzer 101 analyzes components contained in the exhaust gas.
  • the exhaust gas component analyzer 101 analyzes, for example, the concentrations of CO and CO 2 contained in the exhaust gas.
  • the exhaust gas flow meter 102 measures the flow rate of the exhaust gas.
  • the exhaust gas component analyzer 101 and the exhaust gas flow meter 102 sequentially analyze and measure exhaust gas at a predetermined sampling period (for example, 5 to 10 (sec) period).
  • exhaust gas data The data related to the exhaust gas component analyzed by the exhaust gas component analyzer 101 and the data related to the exhaust gas flow rate measured by the exhaust gas flow meter 102 (hereinafter, these data are referred to as “exhaust gas data”) Is output to the hot metal preliminary processing control device 20 as time series data.
  • the exhaust gas data may be sequentially output to the hot metal preliminary treatment control device 20, or may be output collectively to the hot metal preliminary treatment control device 20 when the dephosphorization processing is completed.
  • the converter blowing facility 10 may include a sound meter 111 and a sound collecting microphone 112.
  • the sound collection microphone 112 acquires a sound generated from the converter 11 and outputs a signal related to the sound to the sound meter 111.
  • the sound meter 111 performs signal processing on the acquired signal and generates a processing result as acoustic information.
  • the acoustic information generated here is output to the hot metal preliminary processing control device 20 via the measurement control device 30.
  • This acoustic information is information reflecting the hatching state of the slag in the converter 11 during the dephosphorization process, and can be used as a parameter of an operation factor during the dephosphorization process. The operating factors during the dephosphorization process will be described later in detail.
  • the converter blowing facility 10 is an apparatus for obtaining operating factor parameters indicating the hatching state of the slag in the converter 11 during the dephosphorization process. May be provided. For example, by irradiating microwaves into the converter 11 and measuring the slag level of the converter 11, the hatching state of the slag can be grasped. When acquiring the said slag level as a parameter of an operation factor, in the converter blowing equipment 10, the microwave irradiation apparatus for irradiating a microwave in the converter 11, for example, the microwave reflected on the molten metal surface is received. And an slag level measuring device for analyzing the slag level based on the microwave received by the antenna.
  • the hot metal pretreatment control device 20 includes a data acquisition unit 201, a carbon concentration estimation unit 202, a correction amount calculation unit 203, a hot metal pretreatment database 21, and an input / output unit 22.
  • the hot metal preliminary processing control device 20 includes hardware configurations such as a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), a storage, a communication device, and the like. Functions of the unit 201, the carbon concentration estimation unit 202, the correction amount calculation unit 203, and the hot metal preliminary processing database 21 are realized.
  • the input / output unit 22 is realized by an input device such as a keyboard, a mouse, or a touch panel, an output device such as a display or a printer, and a communication device.
  • the hot metal pretreatment control device 20 has a general function required when performing control related to the hot metal pretreatment in addition to the functions shown in the drawing.
  • the hot metal pretreatment control device 20 has a function of controlling the entire process related to hot metal pretreatment such as blowing oxygen into the converter 11 and charging a cooling material and auxiliary materials.
  • the hot metal preliminary treatment control device 20 uses a predetermined mathematical model or the like, which is performed in general static control, and uses a predetermined mathematical model or the like, and inputs the amount of oxygen blown into the converter 11 and the cooling material. It has a function of determining an amount (hereinafter referred to as a cold material amount), an input amount of auxiliary materials, and the like.
  • the hot metal preliminary treatment control device 20 has a function of controlling the measurement object, the measurement timing, and the like of the sublance measurement performed in general dynamic control.
  • the hot metal pretreatment control device 20 estimates the carbon concentration in the hot metal after the dephosphorization treatment using various data stored in the hot metal pretreatment database 21 and the exhaust gas data as input values. Then, the hot metal preliminary treatment control device 20 corrects the indicated values of the blown oxygen amount and the cold material amount determined by the static control before the dephosphorization treatment based on the estimated carbon concentration in the hot metal. The hot metal pretreatment control device 20 further outputs the estimated carbon concentration in the hot metal, and the indicated values of the corrected blown oxygen amount and cold material amount to the input / output unit 22. Moreover, each instruction value output to the input / output unit 22 is output to the measurement control device 30 that controls the operation of the converter blowing facility 10. The measurement control device 30 performs control relating to the feeding of the acid into the converter 11 and the introduction of the cold material according to each indicated value acquired from the hot metal pretreatment control device 20.
  • the hot metal pretreatment database 21 is a database that stores various data used in the hot metal pretreatment control device 20, and is realized by a storage device such as a storage. As shown in FIG. 1, for example, the hot metal preliminary processing database 21 stores hot metal data 211, parameters 212, target data 213, and the like. These data may be added, updated, changed, or deleted via an input device or a communication device (not shown). Various data stored in the hot metal preliminary processing database 21 are called by the data acquisition unit 201.
  • the hot metal preliminary treatment database 21 stores the estimation result by the carbon concentration estimation unit 202 (for example, the carbon concentration in the hot metal after the dephosphorization process) or the correction result by the correction amount calculation unit 203 (for example, correction of the amount of blown oxygen) The later indicated value) may be stored.
  • the storage device having the hot metal preliminary processing database 21 according to the present embodiment is configured integrally with the hot metal preliminary processing control device 20 as shown in FIG. 1, but in other embodiments, the hot metal preliminary processing database 21 is configured.
  • the storage device having the processing database 21 may be separated from the hot metal preliminary processing control device 20.
  • the hot metal data 211 is various data relating to the hot metal in the converter 11.
  • the hot metal data 211 includes information about the hot metal (initial hot metal weight for each charge, concentration of hot metal components (carbon, phosphorus, silicon, iron, manganese, etc.), hot metal temperature, hot metal ratio, etc.).
  • the hot metal data 211 includes various other information generally required in hot metal preliminary treatment and decarburization processing (for example, information on the addition of auxiliary raw materials and cold materials (information on auxiliary raw materials and cold material amounts). ), Information on the sublance measurement (information on the measurement target, measurement timing, etc.), information on the insufflated oxygen amount, etc.).
  • the parameter 212 is various parameters used by the carbon concentration estimation unit 202 and the correction amount calculation unit 203.
  • the parameter 212 includes a parameter in a regression equation having an operation factor as an explanatory variable, and a parameter for calculating a correction amount.
  • the target data 213 includes data such as target component concentration and target temperature in hot metal (in molten steel) after dephosphorization, after decarburization, and during sublance measurement.
  • the input / output unit 22 has a function of acquiring a correction result such as a carbon concentration estimation result by the carbon concentration estimation unit 202 or a correction value of the blown oxygen amount by the correction amount calculation unit 203 and outputting the result to various output devices.
  • a correction result such as a carbon concentration estimation result by the carbon concentration estimation unit 202 or a correction value of the blown oxygen amount by the correction amount calculation unit 203 and outputting the result to various output devices.
  • the input / output unit 22 may output the instruction value after correction of the blown oxygen amount acquired from the correction amount calculation unit 203 to the converter blowing facility 10. Thereby, the blowing which reflected the instruction value after correction of the amount of blowing oxygen is performed. Further, the input / output unit 22 may cause the operator to display the estimated carbon concentration in the molten iron or the corrected instruction value of the blown oxygen amount.
  • the input / output unit 22 may further output to the converter blowing facility 10 information related to an instruction such as acid feeding or cold material input that is input by an operator who has viewed the displayed information. Further, the input / output unit 22 may output an estimation result or the like stored in the hot metal preliminary processing database 21.
  • the measurement control device 30 includes a hardware configuration such as a CPU, ROM, RAM, storage, and communication device.
  • the measurement control device 30 communicates with each device provided in the converter blowing facility 10 and has a function of controlling the entire operation of the converter blowing facility 10. For example, the measurement control device 30 controls the charging of the cold material and the auxiliary material to the converter 11 in accordance with an instruction from the hot metal pretreatment control device 20.
  • the measurement control device 30 acquires data obtained from each device of the converter blowing facility 10 such as the exhaust gas component analyzer 101 and the exhaust gas flow meter 102 and transmits the data to the hot metal preliminary treatment control device 20.
  • the data acquisition unit 201 acquires hot metal data 211, parameters 212 and target data 213 stored in the hot metal pretreatment database 21, and exhaust gas data output from the exhaust gas component analyzer 101 and the exhaust gas flow meter 102.
  • the data acquisition unit 201 may acquire data sequentially measured by the exhaust gas component analyzer 101 and the exhaust gas flow meter 102 during the dephosphorization process or may be acquired collectively after the dephosphorization process.
  • the data acquisition unit 201 outputs the acquired data to the carbon concentration estimation unit 202.
  • the carbon concentration estimation unit 202 estimates the carbon concentration in the hot metal after the dephosphorization process based on various data acquired by the data acquisition unit 201. Hereinafter, a method for estimating the carbon concentration by the carbon concentration estimating unit 202 will be described.
  • the carbon concentration in the hot metal after the dephosphorization treatment can be estimated from the material balance regarding the carbon in the hot metal before and after the dephosphorization treatment. That is, it is considered that the difference in the mass of carbon contained in the hot metal before and after the dephosphorization treatment coincides with the mass of carbon contained in the exhaust gas generated by the dephosphorization treatment (that is, the material balance is balanced).
  • the present inventors examined using such a material balance model for carbon to estimate the carbon concentration in hot metal after dephosphorization.
  • the mass (decarburization amount) of carbon contained in the exhaust gas generated by the dephosphorization process is calculated based on the exhaust gas data.
  • the decarburization amount ⁇ C offgas (ton) based on the exhaust gas data is represented by the following formula (2).
  • the decarburization amount wc [i] (g / sec) per unit time obtained from the exhaust gas data is calculated by the following equation (3).
  • CO [i + N] (%) is the CO concentration in the exhaust gas
  • CO 2 [i + N] (%) is the CO 2 concentration in the exhaust gas
  • V offgas [i] (Nm 3 / hr (NTP)) is the total exhaust gas.
  • Flow rate. CO [i] (%) and CO 2 [i] (%) can be acquired by the exhaust gas component analyzer 101.
  • V offgas [i] (Nm 3 / hr (NTP)) can be acquired by the exhaust gas flow meter 102.
  • i in square brackets [] represents the sampling period by the exhaust gas component analyzer 101 and the exhaust gas flow meter 102.
  • N in square brackets [] corresponds to an analysis delay by the exhaust gas component analyzer 101 (a time delay until the exhaust gas reaches the installation position of the exhaust gas component analyzer 101).
  • a specific value of the analysis delay N may be appropriately determined according to the installation position of the exhaust gas component analyzer 101 in the flue 12 or the like.
  • NTP means Normal Temperature Pressure.
  • the value obtained by multiplying V offgas [i] by 1000 is divided by 3600 in order to convert the unit to (L / sec). Also, the reason why it is divided by 22.4 (L / mol) is to convert it into the number of moles. 12 is the atomic weight of carbon.
  • the amount of decarburization (hereinafter, the amount of decarburization based on component change) ⁇ C c (ton) based on the component measurement results of the carbon concentration in the hot metal before and after the dephosphorization treatment is expressed by the following equation (4). Indicated.
  • C HM (%) is the carbon concentration in the hot metal before dephosphorization
  • W HM (ton) is the weight of the hot metal before dephosphorization
  • C SC (%) is in the converter 11 before dephosphorization.
  • the carbon concentration in the scrap charged in the reactor, W SC (ton) is the weight of the scrap charged in the converter 11 before the dephosphorization process, and C CM (%) is in the cold before the dephosphorization process.
  • the carbon concentration, W CM (ton) is the weight of the cold water before the dephosphorization treatment
  • C sub, j (%) is the carbon concentration in the auxiliary raw material j introduced into the converter 11 before the dephosphorization treatment
  • W sub, j (ton) is the weight of the auxiliary raw material j put into the converter 11 before the dephosphorization process.
  • C deP (%) is the carbon concentration in the hot metal after the dephosphorization treatment.
  • the decarburization amount ⁇ C offgas based on the exhaust gas data and the decarburization amount ⁇ C C based on the component change can be equal. That is, the relationship between the decarburization amount [Delta] C C based on the decarburization amount ⁇ C offgas and component change based on exhaust gas data is shown as the following equation (5).
  • the carbon concentration C deP in the hot metal after the dephosphorization treatment is expressed as the following formula (6) by applying the above formulas (2) to (4) to the above formula (5).
  • the carbon concentration C deP in molten iron after the dephosphorization process it is possible to calculate theoretically.
  • the carbon concentration C deP in the hot metal after the dephosphorization treatment based on the exhaust gas data obtained by the above formula (6) is the actual value C deP, a of the carbon concentration obtained from the hot metal sampled after the dephosphorization treatment.
  • the present inventors have found that there is a large deviation from This is because the decarburization amount ⁇ C offgas based on the exhaust gas data calculated in the above formulas (2) and (3) includes many errors.
  • the above error is mainly caused by a measurement error by the exhaust gas flow meter 102.
  • dust such as soot generated from the converter 11 may enter the piping.
  • the passage of the exhaust gas in the pipe becomes unstable, and the measurement error by the exhaust gas flow meter 102 increases. Since the internal state of the piping of the exhaust gas flow meter 102 changes every moment, it is difficult to suppress the measurement error itself caused by the exhaust gas flow meter 102.
  • the above equation (5) is incorporated by incorporating a correction term ⁇ C correct (ton), which is a correction value for correcting the decarburization amount ⁇ C offgas based on the exhaust gas data. and conceived to improve the estimation accuracy of the carbon concentration C deP in molten iron after the dephosphorization treatment obtained by (6).
  • the above equation (5) is expressed as the following equation (7) by incorporating the correction term ⁇ C correct .
  • the estimation model of the correction term ⁇ C correct is constructed by various statistical methods.
  • the correction term ⁇ C correct according to the present embodiment is an objective variable calculated by a regression equation using various operation factors X as explanatory variables, which is obtained by a known multiple regression analysis method.
  • the correction term ⁇ C correct is expressed as the following formula (8).
  • ⁇ k is a regression coefficient corresponding to the k-th operation factor X k
  • ⁇ 0 is a constant.
  • Specific examples of the operation factor X include those shown in Table 1 below. However, the operation factor shown in the following Table 1 is merely an example, and any operation factor X may be considered in the estimation of the correction term ⁇ C correct . In addition, all or part of the operation factors included in Table 1 below may be used for estimating the correction term ⁇ C correct .
  • the present inventors have improved the estimation accuracy of the carbon concentration C deP in the molten iron after dephosphorization. Found.
  • the operating factors which reflect the slag formation conditions of the slag can be further improved estimation accuracy of the carbon concentration C deP in molten iron after the dephosphorization treatment, slag formation condition of slag in the converter 11 during dephosphorization treatment This is thought to reflect decarbonation efficiency.
  • the decarbonation efficiency is an index indicating the efficiency of the reaction between oxygen blown into the converter 11 and carbon in the hot metal. When the blown oxygen touches the hot metal exposed on the hot water surface, a decarburization reaction occurs. However, in the dephosphorization process, phosphorus is preferentially taken into the slag. Therefore, a large amount of slag exists on the surface of the hot metal.
  • the slag hatching situation may have some influence on the decarburization reaction. That is, it is considered that the hatching state of the slag in the converter 11 affects the ease of the decarburization reaction, that is, the decarbonation efficiency.
  • the operating factor reflecting the slag hatching status is reflected in the correction term ⁇ C correct to take into account the effect of the change in the decarbonation efficiency of the converter 11 during the dephosphorization process, and the molten iron after the dephosphorization process.
  • the carbon concentration CdeP in the medium can be estimated. Accordingly, the present inventors that the carbon concentration C deP estimation accuracy of the molten iron after the dephosphorization process is improved and conceived.
  • the operating factors that reflect the slag hatching status during the dephosphorization process include, for example, a sound meter value (db) and a measured value (m) of microwave slag height. .
  • the sound meter value is a value output by the sound meter 111.
  • the sound meter 111 acquires the sound in the converter 11 as an acoustic signal via the sound collection microphone 112 and outputs it as a sound meter value.
  • the sound meter value varies depending on the slag hatching condition in the converter 11. By using the sound meter value as an operation factor, the slag hatching state can be reflected in the correction term ⁇ C correct .
  • the slag level is a value output from a slag level measuring device (not shown).
  • the slag level measuring apparatus acquires the microwave irradiated into the converter 11 via an antenna, and analyzes the slag level from the microwave.
  • the slag level varies depending on the hatching state of the slag in the converter 11. Similar to the sound meter value, the slag hatching state can be reflected in the correction term ⁇ C correct by using the slag level as an operation factor.
  • the measurement results obtained by these measurement methods may be used as operation factors.
  • the sound meter value it has been found that it is preferable to use the sound meter value as an operating factor that reflects the slag hatching status.
  • the estimation model of the correction term ⁇ C correct is constructed by multiple regression analysis, but the estimation model may be constructed by other statistical methods.
  • the other statistical method may be, for example, a neural network or a statistical method using a machine learning algorithm such as a random forest.
  • the estimation method of the correction term ⁇ C correct has been described above.
  • the carbon concentration C deP in the hot metal after the dephosphorization treatment is obtained by applying the above formulas (2) to (4) and the above formula (8) to the above formula (7) as shown in the following formula (9). expressed.
  • the carbon concentration estimation unit 202 estimates the carbon concentration C deP in the hot metal after the dephosphorization process by substituting various data acquired by the data acquisition unit 201 into the above equation (9).
  • the carbon concentration estimation unit 202 outputs the estimated carbon concentration C deP to the correction amount calculation unit 203.
  • the carbon concentration estimation unit 202 may output the estimated carbon concentration C deP to the input / output unit 22.
  • the correction amount calculation unit 203 is included in the target data 213 based on a comparison result between the carbon concentration C deP estimated by the carbon concentration estimation unit 202 and the target carbon concentration C aim after the dephosphorization process included in the target data 213.
  • the amount of oxygen blown in the decarburization process is corrected.
  • the target carbon concentration C aim after the dephosphorization treatment and the blown oxygen amount O 2, aim in the decarburization treatment are amounts determined by static control before the dephosphorization treatment.
  • the correction amount calculation unit 203 calculates the correction amount ⁇ O 2, correct of the blown oxygen amount using the above-described estimation result and the like. Then, the correction amount calculation unit 203 updates the blown oxygen amount O2 , aim initially determined using the correction amount ⁇ O2 , correct of the blown oxygen amount, and updates the blown oxygen amount O2 , corrected after the update. To get.
  • the correction amount of the oxygen amount can be calculated by the following equation (10).
  • is a parameter.
  • a theoretical value corresponding to the chemical equivalent of oxygen reacting with carbon can be substituted for this parameter.
  • the amount of oxygen corresponding to the difference between the estimated carbon concentration C deP and the target carbon concentration C aim is calculated.
  • the correction amount calculation unit 203 outputs information about the corrected oxygen injection amount O 2 and corrected to the input / output unit 22.
  • the correction amount calculation unit 203 may correct not only the initially determined blowing oxygen amount O 2, im but also the initial amount of cold material. For example, when the corrected blown oxygen amount O2 , corrected is smaller than the initially determined blown oxygen amount O2 , aim , the hot metal temperature of the converter 11 can be lowered in the decarburization process. Therefore, the correction amount calculation unit 203 performs a correction to reduce the amount of cold material put into the converter 11 based on, for example, the corrected blown oxygen amount O 2, corrected and the hot metal temperature (molten steel temperature). May be. Thereby, even when the amount of oxygen blown in the decarburization process is corrected to be small after the dephosphorization process, the initially determined target molten steel temperature can be reached. The correction amount calculation unit 203 outputs information about the corrected cold material amount to the input / output unit 22.
  • FIG. 2 is a view showing a flowchart of a hot metal preliminary processing method by the hot metal preliminary processing system 1 according to the present embodiment.
  • FIG. 2 the flow of the hot metal pretreatment method by the hot metal pretreatment system 1 according to the present embodiment will be described.
  • Each process shown in FIG. 2 corresponds to each process executed by the hot metal preliminary process control device 20 shown in FIG. Therefore, the details of each process shown in FIG. 2 are omitted, and only an outline of each process is described.
  • the data acquisition unit 201 acquires hot metal data and exhaust gas data (step S101). Specifically, the data acquisition unit 201 acquires hot metal data 211, parameters 212, and target data 213 shown in FIG. 1, and exhaust gas data measured by the exhaust gas component analyzer 101 and the exhaust gas flow meter 102.
  • the carbon concentration estimation unit 202 estimates the carbon concentration in the hot metal after the dephosphorization process based on the acquired various data (step S103). Specifically, the carbon concentration estimation unit 202 estimates the carbon concentration in the hot metal after the dephosphorization process by substituting various data included in the hot metal data and the exhaust gas data into the above equation (9). In the estimation of the correction term ⁇ C correct in the above equation (9), various operating factors can be selected. For example, in order to further improve the carbon concentration in the hot metal after the dephosphorization treatment, it is preferable to select an operation factor that reflects the slag hatching state in the estimation of ⁇ C correct .
  • the correction amount calculation unit 203 uses the converter 11 in the decarburization process based on the comparison result between the estimated carbon concentration in the hot metal after the dephosphorization process and the target carbon concentration in the hot metal after the dephosphorization process.
  • the amount of oxygen blown in is corrected (step S105).
  • it is preferable that the amount of cold material during the decarburization process is corrected in order to match the hot metal temperature with the target hot metal temperature after the dephosphorization process in conjunction with the correction of the blown oxygen amount.
  • the input / output unit 22 issues an instruction to the converter blowing equipment 10 so as to inject oxygen and supply the cold material based on the corrected oxygen amount and cold material amount.
  • the converter blowing facility 10 performs a process relating to the feeding of the acid and the cooling material to the converter 11 according to the instruction.
  • both the amount of oxygen blown into the converter 11 and the amount of cold material to be injected are corrected based on the estimated carbon concentration in the hot metal after the dephosphorization treatment.
  • the present embodiment is not limited to such an example.
  • only the amount of blown oxygen so that the carbon concentration in the molten steel satisfies the target value may be corrected.
  • step S105 based on the estimated carbon concentration in the molten iron after the dephosphorization treatment, only the blown oxygen amount that the carbon concentration in the molten steel satisfies the target value may be calculated.
  • the corrected decarburization in which the decarburization amount obtained using the exhaust gas data is corrected by the correction value expressed by the regression equation using the operation factor at the time of dephosphorization as an explanatory variable.
  • the amount is used to estimate the carbon concentration in the hot metal after dephosphorization.
  • the decarburization efficiency in the converter 11 is set to the correction term described above. It can be reflected. Thereby, the carbon concentration in the hot metal after the dephosphorization treatment can be estimated with higher accuracy.
  • the amount of oxygen blown in during the decarburization process is corrected using the estimation result of the carbon concentration.
  • the configuration shown in FIG. 1 is merely an example of the hot metal pretreatment system 1 according to the present embodiment, and the specific configuration of the hot metal pretreatment system 1 is not limited to this example.
  • the hot metal pretreatment system 1 only needs to be configured so as to realize the functions described above, and can take any configuration that can be generally assumed.
  • all the functions of the hot metal preliminary processing control device 20 may not be executed by one device, but may be executed by cooperation of a plurality of devices.
  • one device having only one or a plurality of functions of the data acquisition unit 201, the carbon concentration estimation unit 202, and the correction amount calculation unit 203 can communicate with other devices having other functions.
  • a function equivalent to the hot metal pretreatment control device 20 shown in the figure may be realized.
  • a computer program for realizing each function of the hot metal preliminary processing control device 20 according to the present embodiment shown in FIG. 1 and mount it on a processing device such as a PC.
  • a computer-readable recording medium storing such a computer program can be provided.
  • the recording medium is, for example, a magnetic disk, an optical disk, a magneto-optical disk, a flash memory, or the like.
  • the above computer program may be distributed via a network, for example, without using a recording medium.
  • the decarburization amount ⁇ C c based on the component change, the decarburization amount ⁇ C offgas and the correction term ⁇ C correct based on the exhaust gas data were calculated using the exhaust gas data, the hot metal data, and the operation factors.
  • the decarburization amount ⁇ C offgas based on the exhaust gas data was calculated using the above formulas (2) and (3), and the correction term ⁇ C correct was calculated using the above formula (8). Further, the decarburization amount ⁇ C c based on the component change was calculated using the formula (4).
  • the decarburization amount ⁇ C c based on the component change, the decarburization amount ⁇ C offgas based on the exhaust gas data, and the correction term ⁇ C correct have the relationship of the formula (7).
  • the decarburization amount ⁇ C c based on the component change and the decarburization amount ⁇ C offgas based on the exhaust gas data were calculated using the exhaust gas data and the hot metal data.
  • the calculation method of the decarburization amount ⁇ C offgas based on the exhaust gas data and the decarburization amount ⁇ C c based on the component change is the same as in this embodiment.
  • the correction term ⁇ C correct is not used, and the relationship of the above formula (5) is assumed between the decarburization amount ⁇ C c based on the component change and the decarburization amount ⁇ C offgas based on the exhaust gas data.
  • the actual value of the carbon concentration in the hot metal sampled from the converter after the dephosphorization treatment is included in C deP in the above formula (4) in order to verify the effectiveness of the correction term ⁇ C correct. Is substituted. That is, in this embodiment, the decarburization amount ⁇ C c based on the component change is a value obtained based on the actual value.
  • Example 2 shows a list of data and operating factors used in the estimation of the carbon concentration in the hot metal after the dephosphorization treatment in Example 1, Example 2, and Comparative Example. In this example, a sound meter value was used as an operation factor reflecting the slag hatching status.
  • the decarburization amount ⁇ C offgas (corrected decarburization amount obtained by adding the correction term ⁇ C correct to the exhaust gas data calculated in Example 1, Example 2 and Comparative Example)
  • the error (estimation error) from the decarburization amount ⁇ C c based on the component change was calculated, respectively, and the standard deviation ⁇ of the estimation error was obtained. It can be said that as the standard deviation ⁇ is smaller, the estimation error is smaller, that is, the effectiveness of the correction term ⁇ C correct is higher.
  • the carbon concentration C deP estimated using the above formula (9) in Example 1 and Example 2 and the hot metal sampled from the converter after the dephosphorization treatment An error from the actual value of the carbon concentration was calculated, and a standard deviation ⁇ of the estimation error was obtained. It can be said that the smaller the standard deviation ⁇ , the smaller the estimation error, that is, the higher the estimation accuracy.
  • FIG. 3 is a diagram illustrating an estimation error of the decarburization amount ⁇ C offgas based on the exhaust gas data in the comparative example.
  • FIG. 4 is a diagram showing an estimation error of the decarburization amount ⁇ C offgas + correction term ⁇ C correct based on the exhaust gas data in the first embodiment.
  • FIG. 5 is a diagram showing an estimation error of the decarburization amount ⁇ C offgas + correction term ⁇ C correct based on the exhaust gas data in the second embodiment.
  • the x-axis shows the decarburization amount based on the actual value obtained by the component analysis of the carbon concentration
  • the y-axis shows the decarburization amount based on the exhaust gas data (including the correction term ⁇ C correct ).
  • the standard deviation ⁇ of the estimation error in Comparative Example 1 was 0.80, whereas the standard deviation ⁇ of the estimation error in Example 1 was 0.51.
  • the standard deviation ⁇ of the estimation error in was 0.40. From the result, it can be confirmed that the error of the decarburization amount with respect to the actual data is reduced by the correction by the correction term ⁇ C correct . Furthermore, since the standard deviation ⁇ in the second embodiment is smaller than the standard error ⁇ in the first embodiment, it is more effective to incorporate an operation factor that reflects the slag hatching state in the correction term ⁇ C correct. It was shown that.
  • FIG. 6 is a diagram illustrating an estimation error of the carbon concentration CdeP in the first embodiment.
  • FIG. 7 is a diagram showing an estimation error of the carbon concentration CdeP in Example 2.
  • the x-axis shows the actual value by the component analysis of the carbon concentration
  • the y-axis shows the estimated value of the carbon concentration estimated using the hot metal pretreatment method according to the present embodiment.
  • the standard deviation ⁇ of the estimation error in Example 1 was 0.15, and the standard deviation ⁇ of the estimation error in Example 2 was 0.11. Since all the standard deviations ⁇ are low, it can be said that the estimation accuracy of the carbon concentration C deP is high. In addition, since the standard deviation ⁇ in Example 2 was smaller than the standard error ⁇ in Example 1, the estimation accuracy of the carbon concentration C deP can be improved by using an operation factor that reflects the slag hatching status. It was confirmed that it could be further increased.
  • the carbon concentration C deP can be estimated with higher accuracy in this example by introducing the correction term ⁇ C correct than in the comparative example.
  • the operational factors that reflect the slag formation conditions of the slag to estimate the correction term [Delta] C correct, it has been found that it is possible to further enhance the estimation accuracy of the carbon concentration C deP.
  • the hot metal preliminary treatment method according to this embodiment was verified whether or not the hot metal preliminary treatment method according to this embodiment can be applied to operations using past operation result data. Specifically, with respect to the past operation result data, the estimation result of the carbon concentration in the hot metal after the dephosphorization treatment obtained by the hot metal pretreatment method according to the embodiment, the amount of injected oxygen during the decarburization treatment, and The correction result of the amount of cold material was verified.
  • Table 3 is a table showing an application example of the estimation result of the carbon concentration and the correction result such as the oxygen amount to the operation result data.
  • Table 3 the history of the planned value, the actual value, and the estimated value or the corrected instruction value for each of the carbon concentration in the hot metal, the hot metal temperature, the amount of blown oxygen, and the amount of cold material is shown.
  • the planned value is a value estimated in advance by static control before dephosphorization.
  • the actual value is a value measured or set in the past operation.
  • the estimated value and the corrected instruction value are an estimated value of the carbon concentration obtained by the hot metal pretreatment method according to the present embodiment, and an indicated value of the corrected amount of the blown oxygen amount and the cold material amount.
  • the instruction value for the correction amount of the blown oxygen amount corresponds to, for example , the corrected blown oxygen amount O 2 and corrected obtained based on the above formula (10).
  • the carbon concentration in the hot metal at the end of the dephosphorization treatment is 4.0%, and when the sublance is measured during the decarburization treatment, the carbon concentration in the molten steel is 0. It is assumed that the carbon concentration (target carbon concentration) in the molten steel at the end of the decarburization process is 0.1%. Accordingly, the blown oxygen amount is 7.0 Nm 3 / ton at the start of the decarburization process and 25.0 Nm 3 / ton (7. 0 + 18.0), and is determined to be 30.0 Nm 3 / ton (7.0 + 18.0 + 5.0) at the end of the decarburization process.
  • the value of the amount of cold material is 2.0 ton during dephosphorization blowing and 5.0 ton from the start of decarburization treatment to the time of sublance measurement.
  • the carbon concentration in the molten steel at the time of sublance measurement in actual operation was 0.10%.
  • the hot metal temperature at the time of measuring the sublance remained at the planned value of 1600 ° C.
  • the carbon concentration in the molten steel was 0.04%, which was lower than the original target carbon concentration. This is presumably because the carbon concentration in the hot metal at the end of the dephosphorization process was lower than the originally determined 4.0%.
  • the carbon concentration in the hot metal at the end of the dephosphorization process is estimated to be 3.5%. Further, according to this estimation result, the oxygen amount at the time of the sublance measurement from the start of the decarburization process is corrected from 18.0 to 13.0 Nm 3 / ton. Further, the amount of cold material is corrected to 2.5 ton according to the estimation result of carbon concentration and the correction result of oxygen amount. If the operation is performed based on this modification, the carbon concentration at the time of sublance measurement will satisfy the 0.5% previously assumed, so the carbon concentration in the molten steel at the end of the decarburization process should be blown down.
  • the target carbon concentration can be made closer to the target carbon concentration. That is, by applying the hot metal preliminary treatment method according to the present embodiment to actual operations, the carbon concentration in the molten steel can be more accurately hit the target carbon concentration.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

[Problem] To estimate the carbon concentration in molten pig iron after dephosphorization with high precision. [Solution] Provided is a molten pig iron pre-treatment method using a converter furnace comprising: a data-acquiring step for acquiring molten pig iron data relating to molten pig iron before dephosphorization and exhaust gas data including the components of exhaust gas discharged from the converter furnace during dephosphorization and exhaust gas flow rate; and a carbon concentration-estimating step for correcting, using a correction value calculated on the basis of operation factors during the dephosphorization, the decarbonization amount during the dephosphorization calculated on the basis of the exhaust gas data and estimating the carbon concentration after dephosphorization on the basis of the corrected decarbonization amount and the molten pig iron data.

Description

溶銑予備処理方法及び溶銑予備処理制御装置Hot metal pretreatment method and hot metal pretreatment control device
 本発明は、転炉を用いた溶銑予備処理において、脱りん処理後の溶銑中の炭素濃度を推定する溶銑予備処理方法及び溶銑予備処理制御装置に関する。 The present invention relates to a hot metal pretreatment method and a hot metal pretreatment control device for estimating a carbon concentration in hot metal after dephosphorization in hot metal pretreatment using a converter.
 製鋼プロセスにおける転炉吹錬では、吹止め時(脱炭処理終了時)の溶鋼成分濃度(例えば炭素濃度等)や溶鋼温度を目標値に的中させるために、スタティック制御とサブランス測定に基づいたダイナミック制御とを組み合わせた吹錬制御が行われている。スタティック制御では、吹錬を開始する前において、溶銑中の成分濃度等の溶銑データに基づいて、物質収支や熱収支に基づいた数式モデル等を用いて、吹止め時の溶鋼成分濃度及び溶鋼温度を目標値に的中させるために必要な吹込み酸素量や各種副原料の投入量を決定しておき、これに従って吹錬が行われる。一方、ダイナミック制御では、吹錬中において、サブランスを用いて実際に溶鋼成分濃度や溶鋼温度を測定し、これらの測定値に基づいて、物質収支や熱収支に基づいた数式モデル等を用いて、スタティック制御で決定しておいた吹込み酸素量や各種副原料の投入量を更新し、更新したこれらの値を用いて吹錬が行われる。 The converter blowing in the steelmaking process is based on static control and sublance measurement in order to bring the molten steel component concentration (for example, carbon concentration, etc.) and the molten steel temperature to the target values at the time of blowing stop (at the end of decarburization treatment). Blowing control combined with dynamic control is performed. In static control, before starting smelting, based on hot metal data such as component concentration in hot metal, using a mathematical model based on the material balance and heat balance, the molten steel component concentration and molten steel temperature at the time of blowing The amount of blown oxygen and the amount of various auxiliary materials required to bring the target to the target value are determined, and blowing is performed according to this. On the other hand, in dynamic control, during blow smelting, the molten steel component concentration and molten steel temperature are actually measured using a sublance, and based on these measured values, using a mathematical model based on the material balance and heat balance, etc. The blown oxygen amount and the input amounts of various auxiliary materials determined by static control are updated, and blowing is performed using these updated values.
 近年、転炉吹錬において溶銑予備処理と脱炭処理とを同一の転炉において一貫して行うことが可能なMURC(MUlti Refining Converter:多機能転炉法)と呼ばれる技術の開発が進められている。MURCでは、吹錬における溶銑予備処理の一つである脱りん処理と、吹錬における脱炭処理とを連続的に行うことができる。これにより、製鋼プロセスにおいて他の転炉に溶銑を移し替えることにより生じ得る熱損失が少なくなる。したがって、大量のスクラップを吹錬に使用することができるので、製鋼プロセスにおける生産効率を顕著に向上させることが可能となる。 In recent years, a technology called MURC (MUlti Refining Converter) has been developed that can perform hot metal preliminary treatment and decarburization treatment in the same converter in the converter blowing. Yes. In MURC, the dephosphorization process which is one of the hot metal preliminary processes in blowing and the decarburization process in blowing can be performed continuously. Thereby, the heat loss which may arise by transferring a hot metal to another converter in a steelmaking process decreases. Accordingly, since a large amount of scrap can be used for blowing, the production efficiency in the steelmaking process can be remarkably improved.
 スクラップが大量に転炉に装入された場合、脱りん処理が終了した後において、溶銑に未溶解のまま存在することがある。このような未溶解スクラップが存在する場合、転炉内の溶銑について上述したサブランス測定を行うことが困難となる。これは、サブランスが未溶解スクラップに衝突することによりサブランスが破損し、重大な事故を引き起こす可能性があるからである。そのため、脱りん終了後に脱炭処理を開始する場合において、脱炭処理開始時の溶銑中の炭素濃度を、サブランスを用いて測定することは困難である。したがって、脱りん処理と脱炭処理を同一の転炉により連続的に行う場合、脱炭処理開始時ではなく、脱りん処理開始時の溶銑中の炭素濃度の実績値に基づいて、スタティック制御により吹込み酸素量や各種副原料の投入量を決定することが要求される。 When a large amount of scrap is charged into the converter, it may remain undissolved in the hot metal after the dephosphorization process is completed. When such unmelted scrap exists, it is difficult to perform the above-described sublance measurement on the hot metal in the converter. This is because the sublance collides with undissolved scrap, which can break the sublance and cause a serious accident. Therefore, when the decarburization process is started after the completion of the dephosphorization, it is difficult to measure the carbon concentration in the hot metal at the start of the decarburization process using a sublance. Therefore, when the dephosphorization process and the decarburization process are continuously performed in the same converter, the static control is not performed based on the actual value of the carbon concentration in the hot metal at the start of the dephosphorization process, not at the start of the decarburization process. It is required to determine the amount of oxygen blown in and the amount of various auxiliary materials charged.
 しかし、脱りん処理の進行状況によっては、溶銑中の炭素濃度が、当初の想定よりも大きく減少したり、またはあまり減少しない場合が存在する。この場合、脱炭処理後の溶鋼中の炭素濃度が、目標の炭素濃度から大きく乖離する可能性がある。したがって、目標の炭素濃度を有する溶鋼を確実に得るためには、脱りん処理前ではなく、脱りん処理後の溶銑中の炭素濃度に基づいてスタティック制御を行う必要がある。脱りん処理後の溶銑中の炭素濃度を直接的に測定することは困難であるため、脱りん処理後における溶銑中の炭素濃度を理論的に推定するための技術が要求される。 However, depending on the progress of the dephosphorization process, the carbon concentration in the hot metal may be greatly reduced or not significantly reduced from the initial assumption. In this case, the carbon concentration in the molten steel after the decarburization treatment may greatly deviate from the target carbon concentration. Therefore, in order to reliably obtain molten steel having a target carbon concentration, it is necessary to perform static control based on the carbon concentration in the hot metal after the dephosphorization treatment, not before the dephosphorization treatment. Since it is difficult to directly measure the carbon concentration in the hot metal after the dephosphorization treatment, a technique for theoretically estimating the carbon concentration in the hot metal after the dephosphorization treatment is required.
 転炉吹錬における炭素濃度を推定するための技術として、様々な技術がこれまでに開発されている。例えば、下記特許文献1には、脱炭処理において転炉から排出される排ガスデータを用いて脱炭酸素効率に関するパラメータを算出し、当該パラメータを用いて脱炭処理が行われている溶鋼中の炭素濃度を推定する技術が開示されている。この技術では、脱炭処理において、吹き込まれた酸素と溶鋼中の炭素がほぼ1対1の割合(ここで、1対1の割合とは、モル比における1対1との意味である)で反応する脱炭最盛期の段階において脱炭酸素効率が一定となる挙動と、溶鋼中の炭素濃度が臨界値を下回った段階において脱炭酸素効率が低下する挙動とを組み合わせたモデルが用いられている。これにより、脱炭処理の推移を反映した炭素濃度の推定が可能となるので、溶鋼中の炭素濃度および溶鋼温度の推定精度が向上する。 Various technologies have been developed so far for estimating the carbon concentration in converter blowing. For example, in Patent Document 1 below, a parameter regarding decarbonation efficiency is calculated using exhaust gas data discharged from a converter in a decarburization process, and the decarburization process is performed using the parameter in the molten steel. A technique for estimating the carbon concentration is disclosed. In this technique, in the decarburization treatment, the blown oxygen and the carbon in the molten steel are in a ratio of approximately 1: 1 (here, the ratio of 1: 1 corresponds to 1: 1 in the molar ratio). A model is used that combines the behavior in which the decarbonation efficiency is constant at the stage of the decarburization peak period that reacts with the behavior in which the decarbonation efficiency decreases when the carbon concentration in the molten steel falls below the critical value. Yes. Thereby, since the estimation of the carbon concentration reflecting the transition of the decarburization process is possible, the estimation accuracy of the carbon concentration in the molten steel and the molten steel temperature is improved.
特開2012-117090号公報JP 2012-1117090 A
 しかしながら、上記特許文献1に記載の技術により推定される溶鋼中の炭素濃度は、あくまで脱炭処理における溶銑中の炭素濃度を推定するものである。脱りん処理においては、脱炭処理とは転炉内に吹き込まれる酸素流量が異なる。具体的には、脱炭処理においては、溶鋼の脱炭のために酸素が上吹きランスから高速で吹き込まれるが、脱りん処理においては、脱りんを促進させるための酸化鉄スラグを効率よく生成するために、酸素が低速で吹き込まれる。転炉内に吹き込まれる酸素流量が異なると、転炉内で生じる酸化反応のメカニズムも異なる。したがって、上記特許文献1に開示されている炭素濃度の推定に係る技術をそのまま脱りん処理における溶銑中の炭素濃度の推定に適用させても、脱りん処理後の溶銑中の炭素濃度を精度高く推定することは困難である。 However, the carbon concentration in the molten steel estimated by the technique described in Patent Document 1 is merely an estimate of the carbon concentration in the hot metal in the decarburization process. In the dephosphorization process, the oxygen flow rate blown into the converter differs from the decarburization process. Specifically, in the decarburization process, oxygen is blown from the top lance at high speed for decarburization of the molten steel, but in the dephosphorization process, iron oxide slag is generated efficiently to promote dephosphorization. To do so, oxygen is blown at a low speed. When the flow rate of oxygen blown into the converter is different, the mechanism of the oxidation reaction occurring in the converter is also different. Therefore, even if the technique related to the estimation of the carbon concentration disclosed in Patent Document 1 is applied as it is to the estimation of the carbon concentration in the hot metal in the dephosphorization process, the carbon concentration in the hot metal after the dephosphorization process is highly accurate. It is difficult to estimate.
 そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、脱りん処理後の溶銑中の炭素濃度を精度高く推定することが可能な、新規かつ改良された溶銑予備処理方法および溶銑予備処理制御装置を提供することにある。 Therefore, the present invention has been made in view of the above problems, and an object of the present invention is a novel and improved technique capable of accurately estimating the carbon concentration in hot metal after dephosphorization. Another object is to provide a hot metal pretreatment method and a hot metal pretreatment control device.
 上記課題を解決するために、本発明のある観点によれば、転炉を用いた溶銑予備処理において、脱りん処理前の溶銑に関する溶銑データ、並びに脱りん処理時に上記転炉から排出された排ガス成分および排ガス流量を含む排ガスデータを取得するデータ取得ステップと、上記排ガスデータに基づいて算出される脱りん処理時の脱炭量を、上記脱りん処理時の操業要因に基づいて算出される補正値を用いて補正し、補正された脱炭量と上記溶銑データとに基づいて脱りん処理後の炭素濃度を推定する炭素濃度推定ステップと、を含む溶銑予備処理方法が提供される。 In order to solve the above problems, according to one aspect of the present invention, in hot metal preliminary treatment using a converter, hot metal data relating to hot metal before dephosphorization treatment and exhaust gas discharged from the converter during dephosphorization treatment are provided. A data acquisition step for acquiring exhaust gas data including components and exhaust gas flow rate, and a correction for calculating the decarburization amount at the time of dephosphorization processing calculated based on the exhaust gas data based on the operating factors at the time of the dephosphorization processing There is provided a hot metal pretreatment method that includes a carbon concentration estimation step that corrects using a value and estimates a carbon concentration after dephosphorization based on the corrected decarburization amount and the hot metal data.
 上記炭素濃度推定ステップにおいて、上記補正値は、上記操業要因を説明変数とする回帰式により算出されてもよい。 In the carbon concentration estimation step, the correction value may be calculated by a regression equation having the operation factor as an explanatory variable.
 上記脱りん処理時の操業要因は、上記脱りん処理時におけるスラグの滓化状況を示す操業要因を含んでもよい。 The operation factor during the dephosphorization treatment may include an operation factor indicating the hatching status of the slag during the dephosphorization treatment.
 上記スラグの滓化状況を示す操業要因は、上記転炉内の音響情報に関する操業要因を含んでもよい。 The operation factor indicating the hatching status of the slag may include an operation factor related to acoustic information in the converter.
 上記データ取得ステップにおいて、上記脱りん処理後の目標炭素濃度、および上記脱りん処理後に行われる脱炭処理における上記転炉内への吹込み酸素量をさらに取得し、上記溶銑予備処理方法は、推定された上記脱りん処理後の炭素濃度および上記脱りん処理後の上記目標炭素濃度の比較結果に基づいて、上記吹込み酸素量を修正する酸素量修正ステップをさらに含んでもよい。 In the data acquisition step, the target carbon concentration after the dephosphorization process and the amount of oxygen blown into the converter in the decarburization process performed after the dephosphorization process are further acquired. The method may further include an oxygen amount correction step of correcting the blown oxygen amount based on a comparison result of the estimated carbon concentration after the dephosphorization treatment and the target carbon concentration after the dephosphorization treatment.
 また、上記課題を解決するために、本発明の別の観点によれば、転炉を用いた溶銑予備処理を制御する溶銑予備処理制御装置において、脱りん処理前の溶銑に関する溶銑データ、並びに脱りん処理時に上記転炉から排出された排ガス成分および排ガス流量を含む排ガスデータを取得するデータ取得部と、上記排ガスデータに基づいて算出される脱りん処理時の脱炭量を、上記脱りん処理時の操業要因に基づいて算出される補正値を用いて補正し、補正された脱炭量と上記溶銑データとに基づいて脱りん処理後の炭素濃度を推定する炭素濃度推定部と、を備える、溶銑予備処理制御装置が提供される。 In order to solve the above problems, according to another aspect of the present invention, in the hot metal pretreatment control apparatus for controlling hot metal pretreatment using a converter, hot metal data relating to hot metal before dephosphorization treatment, A data acquisition unit that acquires exhaust gas data including exhaust gas components and exhaust gas flow rate discharged from the converter during the phosphorus treatment, and a decarburization amount calculated based on the exhaust gas data for the dephosphorization treatment. A carbon concentration estimator that corrects using a correction value calculated based on the operating factor of the time and estimates the carbon concentration after dephosphorization based on the corrected decarburization amount and the molten iron data A hot metal pretreatment control device is provided.
 上記溶銑予備処理方法は、排ガスデータを用いて得られる脱炭量を脱りん処理時の操業要因を説明変数とする回帰式により表現される補正値により補正した補正脱炭量を用いて、脱りん処理後の溶銑中の炭素濃度を推定する。これにより、脱りん処理後にサブランス測定を行わなくても脱りん処理後の溶銑中の炭素濃度を高精度で推定することができる。したがって、脱炭処理後に目標値の炭素濃度を有する溶鋼をより確実に得ることが可能となる。 The hot metal preliminary treatment method uses a corrected decarburization amount obtained by correcting the decarburization amount obtained using the exhaust gas data with a correction value expressed by a regression equation with the operating factors during dephosphorization as explanatory variables. Estimate the carbon concentration in the hot metal after phosphorus treatment. Thereby, the carbon concentration in the hot metal after the dephosphorization process can be estimated with high accuracy without performing the sublance measurement after the dephosphorization process. Therefore, it becomes possible to more reliably obtain molten steel having a target carbon concentration after decarburization treatment.
 以上説明したように本発明によれば、脱りん処理後の溶銑中の炭素濃度を精度高く推定することが可能である。 As described above, according to the present invention, it is possible to accurately estimate the carbon concentration in the hot metal after the dephosphorization treatment.
本発明の一実施形態に係る溶銑予備処理システムの構成例を示す図である。It is a figure showing an example of composition of a hot metal preliminary treatment system concerning one embodiment of the present invention. 同実施形態に係る溶銑予備処理システムによる溶銑予備処理方法のフローチャートを示す図である。It is a figure which shows the flowchart of the hot metal preliminary processing method by the hot metal preliminary processing system which concerns on the embodiment. 比較例における排ガスデータに基づく脱炭量ΔCoffgasの推定誤差を示す図である。It is a figure which shows the estimation error of decarburization amount ( DELTA) Coffgas based on the waste gas data in a comparative example. 実施例1における排ガスデータに基づく脱炭量ΔCoffgas+補正項ΔCcorrectの推定誤差を示す図である。Is a diagram illustrating the estimation error of the decarburization amount ΔC offgas + correction term [Delta] C correct based on exhaust gas data in the first embodiment. 実施例2における排ガスデータに基づく脱炭量ΔCoffgas+補正項ΔCcorrectの推定誤差を示す図である。Is a diagram illustrating the estimation error of the decarburization amount ΔC offgas + correction term [Delta] C correct based on exhaust gas data in the second embodiment. 実施例1における炭素濃度CdePの推定誤差を示す図である。FIG. 3 is a diagram illustrating an estimation error of a carbon concentration C deP in Example 1. 実施例2における炭素濃度CdePの推定誤差を示す図である。It is a figure which shows the estimation error of the carbon concentration CdeP in Example 2. FIG.
 以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.
 なお、脱炭処理時の転炉内には、その炭素濃度に応じて銑鉄又は鋼が存在し得るが、以下の説明では、説明が煩雑になることを避けるために、転炉内の溶銑又は溶鋼のことを、便宜的に、いずれも溶鋼と呼称することとする。また、脱りん処理時については溶銑という単語を用いる。また、本明細書において「脱りん処理後」は、特に区別しない限り「脱りん処理が終了した時点(脱りん処理終了時)」の意味で用いられる。つまり、「脱りん処理後」には、脱炭処理開始以降の時点は含まれない。 Note that pig iron or steel may be present in the converter at the time of decarburization depending on the carbon concentration, but in the following explanation, in order to avoid complicated explanation, For convenience, the molten steel will be referred to as molten steel. In addition, the word hot metal is used for the dephosphorization process. In the present specification, “after dephosphorization” is used to mean “when dephosphorization is completed (when dephosphorization is completed)” unless otherwise specified. That is, “after the dephosphorization process” does not include the time point after the start of the decarburization process.
 また、本発明の一実施形態に係る溶銑予備処理方法は、MURCによる脱りん処理後の溶銑中の炭素濃度を推定することを想定しているが、本発明はかかる例に限定されない。例えば、本発明の一実施形態に係る溶銑予備処理方法は、SRP(Simple Refining Process:シンプル・リファイニング・プロセス)等の他の転炉吹錬方式を用いた脱りん処理後の溶銑中の炭素濃度を推定することも可能である。すなわち、本発明の一実施形態に係る溶銑予備処理方法は、溶銑予備処理(特に脱りん処理)に用いられる転炉吹錬方式に関わらず、脱りん処理後の溶銑中の炭素濃度を推定することが可能である。 Moreover, although the hot metal pretreatment method according to an embodiment of the present invention assumes that the carbon concentration in the hot metal after the dephosphorization process by MURC is estimated, the present invention is not limited to such an example. For example, the hot metal pretreatment method according to an embodiment of the present invention is a carbon in hot metal after dephosphorization treatment using another converter blowing method such as SRP (Simple Refining Process). It is also possible to estimate the concentration. That is, the hot metal pretreatment method according to one embodiment of the present invention estimates the carbon concentration in the hot metal after dephosphorization regardless of the converter blowing method used for hot metal pretreatment (particularly, dephosphorization). It is possible.
 <1.システムの構成>
 図1は、本発明の一実施形態に係る溶銑予備処理システム1の構成例を示す図である。図1を参照すると、本実施形態に係る溶銑予備処理システム1は、転炉吹錬設備10、溶銑予備処理制御装置20および計測制御装置30を備える。
<1. System configuration>
FIG. 1 is a diagram showing a configuration example of a hot metal pretreatment system 1 according to an embodiment of the present invention. Referring to FIG. 1, a hot metal preliminary treatment system 1 according to the present embodiment includes a converter blowing equipment 10, a hot metal preliminary treatment control device 20, and a measurement control device 30.
 (転炉吹錬設備)
 転炉吹錬設備10は、転炉11、煙道12、上吹きランス13、排ガス成分分析計101および排ガス流量計102を備える。また、転炉吹錬設備10は、サウンドメータ111および集音マイクロフォン112をさらに備え得る。転炉吹錬設備10は、例えば、計測制御装置30より出力された制御信号に基づいて、上吹きランス13による溶銑への酸素の供給の開始および停止、冷材の投入、並びに、転炉11による溶銑およびスラグの排滓に関する処理を行う。なお、図示は省略するが、転炉吹錬設備10には、溶銑の成分濃度および溶銑温度を測定するためのサブランス、上吹きランス13に対して酸素を供給するための送酸装置、転炉11に対して冷材を投入するための駆動系を有する冷材投入装置、並びに転炉11に対して副原料を投入するための駆動系を有する副原料投入装置等、一般的な転炉による吹錬に用いられる各種装置が設けられ得る。
(Converter blowing equipment)
The converter blowing facility 10 includes a converter 11, a flue 12, an upper blowing lance 13, an exhaust gas component analyzer 101, and an exhaust gas flow meter 102. The converter blowing facility 10 may further include a sound meter 111 and a sound collecting microphone 112. For example, the converter blowing facility 10 starts and stops the supply of oxygen to the hot metal by the top blowing lance 13, inputs the cold material, and converts the converter 11 based on the control signal output from the measurement control device 30. Performs processing related to hot metal and slag drainage. In addition, although illustration is abbreviate | omitted, the converter blowing equipment 10 is a sub lance for measuring the hot metal component density | concentration and hot metal temperature, the acid sending apparatus for supplying oxygen with respect to the top blowing lance 13, and a converter By a general converter, such as a cold material charging device having a drive system for charging a cold material to 11 and an auxiliary material charging device having a drive system for charging an auxiliary material to the converter 11 Various devices used for blowing can be provided.
 転炉11の炉口からは吹錬に用いられる上吹きランス13が挿入されており、送酸装置から送られた酸素14が上吹きランス13を通じて炉内の溶銑に供給される。また、溶銑の撹拌のために、窒素ガスやアルゴンガス等の不活性ガス等が底吹きガス15として転炉11の底部から導入され得る。転炉11内には、高炉から出銑された溶銑、少量の鉄スクラップ、溶銑温度を調整するための冷材、および生石灰等のスラグ形成のための副原料が装入/投入される。なお、副原料が粉体である場合は、上吹きランス13を通じて酸素14とともに転炉11内に供給されてもよい。 An upper blowing lance 13 used for blowing is inserted from the furnace port of the converter 11, and oxygen 14 sent from the acid feeding device is supplied to the molten iron in the furnace through the upper blowing lance 13. In addition, an inert gas such as nitrogen gas or argon gas can be introduced from the bottom of the converter 11 as the bottom blowing gas 15 for stirring the hot metal. In the converter 11, hot metal discharged from the blast furnace, a small amount of iron scrap, a cold material for adjusting the hot metal temperature, and auxiliary raw materials for slag formation such as quick lime are charged / input. When the auxiliary material is powder, it may be supplied into the converter 11 together with the oxygen 14 through the top blowing lance 13.
 脱りん処理において、下記式(1)に示されるように、溶銑に含まれるりんが転炉内のスラグに含まれる酸化鉄、および酸化カルシウム含有物質を含む副原料と化学反応することにより(脱りん反応)りんがスラグに取り込まれる。つまり、吹錬によりスラグの酸化鉄の濃度を増加させることにより、脱りん反応を促進させることができる。なお、下記式(1)において、「[物質X]」は溶銑中の物質Xを示し、「(物質Y)」はスラグ中の物質Yを示す。 In the dephosphorization process, as shown in the following formula (1), phosphorus contained in the hot metal chemically reacts with the iron oxide contained in the slag in the converter and the auxiliary raw material containing the calcium oxide-containing material (deoxidation). Phosphorus reaction) Phosphorus is taken into the slag. That is, the dephosphorization reaction can be promoted by increasing the concentration of iron oxide in the slag by blowing. In the following formula (1), “[substance X]” represents the substance X in the hot metal, and “(substance Y)” represents the substance Y in the slag.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 また、溶銑中の炭素は上吹きランス13から供給された酸素と酸化反応する(脱炭反応)。これにより、COまたはCOの排ガスが生成される。これらの排ガスは、転炉11から煙道12へ排出される。 Further, the carbon in the hot metal undergoes an oxidation reaction with oxygen supplied from the top blowing lance 13 (decarburization reaction). Thereby, CO or CO 2 exhaust gas is generated. These exhaust gases are discharged from the converter 11 to the flue 12.
 このように、転炉吹錬では、吹込まれた酸素と、溶銑中の炭素、りん、または珪素等とが反応し、酸化物が生じる。ここで生じた酸化物は、排ガスとして排出されるか、またはスラグとして安定化する。吹錬における酸化反応によって炭素が除去されるとともに、りん等がスラグに取り込まれて除去されることにより、低炭素で不純物の少ない鋼が生成される。 In this way, in the converter blowing, the blown oxygen reacts with carbon, phosphorus, silicon, or the like in the hot metal to produce an oxide. The generated oxide is discharged as exhaust gas or stabilized as slag. Carbon is removed by an oxidation reaction in blowing, and phosphorus and the like are taken into and removed from the slag, thereby producing a steel with low carbon and less impurities.
 また、転炉11の炉口からは、上吹きランス13に加えて、不図示のサブランスも炉内に挿入され得る。サブランスの先端が所定のタイミングで溶鋼(または溶銑)に浸漬されることにより、炭素濃度を含む溶鋼中の成分濃度、及び溶鋼温度等が測定される。このサブランスによる成分濃度および/または溶鋼温度等の測定のことを、サブランス測定と呼ぶ。サブランス測定の結果は、計測制御装置30を介して溶銑予備処理制御装置20に送信される。なお、本実施形態では、脱りん処理においては転炉11内に未溶解スクラップが存在し得るためサブランス測定は行われないが、脱炭処理中の所定のタイミングでサブランス測定が実施され得る。 Further, in addition to the top blowing lance 13, a sub lance (not shown) can be inserted into the furnace from the furnace port of the converter 11. By immersing the tip of the sublance in molten steel (or hot metal) at a predetermined timing, the component concentration in the molten steel including the carbon concentration, the molten steel temperature, and the like are measured. This measurement of the component concentration and / or molten steel temperature by the sublance is called sublance measurement. The result of the sublance measurement is transmitted to the hot metal preliminary processing control device 20 via the measurement control device 30. In the present embodiment, in the dephosphorization process, unmelted scrap may be present in the converter 11, and thus the sublance measurement is not performed, but the sublance measurement can be performed at a predetermined timing during the decarburization process.
 吹錬により発生した排ガスは、転炉11外に設けられる煙道12へと流れる。煙道12には、排ガス成分分析計101、および排ガス流量計102が設けられる。排ガス成分分析計101は、排ガスに含まれる成分を分析する。排ガス成分分析計101は、例えば、排ガスに含まれるCOおよびCOの濃度を分析する。排ガス流量計102は、排ガスの流量を測定する。排ガス成分分析計101および排ガス流量計102は、所定のサンプリング周期(例えば5~10(sec)周期)で、逐次排ガスの分析および測定を行う。排ガス成分分析計101によって分析された排ガス成分に係るデータ、および排ガス流量計102によって測定された排ガス流量に係るデータ(以下、これらのデータを「排ガスデータ」と呼称する)は、計測制御装置30を介して溶銑予備処理制御装置20に、時系列データとして出力される。この排ガスデータは、逐次溶銑予備処理制御装置20に出力されてもよいし、または、脱りん処理が終了した際に一括して溶銑予備処理制御装置20に出力されてもよい。 The exhaust gas generated by blowing flows into a flue 12 provided outside the converter 11. The flue 12 is provided with an exhaust gas component analyzer 101 and an exhaust gas flow meter 102. The exhaust gas component analyzer 101 analyzes components contained in the exhaust gas. The exhaust gas component analyzer 101 analyzes, for example, the concentrations of CO and CO 2 contained in the exhaust gas. The exhaust gas flow meter 102 measures the flow rate of the exhaust gas. The exhaust gas component analyzer 101 and the exhaust gas flow meter 102 sequentially analyze and measure exhaust gas at a predetermined sampling period (for example, 5 to 10 (sec) period). The data related to the exhaust gas component analyzed by the exhaust gas component analyzer 101 and the data related to the exhaust gas flow rate measured by the exhaust gas flow meter 102 (hereinafter, these data are referred to as “exhaust gas data”) Is output to the hot metal preliminary processing control device 20 as time series data. The exhaust gas data may be sequentially output to the hot metal preliminary treatment control device 20, or may be output collectively to the hot metal preliminary treatment control device 20 when the dephosphorization processing is completed.
 また、転炉吹錬設備10は、サウンドメータ111および集音マイクロフォン112を備え得る。集音マイクロフォン112は、転炉11内から発生する音を取得し、当該音に関する信号をサウンドメータ111に出力する。サウンドメータ111は、取得した信号について信号処理を行い、処理結果を音響情報として生成する。ここで生成される音響情報は、計測制御装置30を介して溶銑予備処理制御装置20に出力される。この音響情報は、脱りん処理時における転炉11内のスラグの滓化状況を反映する情報であり、脱りん処理時における操業要因のパラメータとして用いられ得る。なお、脱りん処理時における操業要因については、詳しくは後述する。 Further, the converter blowing facility 10 may include a sound meter 111 and a sound collecting microphone 112. The sound collection microphone 112 acquires a sound generated from the converter 11 and outputs a signal related to the sound to the sound meter 111. The sound meter 111 performs signal processing on the acquired signal and generates a processing result as acoustic information. The acoustic information generated here is output to the hot metal preliminary processing control device 20 via the measurement control device 30. This acoustic information is information reflecting the hatching state of the slag in the converter 11 during the dephosphorization process, and can be used as a parameter of an operation factor during the dephosphorization process. The operating factors during the dephosphorization process will be described later in detail.
 なお、転炉吹錬設備10には、サウンドメータ111および集音マイクロフォン112の他にも脱りん処理時における転炉11内のスラグの滓化状況を示す操業要因のパラメータを取得するための装置が設けられてもよい。例えば、転炉11内にマイクロ波を照射して転炉11のスラグレベルを計測することにより、スラグの滓化状況を把握することができる。当該スラグレベルを操業要因のパラメータとして取得する場合、転炉吹錬設備10において、例えば、転炉11内にマイクロ波を照射するためのマイクロ波照射装置、湯面に反射したマイクロ波を受信するためのアンテナ、および当該アンテナにより受信されたマイクロ波に基づいてスラグレベルを解析するスラグレベル測定装置が設けられてもよい。 In addition to the sound meter 111 and the sound collecting microphone 112, the converter blowing facility 10 is an apparatus for obtaining operating factor parameters indicating the hatching state of the slag in the converter 11 during the dephosphorization process. May be provided. For example, by irradiating microwaves into the converter 11 and measuring the slag level of the converter 11, the hatching state of the slag can be grasped. When acquiring the said slag level as a parameter of an operation factor, in the converter blowing equipment 10, the microwave irradiation apparatus for irradiating a microwave in the converter 11, for example, the microwave reflected on the molten metal surface is received. And an slag level measuring device for analyzing the slag level based on the microwave received by the antenna.
 (溶銑予備処理制御装置)
 溶銑予備処理制御装置20は、データ取得部201、炭素濃度推定部202、修正量算出部203、溶銑予備処理データベース21、および入出力部22を備える。溶銑予備処理制御装置20は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、ストレージおよび通信装置等のハードウェア構成を備え、これらのハードウェア構成によって、データ取得部201、炭素濃度推定部202、修正量算出部203、および溶銑予備処理データベース21の各機能が実現される。また、入出力部22は、キーボード、マウス、またはタッチパネル等の入力装置、ディスプレイ、またはプリンタ等の出力装置、および通信装置により実現される。
(Hot metal pretreatment control device)
The hot metal pretreatment control device 20 includes a data acquisition unit 201, a carbon concentration estimation unit 202, a correction amount calculation unit 203, a hot metal pretreatment database 21, and an input / output unit 22. The hot metal preliminary processing control device 20 includes hardware configurations such as a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), a storage, a communication device, and the like. Functions of the unit 201, the carbon concentration estimation unit 202, the correction amount calculation unit 203, and the hot metal preliminary processing database 21 are realized. The input / output unit 22 is realized by an input device such as a keyboard, a mouse, or a touch panel, an output device such as a display or a printer, and a communication device.
 なお、図1においては、溶銑予備処理制御装置20の有する機能のうち、本発明において特徴的な機能のみを主に図示している。溶銑予備処理制御装置20は、図示する機能以外にも、溶銑予備処理に係る制御を行う際に必要となる一般的な機能を有する。 In FIG. 1, only the functions characteristic of the present invention among the functions of the hot metal pretreatment control device 20 are mainly illustrated. The hot metal pretreatment control device 20 has a general function required when performing control related to the hot metal pretreatment in addition to the functions shown in the drawing.
 例えば、溶銑予備処理制御装置20は、転炉11への酸素の吹込み、並びに冷材および副原料の投入等の溶銑予備処理に関するプロセス全体を制御する機能を有する。また、例えば、溶銑予備処理制御装置20は、一般的なスタティック制御において行われている、吹錬開始前に所定の数式モデル等を用いて転炉11への吹込み酸素量、冷材の投入量(以降、冷材量と呼称する)および副原料の投入量等を決定する機能等を有する。また、例えば、溶銑予備処理制御装置20は、一般的なダイナミック制御において行われているサブランス測定について、その測定対象や測定タイミング等を制御する機能を有する。 For example, the hot metal pretreatment control device 20 has a function of controlling the entire process related to hot metal pretreatment such as blowing oxygen into the converter 11 and charging a cooling material and auxiliary materials. In addition, for example, the hot metal preliminary treatment control device 20 uses a predetermined mathematical model or the like, which is performed in general static control, and uses a predetermined mathematical model or the like, and inputs the amount of oxygen blown into the converter 11 and the cooling material. It has a function of determining an amount (hereinafter referred to as a cold material amount), an input amount of auxiliary materials, and the like. Further, for example, the hot metal preliminary treatment control device 20 has a function of controlling the measurement object, the measurement timing, and the like of the sublance measurement performed in general dynamic control.
 図示しない各機能における具体的な処理(例えば、上述した、冷材および副原料投入の制御方法、スタティック制御において吹錬開始前に吹込み酸素量や各種冷材および副原料の投入量等を決定する方法、並びにサブランス測定の制御方法)としては、各種の公知の方法が適用され得るため、ここでは詳細な説明は省略する。 Specific processing in each function (not shown) (for example, the control method for charging the cold material and the auxiliary material described above, the amount of injected oxygen, the input amount of various cold materials and the auxiliary material, etc. before the start of blowing in the static control) Since various known methods can be applied as the method for controlling the sublance measurement and the control method for the lance measurement, detailed description thereof is omitted here.
 溶銑予備処理制御装置20は、溶銑予備処理データベース21に格納されている各種データ、および排ガスデータを入力値として、脱りん処理後の溶銑中の炭素濃度を推定する。そして、溶銑予備処理制御装置20は、推定した溶銑中の炭素濃度に基づいて、脱りん処理前にスタティック制御により決定した吹込み酸素量および冷材量の指示値を修正する。溶銑予備処理制御装置20は、さらに、推定した溶銑中の炭素濃度、並びに修正した吹込み酸素量および冷材量の指示値を入出力部22に出力する。また、入出力部22に出力された各指示値は、転炉吹錬設備10の動作を制御する計測制御装置30に出力される。計測制御装置30は、溶銑予備処理制御装置20から取得した各指示値に応じた転炉11内への送酸および冷材投入に関する制御を行う。 The hot metal pretreatment control device 20 estimates the carbon concentration in the hot metal after the dephosphorization treatment using various data stored in the hot metal pretreatment database 21 and the exhaust gas data as input values. Then, the hot metal preliminary treatment control device 20 corrects the indicated values of the blown oxygen amount and the cold material amount determined by the static control before the dephosphorization treatment based on the estimated carbon concentration in the hot metal. The hot metal pretreatment control device 20 further outputs the estimated carbon concentration in the hot metal, and the indicated values of the corrected blown oxygen amount and cold material amount to the input / output unit 22. Moreover, each instruction value output to the input / output unit 22 is output to the measurement control device 30 that controls the operation of the converter blowing facility 10. The measurement control device 30 performs control relating to the feeding of the acid into the converter 11 and the introduction of the cold material according to each indicated value acquired from the hot metal pretreatment control device 20.
 溶銑予備処理制御装置20の各機能部が有する具体的な機能については後述する。 Specific functions of each functional unit of the hot metal pretreatment control device 20 will be described later.
 溶銑予備処理データベース21は、溶銑予備処理制御装置20において用いられる各種データを格納するデータベースであり、ストレージ等の記憶装置により実現される。溶銑予備処理データベース21は、例えば、図1に示したように、溶銑データ211、パラメータ212、および目標データ213等を格納する。これらのデータは、不図示の入力装置や通信装置を介して追加、更新、変更、または削除されてもよい。溶銑予備処理データベース21に記憶されている各種データは、データ取得部201により呼び出される。また、溶銑予備処理データベース21は、炭素濃度推定部202による推定結果(例えば、脱りん処理後の溶銑中の炭素濃度)、または修正量算出部203による修正結果(例えば、吹込み酸素量の修正後の指示値)を格納してもよい。なお、本実施形態に係る溶銑予備処理データベース21を有する記憶装置は、図1に示すように溶銑予備処理制御装置20と一体となって構成されているが、他の実施形態においては、溶銑予備処理データベース21を有する記憶装置は、溶銑予備処理制御装置20とは分離された構成であってもよい。 The hot metal pretreatment database 21 is a database that stores various data used in the hot metal pretreatment control device 20, and is realized by a storage device such as a storage. As shown in FIG. 1, for example, the hot metal preliminary processing database 21 stores hot metal data 211, parameters 212, target data 213, and the like. These data may be added, updated, changed, or deleted via an input device or a communication device (not shown). Various data stored in the hot metal preliminary processing database 21 are called by the data acquisition unit 201. Moreover, the hot metal preliminary treatment database 21 stores the estimation result by the carbon concentration estimation unit 202 (for example, the carbon concentration in the hot metal after the dephosphorization process) or the correction result by the correction amount calculation unit 203 (for example, correction of the amount of blown oxygen) The later indicated value) may be stored. The storage device having the hot metal preliminary processing database 21 according to the present embodiment is configured integrally with the hot metal preliminary processing control device 20 as shown in FIG. 1, but in other embodiments, the hot metal preliminary processing database 21 is configured. The storage device having the processing database 21 may be separated from the hot metal preliminary processing control device 20.
 溶銑データ211は、転炉11内の溶銑に関する各種のデータである。例えば、溶銑データ211には、溶銑についての情報(チャージごとの初期の溶銑重量、溶銑成分(炭素、りん、珪素、鉄、マンガン等)の濃度、溶銑温度、溶銑率等)が含まれる。溶銑データ211には、その他にも、一般的に溶銑予備処理および脱炭処理において必要となる各種の情報(例えば、副原料および冷材の投入についての情報(副原料および冷材量についての情報)、サブランス測定についての情報(測定対象や測定タイミング等についての情報)、吹込み酸素量についての情報等)が含まれ得る。パラメータ212は、炭素濃度推定部202および修正量算出部203により用いられる各種のパラメータである。例えば、パラメータ212には、操業要因を説明変数とする回帰式におけるパラメータ、および修正量を算出するためのパラメータが含まれる。目標データ213には、脱りん処理後、脱炭処理後、およびサブランス測定時等における溶銑中(溶鋼中)の目標成分濃度および目標温度などのデータが含まれる。 The hot metal data 211 is various data relating to the hot metal in the converter 11. For example, the hot metal data 211 includes information about the hot metal (initial hot metal weight for each charge, concentration of hot metal components (carbon, phosphorus, silicon, iron, manganese, etc.), hot metal temperature, hot metal ratio, etc.). The hot metal data 211 includes various other information generally required in hot metal preliminary treatment and decarburization processing (for example, information on the addition of auxiliary raw materials and cold materials (information on auxiliary raw materials and cold material amounts). ), Information on the sublance measurement (information on the measurement target, measurement timing, etc.), information on the insufflated oxygen amount, etc.). The parameter 212 is various parameters used by the carbon concentration estimation unit 202 and the correction amount calculation unit 203. For example, the parameter 212 includes a parameter in a regression equation having an operation factor as an explanatory variable, and a parameter for calculating a correction amount. The target data 213 includes data such as target component concentration and target temperature in hot metal (in molten steel) after dephosphorization, after decarburization, and during sublance measurement.
 入出力部22は、例えば、炭素濃度推定部202による炭素濃度の推定結果、または修正量算出部203による吹込み酸素量の修正値等の修正結果を取得し、各種出力装置に出力する機能を有する。例えば、入出力部22は、修正量算出部203から取得した吹込み酸素量の修正後の指示値を転炉吹錬設備10に出力してもよい。これにより、吹込み酸素量の修正後の指示値を反映した吹錬が実行される。また、入出力部22は、推定された溶銑中の炭素濃度、または吹込み酸素量の修正後の指示値をオペレータに表示させてもよい。この場合、さらに入出力部22は、表示された情報を閲覧したオペレータの操作により入力される送酸または冷材投入等の指示に係る情報を転炉吹錬設備10に出力してもよい。また、入出力部22は、溶銑予備処理データベース21に記憶された推定結果等を出力してもよい。 The input / output unit 22 has a function of acquiring a correction result such as a carbon concentration estimation result by the carbon concentration estimation unit 202 or a correction value of the blown oxygen amount by the correction amount calculation unit 203 and outputting the result to various output devices. Have. For example, the input / output unit 22 may output the instruction value after correction of the blown oxygen amount acquired from the correction amount calculation unit 203 to the converter blowing facility 10. Thereby, the blowing which reflected the instruction value after correction of the amount of blowing oxygen is performed. Further, the input / output unit 22 may cause the operator to display the estimated carbon concentration in the molten iron or the corrected instruction value of the blown oxygen amount. In this case, the input / output unit 22 may further output to the converter blowing facility 10 information related to an instruction such as acid feeding or cold material input that is input by an operator who has viewed the displayed information. Further, the input / output unit 22 may output an estimation result or the like stored in the hot metal preliminary processing database 21.
 (計測制御装置)
 計測制御装置30は、CPU、ROM、RAM、ストレージおよび通信装置等のハードウェア構成を備える。計測制御装置30は、転炉吹錬設備10の備える各装置と通信し、転炉吹錬設備10の全体の動作を制御する機能を有する。例えば、計測制御装置30は、溶銑予備処理制御装置20からの指示に応じて、転炉11への冷材および副原料の投入等を制御する。また、計測制御装置30は、排ガス成分分析計101および排ガス流量計102等の転炉吹錬設備10の各装置から得られたデータを取得して、溶銑予備処理制御装置20に送信する。
(Measurement control device)
The measurement control device 30 includes a hardware configuration such as a CPU, ROM, RAM, storage, and communication device. The measurement control device 30 communicates with each device provided in the converter blowing facility 10 and has a function of controlling the entire operation of the converter blowing facility 10. For example, the measurement control device 30 controls the charging of the cold material and the auxiliary material to the converter 11 in accordance with an instruction from the hot metal pretreatment control device 20. In addition, the measurement control device 30 acquires data obtained from each device of the converter blowing facility 10 such as the exhaust gas component analyzer 101 and the exhaust gas flow meter 102 and transmits the data to the hot metal preliminary treatment control device 20.
 <2.溶銑予備処理制御装置による処理>
 以下、図1に示す溶銑予備処理制御装置20の各機能について順に説明する。なお、以下の説明においては、特に説明がない限り、各成分の濃度の単位である(質量%)は、(%)と記載する。
<2. Treatment by hot metal pretreatment control device>
Hereinafter, each function of the hot metal pretreatment control device 20 shown in FIG. 1 will be described in order. In the following description, unless otherwise specified, the concentration unit (mass%) of each component is described as (%).
 (データ取得部)
 データ取得部201は、溶銑予備処理データベース21に記憶されている溶銑データ211、パラメータ212および目標データ213、並びに排ガス成分分析計101および排ガス流量計102から出力される排ガスデータを取得する。データ取得部201は、排ガス成分分析計101および排ガス流量計102が逐次計測するデータについて、脱りん処理中に逐次取得してもよいし、脱りん処理後に一括して取得してもよい。データ取得部201は、取得したデータを炭素濃度推定部202に出力する。
(Data acquisition unit)
The data acquisition unit 201 acquires hot metal data 211, parameters 212 and target data 213 stored in the hot metal pretreatment database 21, and exhaust gas data output from the exhaust gas component analyzer 101 and the exhaust gas flow meter 102. The data acquisition unit 201 may acquire data sequentially measured by the exhaust gas component analyzer 101 and the exhaust gas flow meter 102 during the dephosphorization process or may be acquired collectively after the dephosphorization process. The data acquisition unit 201 outputs the acquired data to the carbon concentration estimation unit 202.
 (炭素濃度推定部)
 炭素濃度推定部202は、データ取得部201により取得された各種データに基づいて、脱りん処理後の溶銑中の炭素濃度を推定する。以下、炭素濃度推定部202による炭素濃度の推定方法について説明する。
(Carbon concentration estimation part)
The carbon concentration estimation unit 202 estimates the carbon concentration in the hot metal after the dephosphorization process based on various data acquired by the data acquisition unit 201. Hereinafter, a method for estimating the carbon concentration by the carbon concentration estimating unit 202 will be described.
 脱りん処理後の溶銑中の炭素濃度は、脱りん処理の前後における溶銑中の炭素に関する物質収支により推定可能である。つまり、脱りん処理の前後における溶銑に含まれる炭素の質量の差が、脱りん処理により生じた排ガスに含まれる炭素の質量と一致する(つまり、物質収支が釣り合う)と考えられる。本発明者らは、このような炭素に関する物質収支モデルを用いて、脱りん処理後の溶銑中の炭素濃度を推定することを検討した。 The carbon concentration in the hot metal after the dephosphorization treatment can be estimated from the material balance regarding the carbon in the hot metal before and after the dephosphorization treatment. That is, it is considered that the difference in the mass of carbon contained in the hot metal before and after the dephosphorization treatment coincides with the mass of carbon contained in the exhaust gas generated by the dephosphorization treatment (that is, the material balance is balanced). The present inventors examined using such a material balance model for carbon to estimate the carbon concentration in hot metal after dephosphorization.
 まず、脱りん処理により生じた排ガスに含まれる炭素の質量(脱炭量)を、排ガスデータに基づいて算出する。排ガスデータに基づく脱炭量ΔCoffgas(ton)は下記式(2)のように示される。 First, the mass (decarburization amount) of carbon contained in the exhaust gas generated by the dephosphorization process is calculated based on the exhaust gas data. The decarburization amount ΔC offgas (ton) based on the exhaust gas data is represented by the following formula (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ここで、排ガスデータから求められる単位時間当たりの脱炭量wc[i](g/sec)は、下記式(3)によって算出される。 Here, the decarburization amount wc [i] (g / sec) per unit time obtained from the exhaust gas data is calculated by the following equation (3).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 ここで、CO[i+N](%)は排ガス中のCO濃度、CO[i+N](%)は排ガス中のCO濃度、Voffgas[i](Nm/hr(NTP))は総排ガス流量である。CO[i](%)及びCO[i](%)は、排ガス成分分析計101によって取得され得る。また、Voffgas[i](Nm/hr(NTP))は、排ガス流量計102によって取得され得る。また、角括弧[]内のiは、排ガス成分分析計101および排ガス流量計102によるサンプリング周期を表している。また、角括弧[]内のNは、排ガス成分分析計101による分析遅れ(排ガスが排ガス成分分析計101の設置位置に至るまでの時間的な遅れ)に対応する。分析遅れNの具体的な値は、煙道12における排ガス成分分析計101の設置位置等に応じて、適宜決定されてよい。また、「NTP」はNormal Temperature Pressureを意味する。Voffgas[i]に1000を乗じた値を3600で除しているのは、単位を(L/sec)に変換するためである。また、22.4(L/mol)で除しているのは、モル数に換算するためである。また、12は炭素の原子量である。 Here, CO [i + N] (%) is the CO concentration in the exhaust gas, CO 2 [i + N] (%) is the CO 2 concentration in the exhaust gas, and V offgas [i] (Nm 3 / hr (NTP)) is the total exhaust gas. Flow rate. CO [i] (%) and CO 2 [i] (%) can be acquired by the exhaust gas component analyzer 101. Further, V offgas [i] (Nm 3 / hr (NTP)) can be acquired by the exhaust gas flow meter 102. Moreover, i in square brackets [] represents the sampling period by the exhaust gas component analyzer 101 and the exhaust gas flow meter 102. N in square brackets [] corresponds to an analysis delay by the exhaust gas component analyzer 101 (a time delay until the exhaust gas reaches the installation position of the exhaust gas component analyzer 101). A specific value of the analysis delay N may be appropriately determined according to the installation position of the exhaust gas component analyzer 101 in the flue 12 or the like. “NTP” means Normal Temperature Pressure. The value obtained by multiplying V offgas [i] by 1000 is divided by 3600 in order to convert the unit to (L / sec). Also, the reason why it is divided by 22.4 (L / mol) is to convert it into the number of moles. 12 is the atomic weight of carbon.
 一方で、脱りん処理の前後における溶銑中の炭素濃度の成分測定実績に基づいた脱炭量(以降、成分変化に基づく脱炭量)ΔC(ton)は、下記式(4)のように示される。 On the other hand, the amount of decarburization (hereinafter, the amount of decarburization based on component change) ΔC c (ton) based on the component measurement results of the carbon concentration in the hot metal before and after the dephosphorization treatment is expressed by the following equation (4). Indicated.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 ここで、CHM(%)は脱りん処理前の溶銑中の炭素濃度、WHM(ton)は脱りん処理前の溶銑の重量、CSC(%)は脱りん処理前に転炉11内に装入されたスクラップ中の炭素濃度、WSC(ton)は脱りん処理前に転炉11内に装入されたスクラップの重量、CCM(%)は脱りん処理前の冷銑中の炭素濃度、WCM(ton)は脱りん処理前の冷銑の重量、Csub,j(%)は、脱りん処理前に転炉11内に投入された副原料j中の炭素濃度、Wsub,j(ton)は、脱りん処理前に転炉11内に投入された副原料jの重量である。これらの実績量は、溶銑データ211に含まれる。 Here, C HM (%) is the carbon concentration in the hot metal before dephosphorization, W HM (ton) is the weight of the hot metal before dephosphorization, and C SC (%) is in the converter 11 before dephosphorization. The carbon concentration in the scrap charged in the reactor, W SC (ton) is the weight of the scrap charged in the converter 11 before the dephosphorization process, and C CM (%) is in the cold before the dephosphorization process. The carbon concentration, W CM (ton) is the weight of the cold water before the dephosphorization treatment, C sub, j (%) is the carbon concentration in the auxiliary raw material j introduced into the converter 11 before the dephosphorization treatment, W sub, j (ton) is the weight of the auxiliary raw material j put into the converter 11 before the dephosphorization process. These actual amounts are included in the hot metal data 211.
 また、CdeP(%)は、脱りん処理後の溶銑中の炭素濃度である。 C deP (%) is the carbon concentration in the hot metal after the dephosphorization treatment.
 脱りん処理の前後における炭素に関する物質収支が釣り合う場合、排ガスデータに基づく脱炭量ΔCoffgasと成分変化に基づく脱炭量ΔCとは等しくなり得る。つまり、排ガスデータに基づく脱炭量ΔCoffgasと成分変化に基づく脱炭量ΔCとの関係は、下記式(5)のように示される。 When the material balance regarding carbon before and after the dephosphorization process is balanced, the decarburization amount ΔC offgas based on the exhaust gas data and the decarburization amount ΔC C based on the component change can be equal. That is, the relationship between the decarburization amount [Delta] C C based on the decarburization amount ΔC offgas and component change based on exhaust gas data is shown as the following equation (5).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 以上から、脱りん処理後の溶銑中の炭素濃度CdePは、上記式(5)に上記式(2)~(4)を適用させることにより、下記式(6)のように表される。これにより、脱りん処理後の溶銑中の炭素濃度CdePは理論上算出することは可能である。 From the above, the carbon concentration C deP in the hot metal after the dephosphorization treatment is expressed as the following formula (6) by applying the above formulas (2) to (4) to the above formula (5). Thus, the carbon concentration C deP in molten iron after the dephosphorization process it is possible to calculate theoretically.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 しかし、上記式(6)により得られる排ガスデータに基づく脱りん処理後の溶銑中の炭素濃度CdePが、実際に脱りん処理後にサンプリングした溶銑から得られた炭素濃度の実績値CdeP,aから大きく乖離していることを、本発明者らは見出した。これは、上記式(2)および式(3)において算出される排ガスデータに基づく脱炭量ΔCoffgasに誤差が多く含まれるためである。 However, the carbon concentration C deP in the hot metal after the dephosphorization treatment based on the exhaust gas data obtained by the above formula (6) is the actual value C deP, a of the carbon concentration obtained from the hot metal sampled after the dephosphorization treatment. The present inventors have found that there is a large deviation from This is because the decarburization amount ΔC offgas based on the exhaust gas data calculated in the above formulas (2) and (3) includes many errors.
 上記のような誤差は、主に、排ガス流量計102により測定誤差に起因すると考えられる。排ガス流量計102の配管に排ガスが流通するとき、転炉11から生じた煤等のダストが配管に進入する場合がある。このようなダストが配管内(例えば、オリフィス等)に付着することにより、配管内における排ガスの通過が不安定な状態となり、排ガス流量計102による測定誤差が大きくなる。排ガス流量計102の配管の内部の状態は刻一刻と変化するため、排ガス流量計102により生じる測定誤差そのものを抑制することは困難である。 It is considered that the above error is mainly caused by a measurement error by the exhaust gas flow meter 102. When exhaust gas flows through the piping of the exhaust gas flow meter 102, dust such as soot generated from the converter 11 may enter the piping. When such dust adheres to the inside of the pipe (for example, an orifice), the passage of the exhaust gas in the pipe becomes unstable, and the measurement error by the exhaust gas flow meter 102 increases. Since the internal state of the piping of the exhaust gas flow meter 102 changes every moment, it is difficult to suppress the measurement error itself caused by the exhaust gas flow meter 102.
 そこで、本発明者らが鋭意研究した結果、排ガスデータに基づく脱炭量ΔCoffgasを補正するための補正値である補正項ΔCcorrect(ton)を上記式(5)に組み込むことにより、上記式(6)により得られる脱りん処理後の溶銑中の炭素濃度CdePの推定精度を改善することに想到した。上記式(5)は、補正項ΔCcorrectの組み込みにより、下記式(7)のように示される。 Therefore, as a result of intensive studies by the present inventors, the above equation (5) is incorporated by incorporating a correction term ΔC correct (ton), which is a correction value for correcting the decarburization amount ΔC offgas based on the exhaust gas data. and conceived to improve the estimation accuracy of the carbon concentration C deP in molten iron after the dephosphorization treatment obtained by (6). The above equation (5) is expressed as the following equation (7) by incorporating the correction term ΔC correct .
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 この補正項ΔCcorrectの推定モデルは、種々の統計的手法により構築される。例えば、本実施形態に係る補正項ΔCcorrectは、周知の重回帰分析手法によって得られる、種々の操業要因Xを説明変数とする回帰式により算出される目的変数である。具体的には、補正項ΔCcorrectは、下記式(8)のように示される。 The estimation model of the correction term ΔC correct is constructed by various statistical methods. For example, the correction term ΔC correct according to the present embodiment is an objective variable calculated by a regression equation using various operation factors X as explanatory variables, which is obtained by a known multiple regression analysis method. Specifically, the correction term ΔC correct is expressed as the following formula (8).
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 ここで、αはk番目の操業要因Xに対応する回帰係数であり、αは定数である。また、操業要因Xの具体例としては、下記表1のようなものが挙げられる。ただし、下記表1に示す操業要因はあくまで一例であって、補正項ΔCcorrectの推定においては、あらゆる操業要因Xが考慮されてよい。また、補正項ΔCcorrectの推定には、下記表1に含まれる操業要因の全部または一部が用いられてもよい。 Here, α k is a regression coefficient corresponding to the k-th operation factor X k , and α 0 is a constant. Specific examples of the operation factor X include those shown in Table 1 below. However, the operation factor shown in the following Table 1 is merely an example, and any operation factor X may be considered in the estimation of the correction term ΔC correct . In addition, all or part of the operation factors included in Table 1 below may be used for estimating the correction term ΔC correct .
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 上記の操業要因Xを説明変数とする補正項ΔCcorrectを物質収支モデルに組み込むことにより、脱りん処理後の溶銑中の炭素濃度CdePの推定精度が改善されることを、本発明者らは見出した。 By incorporating the correction term ΔC correct having the operation factor X j as an explanatory variable into the mass balance model, the present inventors have improved the estimation accuracy of the carbon concentration C deP in the molten iron after dephosphorization. Found.
 さらに、本発明者らが鋭意研究した結果、一般的に考えられる脱りん処理時の操業要因(溶銑量、溶銑率、溶銑温度、溶銑成分、吹込み酸素量、副原料投入量等、表1のNo.1~No.N-2に相当)に加えて、脱りん処理時における転炉11内のスラグの滓化状況を反映する操業要因を補正項ΔCcorrectに反映させることにより、脱りん処理後の溶銑中の炭素濃度CdePの推定精度がさらに改善されることを、本発明者らは見出した。 Furthermore, as a result of intensive studies by the present inventors, generally considered operating factors at the time of dephosphorization treatment (hot metal amount, hot metal ratio, hot metal temperature, hot metal component, amount of blown oxygen, amount of auxiliary material input, etc., Table 1) In addition to No. 1 to No. N-2 of No. 1), the operating factor reflecting the slag hatching status in the converter 11 during the dephosphorization process is reflected in the correction term ΔC correct to thereby remove the dephosphorization. The present inventors have found that the estimation accuracy of the carbon concentration CdeP in the hot metal after the treatment is further improved.
 スラグの滓化状況を反映する操業要因が脱りん処理後の溶銑中の炭素濃度CdePの推定精度をさらに改善させ得るのは、スラグの滓化状況が脱りん処理時における転炉11内における脱炭酸素効率を反映しているためと考えられる。脱炭酸素効率は、転炉11内に吹き込まれる酸素と、溶銑中の炭素との反応の効率を示す指標である。吹き込まれた酸素が湯面に露出した溶銑に触れると、脱炭反応が生じる。しかし、脱りん処理においては、りんがスラグに取り込まれることが優先的に行われる。そのため、溶銑の表面にはスラグが多量に存在することになる。ここで、スラグの滓化状況によっては、吹き込まれた酸素が溶銑に触れにくくなるため、脱炭反応が生じにくくなる場合や、あるいは、たとえ吹き込まれた酸素が溶銑に触れにくくなってもスラグ中の酸化鉄が脱炭反応の酸素供給源となり脱炭反応が生じる場合がある。したがって、スラグの滓化状況によって脱炭反応が抑制されるか促進されるかは単純には予測することは困難である。しかしながら、スラグの滓化状況が脱炭反応に何らかの影響を与える可能性があるということが推察される。つまり、転炉11内のスラグの滓化状況が、脱炭反応の生じやすさ、つまり脱炭酸素効率に影響していると考えられる。したがって、スラグの滓化状況を反映する操業要因を補正項ΔCcorrectに反映させることにより、脱りん処理中の転炉11の脱炭酸素効率の変動による影響を加味して脱りん処理後の溶銑中の炭素濃度CdePを推定することができる。これにより、脱りん処理後の溶銑中の炭素濃度CdePの推定精度が改善されることに本発明者らは想到した。 The operating factors which reflect the slag formation conditions of the slag can be further improved estimation accuracy of the carbon concentration C deP in molten iron after the dephosphorization treatment, slag formation condition of slag in the converter 11 during dephosphorization treatment This is thought to reflect decarbonation efficiency. The decarbonation efficiency is an index indicating the efficiency of the reaction between oxygen blown into the converter 11 and carbon in the hot metal. When the blown oxygen touches the hot metal exposed on the hot water surface, a decarburization reaction occurs. However, in the dephosphorization process, phosphorus is preferentially taken into the slag. Therefore, a large amount of slag exists on the surface of the hot metal. Here, depending on the hatching condition of the slag, it is difficult for the blown oxygen to touch the hot metal, so that the decarburization reaction is difficult to occur or even if the blown oxygen is difficult to touch the hot metal, There is a case where the iron oxide becomes an oxygen supply source for the decarburization reaction and the decarburization reaction occurs. Therefore, it is difficult to simply predict whether the decarburization reaction is suppressed or promoted depending on the slag hatching status. However, it is speculated that the slag hatching situation may have some influence on the decarburization reaction. That is, it is considered that the hatching state of the slag in the converter 11 affects the ease of the decarburization reaction, that is, the decarbonation efficiency. Therefore, the operating factor reflecting the slag hatching status is reflected in the correction term ΔC correct to take into account the effect of the change in the decarbonation efficiency of the converter 11 during the dephosphorization process, and the molten iron after the dephosphorization process. The carbon concentration CdeP in the medium can be estimated. Accordingly, the present inventors that the carbon concentration C deP estimation accuracy of the molten iron after the dephosphorization process is improved and conceived.
 脱りん処理中のスラグの滓化状況を反映する操業要因には、表1に示したように、例えばサウンドメータ値(db)およびマイクロ波によるスラグ高さの計測値(m)等が含まれる。 As shown in Table 1, the operating factors that reflect the slag hatching status during the dephosphorization process include, for example, a sound meter value (db) and a measured value (m) of microwave slag height. .
 サウンドメータ値は、サウンドメータ111によって出力される値である。サウンドメータ111は、転炉11内の音を集音マイクロフォン112を介して音響信号として取得し、サウンドメータ値として出力する。転炉11内におけるスラグの滓化状況によって、サウンドメータ値が変動する。このサウンドメータ値を操業要因として用いることにより、スラグの滓化状況を補正項ΔCcorrectに反映させることができる。 The sound meter value is a value output by the sound meter 111. The sound meter 111 acquires the sound in the converter 11 as an acoustic signal via the sound collection microphone 112 and outputs it as a sound meter value. The sound meter value varies depending on the slag hatching condition in the converter 11. By using the sound meter value as an operation factor, the slag hatching state can be reflected in the correction term ΔC correct .
 また、スラグレベルは、不図示のスラグレベル測定装置から出力される値である。スラグレベル測定装置は、例えば、転炉11内に照射されたマイクロ波をアンテナを介して取得し、当該マイクロ波からスラグレベルを解析する。転炉11内におけるスラグの滓化状況によって、このスラグレベルが変動する。サウンドメータ値と同様に、スラグレベルを操業要因として用いることにより、スラグの滓化状況を補正項ΔCcorrectに反映させることができる。 The slag level is a value output from a slag level measuring device (not shown). For example, the slag level measuring apparatus acquires the microwave irradiated into the converter 11 via an antenna, and analyzes the slag level from the microwave. The slag level varies depending on the hatching state of the slag in the converter 11. Similar to the sound meter value, the slag hatching state can be reflected in the correction term ΔC correct by using the slag level as an operation factor.
 また、他の物理的な測定方法によりスラグの滓化状況が把握することが可能であれば、これらの測定方法により得られる測定結果を操業要因として用いてもよい。本発明者らが鋭意研究した結果、サウンドメータ値をスラグの滓化状況を反映する操業要因として用いることが好ましいことを見出した。 If the slag hatching status can be grasped by other physical measurement methods, the measurement results obtained by these measurement methods may be used as operation factors. As a result of intensive studies by the present inventors, it has been found that it is preferable to use the sound meter value as an operating factor that reflects the slag hatching status.
 なお、本実施形態において補正項ΔCcorrectの推定モデルは、重回帰分析により構築されたが、当該推定モデルは他の統計的手法により構築されてもよい。他の統計的手法とは、例えば、ニューラルネットワーク、またはランダムフォレスト等の機械学習のアルゴリズムを用いた統計的手法等であってもよい。 In the present embodiment, the estimation model of the correction term ΔC correct is constructed by multiple regression analysis, but the estimation model may be constructed by other statistical methods. The other statistical method may be, for example, a neural network or a statistical method using a machine learning algorithm such as a random forest.
 以上、補正項ΔCcorrectの推定方法について説明した。脱りん処理後の溶銑中の炭素濃度CdePは、上記式(7)に上記式(2)~(4)、および上記式(8)を適用させることにより、下記式(9)のように表される。 The estimation method of the correction term ΔC correct has been described above. The carbon concentration C deP in the hot metal after the dephosphorization treatment is obtained by applying the above formulas (2) to (4) and the above formula (8) to the above formula (7) as shown in the following formula (9). expressed.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 炭素濃度推定部202は、データ取得部201が取得した各種データを上記式(9)に代入することにより、脱りん処理後の溶銑中の炭素濃度CdePを推定する。炭素濃度推定部202は、推定した炭素濃度CdePを修正量算出部203に出力する。また、炭素濃度推定部202は、推定した炭素濃度CdePを入出力部22に出力してもよい。 The carbon concentration estimation unit 202 estimates the carbon concentration C deP in the hot metal after the dephosphorization process by substituting various data acquired by the data acquisition unit 201 into the above equation (9). The carbon concentration estimation unit 202 outputs the estimated carbon concentration C deP to the correction amount calculation unit 203. In addition, the carbon concentration estimation unit 202 may output the estimated carbon concentration C deP to the input / output unit 22.
 (修正量算出部)
 修正量算出部203は、炭素濃度推定部202により推定された炭素濃度CdePと目標データ213に含まれる脱りん処理後の目標炭素濃度Caimとの比較結果に基づいて、目標データ213に含まれる脱炭処理における吹込み酸素量を修正する。脱りん処理後の目標炭素濃度Caim、および脱炭処理における吹込み酸素量O2,aimは、脱りん処理前のスタティック制御により決定される量である。修正量算出部203は、上述した推定結果等を用いて吹込み酸素量の修正量ΔO2,correctを算出する。そして、修正量算出部203は、吹込み酸素量の修正量ΔO2,correctを用いて当初決定された吹込み酸素量O2,aimを更新し、更新後の吹込み酸素量O2,correctedを取得する。
(Correction amount calculator)
The correction amount calculation unit 203 is included in the target data 213 based on a comparison result between the carbon concentration C deP estimated by the carbon concentration estimation unit 202 and the target carbon concentration C aim after the dephosphorization process included in the target data 213. The amount of oxygen blown in the decarburization process is corrected. The target carbon concentration C aim after the dephosphorization treatment and the blown oxygen amount O 2, aim in the decarburization treatment are amounts determined by static control before the dephosphorization treatment. The correction amount calculation unit 203 calculates the correction amount ΔO 2, correct of the blown oxygen amount using the above-described estimation result and the like. Then, the correction amount calculation unit 203 updates the blown oxygen amount O2 , aim initially determined using the correction amount ΔO2 , correct of the blown oxygen amount, and updates the blown oxygen amount O2 , corrected after the update. To get.
 酸素量の修正量は、下記式(10)により算出することができる。 The correction amount of the oxygen amount can be calculated by the following equation (10).
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 ここで、βはパラメータである。このパラメータには、例えば、炭素と反応する酸素の化学当量に相当する理論値が代入され得る。これにより、推定炭素濃度CdePと目標炭素濃度Caimの差に相当する酸素量が算出される。 Here, β is a parameter. For example, a theoretical value corresponding to the chemical equivalent of oxygen reacting with carbon can be substituted for this parameter. Thereby, the amount of oxygen corresponding to the difference between the estimated carbon concentration C deP and the target carbon concentration C aim is calculated.
 修正量算出部203は、修正後の吹込み酸素量O2,correctedについての情報を、入出力部22に出力する。 The correction amount calculation unit 203 outputs information about the corrected oxygen injection amount O 2 and corrected to the input / output unit 22.
 なお、修正量算出部203は、当初決定された吹込み酸素量O2,aimを修正するだけではなく、当初の冷材量を修正してもよい。例えば、修正後の吹込み酸素量O2,correctedが当初決定された吹込み酸素量O2,aimより少ない場合、脱炭処理において転炉11の溶銑温度が低くなり得る。そのため、修正量算出部203は、例えば、修正後の吹込み酸素量O2,corrected、および溶銑温度(溶鋼温度)に基づいて、転炉11に投入される冷材量を少なくする修正を行ってもよい。これにより、脱炭処理における吹込み酸素量が脱りん処理後において少なく修正された場合においても、当初決定された目標溶鋼温度に到達することができる。修正量算出部203は、修正後の冷材量についての情報を、入出力部22に出力する。 It should be noted that the correction amount calculation unit 203 may correct not only the initially determined blowing oxygen amount O 2, im but also the initial amount of cold material. For example, when the corrected blown oxygen amount O2 , corrected is smaller than the initially determined blown oxygen amount O2 , aim , the hot metal temperature of the converter 11 can be lowered in the decarburization process. Therefore, the correction amount calculation unit 203 performs a correction to reduce the amount of cold material put into the converter 11 based on, for example, the corrected blown oxygen amount O 2, corrected and the hot metal temperature (molten steel temperature). May be. Thereby, even when the amount of oxygen blown in the decarburization process is corrected to be small after the dephosphorization process, the initially determined target molten steel temperature can be reached. The correction amount calculation unit 203 outputs information about the corrected cold material amount to the input / output unit 22.
 以上、図1を参照して、本実施形態に係る溶銑予備処理システム1の構成例について説明した。 The configuration example of the hot metal pretreatment system 1 according to the present embodiment has been described above with reference to FIG.
 <3.溶銑予備処理方法の流れ>
 図2は、本実施形態に係る溶銑予備処理システム1による溶銑予備処理方法のフローチャートを示す図である。図2を参照しながら、本実施形態に係る溶銑予備処理システム1による溶銑予備処理方法のフローについて説明する。なお、図2に示す各処理は、図1に示す溶銑予備処理制御装置20によって実行される各処理に対応している。そのため、図2に示す各処理の詳細については省略し、各処理の概要を説明するに留める。
<3. Hot metal pretreatment process flow>
FIG. 2 is a view showing a flowchart of a hot metal preliminary processing method by the hot metal preliminary processing system 1 according to the present embodiment. With reference to FIG. 2, the flow of the hot metal pretreatment method by the hot metal pretreatment system 1 according to the present embodiment will be described. Each process shown in FIG. 2 corresponds to each process executed by the hot metal preliminary process control device 20 shown in FIG. Therefore, the details of each process shown in FIG. 2 are omitted, and only an outline of each process is described.
 本実施形態に係る溶銑予備処理方法では、まず、データ取得部201は、溶銑データおよび排ガスデータを取得する(ステップS101)。具体的には、データ取得部201は、図1に示す溶銑データ211、パラメータ212、および目標データ213、並びに排ガス成分分析計101および排ガス流量計102によって測定された排ガスデータを取得する。 In the hot metal preliminary processing method according to the present embodiment, first, the data acquisition unit 201 acquires hot metal data and exhaust gas data (step S101). Specifically, the data acquisition unit 201 acquires hot metal data 211, parameters 212, and target data 213 shown in FIG. 1, and exhaust gas data measured by the exhaust gas component analyzer 101 and the exhaust gas flow meter 102.
 次に、炭素濃度推定部202は、取得された各種データに基づいて、脱りん処理後の溶銑中の炭素濃度を推定する(ステップS103)。具体的には、炭素濃度推定部202は、上記式(9)に、溶銑データおよび排ガスデータに含まれる各種データを代入することにより、脱りん処理後の溶銑中の炭素濃度を推定する。なお、上記式(9)の補正項ΔCcorrectの推定において、各種操業要因が選択され得る。例えば、脱りん処理後の溶銑中の炭素濃度をより向上させるために、ΔCcorrectの推定において、スラグの滓化状況を反映した操業要因が選択されることが好ましい。 Next, the carbon concentration estimation unit 202 estimates the carbon concentration in the hot metal after the dephosphorization process based on the acquired various data (step S103). Specifically, the carbon concentration estimation unit 202 estimates the carbon concentration in the hot metal after the dephosphorization process by substituting various data included in the hot metal data and the exhaust gas data into the above equation (9). In the estimation of the correction term ΔC correct in the above equation (9), various operating factors can be selected. For example, in order to further improve the carbon concentration in the hot metal after the dephosphorization treatment, it is preferable to select an operation factor that reflects the slag hatching state in the estimation of ΔC correct .
 次に、修正量算出部203は、推定された脱りん処理後の溶銑中の炭素濃度と脱りん処理後の溶銑中の目標炭素濃度との比較結果に基づいて、脱炭処理において転炉11内に吹き込まれる吹込み酸素量を修正する(ステップS105)。なお、吹込み酸素量の修正に併せて、脱りん処理後の目標溶銑温度に溶銑温度を合わせこむために、脱炭処理時の冷材量が修正されることが好ましい。また、修正された酸素量および冷材量に基づく酸素の吹込みおよび冷材の投入を行うように、入出力部22は、転炉吹錬設備10に対して指示を出す。転炉吹錬設備10は、当該指示に応じた転炉11への送酸および冷材の投入に係る処理を行う。 Next, the correction amount calculation unit 203 uses the converter 11 in the decarburization process based on the comparison result between the estimated carbon concentration in the hot metal after the dephosphorization process and the target carbon concentration in the hot metal after the dephosphorization process. The amount of oxygen blown in is corrected (step S105). In addition, it is preferable that the amount of cold material during the decarburization process is corrected in order to match the hot metal temperature with the target hot metal temperature after the dephosphorization process in conjunction with the correction of the blown oxygen amount. In addition, the input / output unit 22 issues an instruction to the converter blowing equipment 10 so as to inject oxygen and supply the cold material based on the corrected oxygen amount and cold material amount. The converter blowing facility 10 performs a process relating to the feeding of the acid and the cooling material to the converter 11 according to the instruction.
 以上、図2を参照して、本実施形態に係る溶銑予備処理方法の処理手順について説明した。なお、以上説明した実施形態では、推定された脱りん処理後の溶銑中の炭素濃度に基づいて、転炉11に吹き込まれる吹込み酸素量および投入される冷材量がともに修正されているが、本実施形態はかかる例に限定されない。例えば、本実施形態に係る溶銑予備処理方法では、溶鋼中の炭素濃度が目標値を満足するような吹込み酸素量のみが修正されてもよい。この場合、ステップS105において、推定された脱りん処理後の溶銑中の炭素濃度に基づいて、溶鋼中の炭素濃度が目標値を満足するような吹込み酸素量のみが計算されてよい。 The processing procedure of the hot metal preliminary processing method according to the present embodiment has been described above with reference to FIG. In the embodiment described above, both the amount of oxygen blown into the converter 11 and the amount of cold material to be injected are corrected based on the estimated carbon concentration in the hot metal after the dephosphorization treatment. The present embodiment is not limited to such an example. For example, in the hot metal pretreatment method according to the present embodiment, only the amount of blown oxygen so that the carbon concentration in the molten steel satisfies the target value may be corrected. In this case, in step S105, based on the estimated carbon concentration in the molten iron after the dephosphorization treatment, only the blown oxygen amount that the carbon concentration in the molten steel satisfies the target value may be calculated.
 <4.まとめ>
 以上説明したように、本実施形態によれば、排ガスデータを用いて得られる脱炭量を脱りん処理時の操業要因を説明変数とする回帰式により表現される補正値により補正した補正脱炭量を用いて、脱りん処理後の溶銑中の炭素濃度が推定される。これにより、脱りん処理後にサブランス測定を行わなくても脱りん処理後の溶銑中の炭素濃度を高精度で推定することができる。
<4. Summary>
As described above, according to the present embodiment, the corrected decarburization in which the decarburization amount obtained using the exhaust gas data is corrected by the correction value expressed by the regression equation using the operation factor at the time of dephosphorization as an explanatory variable. The amount is used to estimate the carbon concentration in the hot metal after dephosphorization. Thereby, the carbon concentration in the hot metal after the dephosphorization process can be estimated with high accuracy without performing the sublance measurement after the dephosphorization process.
 本実施形態に係る前記補正値の推定において、操業要因として、転炉11内のスラグの滓化状況を反映した操業要因を用いることにより、転炉11内における脱炭効率を上述した補正項に反映させることができる。これにより、脱りん処理後の溶銑中の炭素濃度をより高い精度で推定することができる。 In the estimation of the correction value according to the present embodiment, by using an operation factor that reflects the slag hatching status in the converter 11 as an operation factor, the decarburization efficiency in the converter 11 is set to the correction term described above. It can be reflected. Thereby, the carbon concentration in the hot metal after the dephosphorization treatment can be estimated with higher accuracy.
 さらに、本実施形態によれば、炭素濃度の推定結果を用いて脱炭処理時に吹き込まれる吹込み酸素量が修正される。修正された酸素量に基づいて脱炭処理を行うことにより、脱炭処理後の目標炭素濃度を満足する溶鋼をより確実に得ることが可能となる。また、吹込み酸素量の修正に応じて転炉11内に投入される冷材量を修正することにより、脱炭処理後の目標溶鋼温度を満足する溶鋼をより確実に得ることが可能となる。 Furthermore, according to the present embodiment, the amount of oxygen blown in during the decarburization process is corrected using the estimation result of the carbon concentration. By performing the decarburization process based on the corrected oxygen amount, it becomes possible to more reliably obtain molten steel that satisfies the target carbon concentration after the decarburization process. Moreover, it becomes possible to more reliably obtain a molten steel that satisfies the target molten steel temperature after the decarburization process by correcting the amount of cold material put into the converter 11 in accordance with the correction of the amount of blown oxygen. .
 なお、図1に示す構成は、あくまで本実施形態に係る溶銑予備処理システム1の一例であり、溶銑予備処理システム1の具体的な構成はかかる例に限定されない。溶銑予備処理システム1は、以上説明した機能を実現可能に構成されればよく、一般的に想定され得るあらゆる構成を取ることができる。 The configuration shown in FIG. 1 is merely an example of the hot metal pretreatment system 1 according to the present embodiment, and the specific configuration of the hot metal pretreatment system 1 is not limited to this example. The hot metal pretreatment system 1 only needs to be configured so as to realize the functions described above, and can take any configuration that can be generally assumed.
 例えば、溶銑予備処理制御装置20が備える各機能は、1台の装置においてその全てが実行されなくてもよく、複数の装置の協働によって実行されてもよい。例えば、データ取得部201、炭素濃度推定部202、および修正量算出部203のうちの1又は複数のいずれかの機能のみを有する一の装置が、他の機能を有する他の装置と通信可能に接続されることにより、図示する溶銑予備処理制御装置20と同等の機能が実現されてもよい。 For example, all the functions of the hot metal preliminary processing control device 20 may not be executed by one device, but may be executed by cooperation of a plurality of devices. For example, one device having only one or a plurality of functions of the data acquisition unit 201, the carbon concentration estimation unit 202, and the correction amount calculation unit 203 can communicate with other devices having other functions. By being connected, a function equivalent to the hot metal pretreatment control device 20 shown in the figure may be realized.
 また、図1に示す本実施形態に係る溶銑予備処理制御装置20の各機能を実現するためのコンピュータプログラムを作製し、PC等の処理装置に実装することが可能である。また、このようなコンピュータプログラムが格納された、コンピュータで読み取り可能な記録媒体も提供することができる。記録媒体は、例えば、磁気ディスク、光ディスク、光磁気ディスク、フラッシュメモリなどである。また、上記のコンピュータプログラムは、記録媒体を用いずに、例えばネットワークを介して配信してもよい。 Further, it is possible to create a computer program for realizing each function of the hot metal preliminary processing control device 20 according to the present embodiment shown in FIG. 1 and mount it on a processing device such as a PC. In addition, a computer-readable recording medium storing such a computer program can be provided. The recording medium is, for example, a magnetic disk, an optical disk, a magneto-optical disk, a flash memory, or the like. Further, the above computer program may be distributed via a network, for example, without using a recording medium.
 次に、本発明の実施例について説明する。本発明の効果を確認するために、本実施例では、本実施形態に係る溶銑予備処理方法により得られる補正項の有効性、本実施形態に係る溶銑予備処理方法による炭素濃度の推定精度、および本実施形態に係る溶銑予備処理方法の実操業への適用について検証した。なお、以下の実施例は本発明の効果を検証するために行ったものに過ぎず、本発明が以下の実施例に限定されるものではない。 Next, examples of the present invention will be described. In order to confirm the effect of the present invention, in this example, the effectiveness of the correction term obtained by the hot metal pretreatment method according to the present embodiment, the estimation accuracy of the carbon concentration by the hot metal pretreatment method according to the present embodiment, and The application of the hot metal preliminary treatment method according to this embodiment to actual operation was verified. In addition, the following Examples are only performed in order to verify the effect of this invention, and this invention is not limited to the following Examples.
 (補正項の有効性および炭素濃度の推定精度)
 まず、本実施形態に係る溶銑予備処理方法により得られる補正項ΔCcorrectの有効性および本実施形態に係る溶銑予備処理方法による脱りん処理後の溶銑中の炭素濃度CdePの推定精度について検証した。
(Effectiveness of correction term and estimation accuracy of carbon concentration)
First, the effectiveness of the correction term ΔC correct obtained by the hot metal pretreatment method according to the present embodiment and the estimation accuracy of the carbon concentration C deP in the hot metal after the dephosphorization treatment by the hot metal pretreatment method according to the present embodiment were verified. .
 まず実施例では、排ガスデータ、溶銑データ、および操業要因を用いて、成分変化に基づく脱炭量ΔC、排ガスデータに基づく脱炭量ΔCoffgasおよび補正項ΔCcorrectが算出された。排ガスデータに基づく脱炭量ΔCoffgasは、前記式(2)、式(3)を用いて算出され、補正項ΔCcorrectは、前記式(8)を用いて算出された。また、成分変化に基づく脱炭量ΔCは、前記式(4)を用いて算出された。ここで、成分変化に基づく脱炭量ΔC、排ガスデータに基づく脱炭量ΔCoffgasおよび補正項ΔCcorrectの間には前記式(7)の関係があるものとした。 First, in the examples, the decarburization amount ΔC c based on the component change, the decarburization amount ΔC offgas and the correction term ΔC correct based on the exhaust gas data were calculated using the exhaust gas data, the hot metal data, and the operation factors. The decarburization amount ΔC offgas based on the exhaust gas data was calculated using the above formulas (2) and (3), and the correction term ΔC correct was calculated using the above formula (8). Further, the decarburization amount ΔC c based on the component change was calculated using the formula (4). Here, it is assumed that the decarburization amount ΔC c based on the component change, the decarburization amount ΔC offgas based on the exhaust gas data, and the correction term ΔC correct have the relationship of the formula (7).
 一方、比較例では、排ガスデータおよび溶銑データを用いて、成分変化に基づく脱炭量ΔCおよび排ガスデータに基づく脱炭量ΔCoffgasが算出された。排ガスデータに基づく脱炭量ΔCoffgasおよび成分変化に基づく脱炭量ΔCの算出方法は、本実施例と同様である。ここで、補正項ΔCcorrectは用いられず、成分変化に基づく脱炭量ΔCおよび排ガスデータに基づく脱炭量ΔCoffgasの間には前記式(5)の関係があるものとした。 On the other hand, in the comparative example, the decarburization amount ΔC c based on the component change and the decarburization amount ΔC offgas based on the exhaust gas data were calculated using the exhaust gas data and the hot metal data. The calculation method of the decarburization amount ΔC offgas based on the exhaust gas data and the decarburization amount ΔC c based on the component change is the same as in this embodiment. Here, the correction term ΔC correct is not used, and the relationship of the above formula (5) is assumed between the decarburization amount ΔC c based on the component change and the decarburization amount ΔC offgas based on the exhaust gas data.
 なお、実施例および比較例では、上記式(4)のCdePには、補正項ΔCcorrectの有効性の検証のため、脱りん処理後に転炉からサンプリングされた溶銑中の炭素濃度の実績値が代入される。つまり、本実施例において、成分変化に基づく脱炭量ΔCは実績値に基づいて得られる値である。 In Examples and Comparative Examples, the actual value of the carbon concentration in the hot metal sampled from the converter after the dephosphorization treatment is included in C deP in the above formula (4) in order to verify the effectiveness of the correction term ΔC correct. Is substituted. That is, in this embodiment, the decarburization amount ΔC c based on the component change is a value obtained based on the actual value.
 また、スラグの滓化状況を反映した操業要因を補正項ΔCcorrectの推定に用いていない例を実施例1とし、スラグの滓化状況を反映した操業要因を補正項ΔCcorrectの推定に用いた例を実施例2とした。表2に、実施例1、実施例2および比較例において脱りん処理後の溶銑中の炭素濃度の推定に用いられたデータおよび操業要因の一覧を示す。なお、本実施例においては、スラグの滓化状況を反映した操業要因として、サウンドメータ値が用いられた。 Further, an example using no operational factors reflecting the slag formation conditions of the slag to estimate the correction term [Delta] C correct as Example 1, using the operational factors that reflect the slag formation conditions of the slag to estimate the correction term [Delta] C correct An example was defined as Example 2. Table 2 shows a list of data and operating factors used in the estimation of the carbon concentration in the hot metal after the dephosphorization treatment in Example 1, Example 2, and Comparative Example. In this example, a sound meter value was used as an operation factor reflecting the slag hatching status.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 補正項ΔCcorrectの有効性を示す指標として、実施例1、実施例2および比較例において算出された排ガスデータに基づく脱炭量ΔCoffgas(に補正項ΔCcorrectを加えた補正脱炭量)の、成分変化に基づく脱炭量ΔCからの誤差(推定誤差)をそれぞれ算出し、当該推定誤差の標準偏差σを求めた。標準偏差σが小さいほど、推定誤差が小さい、すなわち、補正項ΔCcorrectの有効性が高いと言える。 As an index indicating the effectiveness of the correction term ΔC correct, the decarburization amount ΔC offgas (corrected decarburization amount obtained by adding the correction term ΔC correct to the exhaust gas data calculated in Example 1, Example 2 and Comparative Example) The error (estimation error) from the decarburization amount ΔC c based on the component change was calculated, respectively, and the standard deviation σ of the estimation error was obtained. It can be said that as the standard deviation σ is smaller, the estimation error is smaller, that is, the effectiveness of the correction term ΔC correct is higher.
 また、炭素濃度の推定精度を示す指標として、実施例1および実施例2において上記式(9)を用いて推定された炭素濃度CdePと、脱りん処理後に転炉からサンプリングされた溶銑中の炭素濃度の実績値との誤差をそれぞれ算出し、当該推定誤差の標準偏差σを求めた。標準偏差σが小さいほど、推定誤差が小さい、すなわち、推定精度が高いと言える。 Moreover, as an index indicating the estimation accuracy of the carbon concentration, the carbon concentration C deP estimated using the above formula (9) in Example 1 and Example 2, and the hot metal sampled from the converter after the dephosphorization treatment An error from the actual value of the carbon concentration was calculated, and a standard deviation σ of the estimation error was obtained. It can be said that the smaller the standard deviation σ, the smaller the estimation error, that is, the higher the estimation accuracy.
 結果を図3~図5に示す。図3は、比較例における排ガスデータに基づく脱炭量ΔCoffgasの推定誤差を示す図である。図4は、実施例1における排ガスデータに基づく脱炭量ΔCoffgas+補正項ΔCcorrectの推定誤差を示す図である。また、図5は、実施例2における排ガスデータに基づく脱炭量ΔCoffgas+補正項ΔCcorrectの推定誤差を示す図である。各図において、x軸は炭素濃度の成分分析による実績値に基づく脱炭量を示し、y軸は(補正項ΔCcorrectを含む)排ガスデータに基づく脱炭量を示す。 The results are shown in FIGS. FIG. 3 is a diagram illustrating an estimation error of the decarburization amount ΔC offgas based on the exhaust gas data in the comparative example. FIG. 4 is a diagram showing an estimation error of the decarburization amount ΔC offgas + correction term ΔC correct based on the exhaust gas data in the first embodiment. FIG. 5 is a diagram showing an estimation error of the decarburization amount ΔC offgas + correction term ΔC correct based on the exhaust gas data in the second embodiment. In each figure, the x-axis shows the decarburization amount based on the actual value obtained by the component analysis of the carbon concentration, and the y-axis shows the decarburization amount based on the exhaust gas data (including the correction term ΔC correct ).
 図3~図5を参照すると、比較例1における推定誤差の標準偏差σが0.80であったのに対し、実施例1における推定誤差の標準偏差σは0.51であり、実施例2における推定誤差の標準偏差σは0.40であった。当該結果から、補正項ΔCcorrectによる補正により、実績データに対する脱炭量の誤差が小さくなっていることが確認できる。さらに、実施例2における標準偏差σが実施例1における標準誤差σよりも小さな値を示したことから、スラグの滓化状況を反映する操業要因を補正項ΔCcorrectに組み込むことがより有効であることが示された。 3 to 5, the standard deviation σ of the estimation error in Comparative Example 1 was 0.80, whereas the standard deviation σ of the estimation error in Example 1 was 0.51. The standard deviation σ of the estimation error in was 0.40. From the result, it can be confirmed that the error of the decarburization amount with respect to the actual data is reduced by the correction by the correction term ΔC correct . Furthermore, since the standard deviation σ in the second embodiment is smaller than the standard error σ in the first embodiment, it is more effective to incorporate an operation factor that reflects the slag hatching state in the correction term ΔC correct. It was shown that.
 次に、脱りん処理後の炭素濃度の推定に関する結果を、図6および図7に示す。図6は、実施例1における炭素濃度CdePの推定誤差を示す図である。また、図7は、実施例2における炭素濃度CdePの推定誤差を示す図である。各図において、x軸は炭素濃度の成分分析による実績値を示し、y軸は本実施形態に係る溶銑予備処理方法を用いて推定された炭素濃度の推定値を示す。 Next, the results regarding the estimation of the carbon concentration after the dephosphorization treatment are shown in FIGS. FIG. 6 is a diagram illustrating an estimation error of the carbon concentration CdeP in the first embodiment. FIG. 7 is a diagram showing an estimation error of the carbon concentration CdeP in Example 2. In each figure, the x-axis shows the actual value by the component analysis of the carbon concentration, and the y-axis shows the estimated value of the carbon concentration estimated using the hot metal pretreatment method according to the present embodiment.
 図6および図7を参照すると、実施例1における推定誤差の標準偏差σは0.15であり、実施例2における推定誤差の標準偏差σは0.11であった。いずれの標準偏差σも低い水準を示しているため、炭素濃度CdePの推定精度は高いと言える。また、実施例2における標準偏差σが実施例1における標準誤差σよりも小さな値を示したことから、スラグの滓化状況を反映する操業要因を用いることにより、炭素濃度CdePの推定精度をより高めることができることが確認された。 6 and 7, the standard deviation σ of the estimation error in Example 1 was 0.15, and the standard deviation σ of the estimation error in Example 2 was 0.11. Since all the standard deviations σ are low, it can be said that the estimation accuracy of the carbon concentration C deP is high. In addition, since the standard deviation σ in Example 2 was smaller than the standard error σ in Example 1, the estimation accuracy of the carbon concentration C deP can be improved by using an operation factor that reflects the slag hatching status. It was confirmed that it could be further increased.
 以上示したように、本実施例では、比較例に比べて、補正項ΔCcorrectの導入により、炭素濃度CdePを精度よく推定できることが分かった。特に、実施例2に示したように、スラグの滓化状況を反映する操業要因を補正項ΔCcorrectの推定に用いることにより、炭素濃度CdePの推定精度をさらに高めることができることが分かった。 As described above, it has been found that the carbon concentration C deP can be estimated with higher accuracy in this example by introducing the correction term ΔC correct than in the comparative example. In particular, as shown in Example 2, by using the operational factors that reflect the slag formation conditions of the slag to estimate the correction term [Delta] C correct, it has been found that it is possible to further enhance the estimation accuracy of the carbon concentration C deP.
 (操業への適用)
 次に、過去の操業実績データを用いて、本実施形態に係る溶銑予備処理方法の操業への適用の可否について検証した。具体的には、過去の操業実績データに対して、実施形態に係る溶銑予備処理方法により得られる脱りん処理後の溶銑中の炭素濃度の推定結果、並びに脱炭処理時における吹込み酸素量および冷材量の修正結果について検証した。
(Application to operation)
Next, it was verified whether or not the hot metal preliminary treatment method according to this embodiment can be applied to operations using past operation result data. Specifically, with respect to the past operation result data, the estimation result of the carbon concentration in the hot metal after the dephosphorization treatment obtained by the hot metal pretreatment method according to the embodiment, the amount of injected oxygen during the decarburization treatment, and The correction result of the amount of cold material was verified.
 表3は、操業実績データへの炭素濃度の推定結果および酸素量等の修正結果の適用例を示す表である。表3を参照すると、溶銑中の炭素濃度、溶銑温度、吹込み酸素量および冷材量の各々についての、予定値、実績値、および、推定値または修正指示値の履歴が示されている。予定値とは、脱りん処理前のスタティック制御により予め推定された値である。実績値とは、過去の操業において測定された、または設定された値である。推定値および修正指示値は、本実施形態に係る溶銑予備処理方法により得られる炭素濃度の推定値、並びに吹込み酸素量および冷材量の修正量の指示値である。ここで、吹込み酸素量の修正量の指示値とは、例えば上記式(10)に基づいて得られる修正後の吹込み酸素量O2,correctedに相当する。 Table 3 is a table showing an application example of the estimation result of the carbon concentration and the correction result such as the oxygen amount to the operation result data. Referring to Table 3, the history of the planned value, the actual value, and the estimated value or the corrected instruction value for each of the carbon concentration in the hot metal, the hot metal temperature, the amount of blown oxygen, and the amount of cold material is shown. The planned value is a value estimated in advance by static control before dephosphorization. The actual value is a value measured or set in the past operation. The estimated value and the corrected instruction value are an estimated value of the carbon concentration obtained by the hot metal pretreatment method according to the present embodiment, and an indicated value of the corrected amount of the blown oxygen amount and the cold material amount. Here, the instruction value for the correction amount of the blown oxygen amount corresponds to, for example , the corrected blown oxygen amount O 2 and corrected obtained based on the above formula (10).
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 表3を参照すると、脱りん処理前のスタティック制御により、脱りん処理終了時の溶銑中の炭素濃度が4.0%であり、脱炭処理中のサブランス測定時には溶鋼中の炭素濃度が0.5%であり、脱炭処理の終了時の溶鋼中の炭素濃度(目標炭素濃度)が0.1%であると想定されている。これに応じて、吹込み酸素量は、脱りん処理前のスタティック制御により、脱炭処理開始時は7.0Nm/ton、脱炭処理中のサブランス測定時には25.0Nm/ton(7.0+18.0)、脱炭処理の終了時には30.0Nm/ton(7.0+18.0+5.0)と決定される。冷材量の値は、脱りん吹錬中は2.0ton、脱炭処理の開始からサブランス測定時にわたって5.0tonである。 Referring to Table 3, due to the static control before the dephosphorization treatment, the carbon concentration in the hot metal at the end of the dephosphorization treatment is 4.0%, and when the sublance is measured during the decarburization treatment, the carbon concentration in the molten steel is 0. It is assumed that the carbon concentration (target carbon concentration) in the molten steel at the end of the decarburization process is 0.1%. Accordingly, the blown oxygen amount is 7.0 Nm 3 / ton at the start of the decarburization process and 25.0 Nm 3 / ton (7. 0 + 18.0), and is determined to be 30.0 Nm 3 / ton (7.0 + 18.0 + 5.0) at the end of the decarburization process. The value of the amount of cold material is 2.0 ton during dephosphorization blowing and 5.0 ton from the start of decarburization treatment to the time of sublance measurement.
 しかし、実際の操業のサブランス測定時の溶鋼中の炭素濃度は0.10%であった。一方で、サブランス測定時の溶銑温度は予定値の1600℃のままであった。その結果、脱炭処理の終了時において、溶鋼中の炭素濃度は、当初の目標炭素濃度よりも低い0.04%となってしまっていた。これは、脱りん処理の終了時における溶銑中の炭素濃度が、当初決定されていた4.0%よりも低くなっていたためであると考えられる。 However, the carbon concentration in the molten steel at the time of sublance measurement in actual operation was 0.10%. On the other hand, the hot metal temperature at the time of measuring the sublance remained at the planned value of 1600 ° C. As a result, at the end of the decarburization treatment, the carbon concentration in the molten steel was 0.04%, which was lower than the original target carbon concentration. This is presumably because the carbon concentration in the hot metal at the end of the dephosphorization process was lower than the originally determined 4.0%.
 一方、本実施形態に係る溶銑予備処理方法によれば、脱りん処理の終了時における溶銑中の炭素濃度は3.5%と推定されている。また、この推定結果に応じて、脱炭処理の開始からサブランス測定時における酸素量が18.0から13.0Nm/tonに修正されている。さらに、炭素濃度の推定結果および酸素量の修正結果に応じて、冷材量が2.5tonに修正されている。この修正に基づいて仮に操業が行われていればサブランス測定時の炭素濃度は予め想定していた0.5%を満足するので、脱炭処理の終了時における溶鋼中の炭素濃度を吹き下げることなくより目標炭素濃度に近づけることが可能であることが、表3に示された結果から示唆される。すなわち、本実施形態に係る溶銑予備処理方法を実際の操業に適用させることにより、溶鋼中の炭素濃度をより確実に目標炭素濃度に的中させることが可能となる。 On the other hand, according to the hot metal preliminary treatment method according to the present embodiment, the carbon concentration in the hot metal at the end of the dephosphorization process is estimated to be 3.5%. Further, according to this estimation result, the oxygen amount at the time of the sublance measurement from the start of the decarburization process is corrected from 18.0 to 13.0 Nm 3 / ton. Further, the amount of cold material is corrected to 2.5 ton according to the estimation result of carbon concentration and the correction result of oxygen amount. If the operation is performed based on this modification, the carbon concentration at the time of sublance measurement will satisfy the 0.5% previously assumed, so the carbon concentration in the molten steel at the end of the decarburization process should be blown down. It is suggested from the results shown in Table 3 that the target carbon concentration can be made closer to the target carbon concentration. That is, by applying the hot metal preliminary treatment method according to the present embodiment to actual operations, the carbon concentration in the molten steel can be more accurately hit the target carbon concentration.
 以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。 The preferred embodiments of the present invention have been described in detail above with reference to the accompanying drawings, but the present invention is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field to which the present invention pertains can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that these also belong to the technical scope of the present invention.
 1   溶銑予備処理システム
 10  転炉吹錬設備
 11  転炉
 12  煙道
 13  上吹きランス
 20  溶銑予備処理制御装置
 21  溶銑予備処理データベース
 22  入出力部
 30  計測制御装置
 101 排ガス成分分析計
 102 排ガス流量計
 111 サウンドメータ
 112 集音マイクロフォン
 201 データ取得部
 202 炭素濃度推定部
 203 修正量算出部
DESCRIPTION OF SYMBOLS 1 Hot metal preliminary treatment system 10 Converter blowing equipment 11 Converter 12 Flue 13 Upper blowing lance 20 Hot metal preliminary treatment control device 21 Hot metal preliminary treatment database 22 Input / output unit 30 Measurement control device 101 Exhaust gas component analyzer 102 Exhaust gas flow meter 111 Sound meter 112 Sound collection microphone 201 Data acquisition unit 202 Carbon concentration estimation unit 203 Correction amount calculation unit

Claims (6)

  1.  転炉を用いた溶銑予備処理において、
     脱りん処理前の溶銑に関する溶銑データ、並びに脱りん処理時に前記転炉から排出された排ガス成分および排ガス流量を含む排ガスデータを取得するデータ取得ステップと、
     前記排ガスデータに基づいて算出される脱りん処理時の脱炭量を、前記脱りん処理時の操業要因に基づいて算出される補正値を用いて補正し、補正された脱炭量と前記溶銑データとに基づいて脱りん処理後の炭素濃度を推定する炭素濃度推定ステップと、
     を含む溶銑予備処理方法。
    In hot metal pretreatment using a converter,
    A data acquisition step for acquiring hot metal data relating to hot metal before dephosphorization, and exhaust gas data including exhaust gas components and exhaust gas flow rate discharged from the converter during the dephosphorization process,
    The amount of decarburization at the time of dephosphorization calculated based on the exhaust gas data is corrected using a correction value calculated based on the operating factor at the time of dephosphorization, and the corrected amount of decarburization and the molten iron are corrected. A carbon concentration estimation step for estimating the carbon concentration after dephosphorization based on the data;
    A hot metal pretreatment method comprising:
  2.  前記炭素濃度推定ステップにおいて、前記補正値は、前記操業要因を説明変数とする回帰式により算出される、請求項1に記載の溶銑予備処理方法。 The hot metal preliminary treatment method according to claim 1, wherein, in the carbon concentration estimation step, the correction value is calculated by a regression equation having the operation factor as an explanatory variable.
  3.  前記脱りん処理時の操業要因は、前記脱りん処理時におけるスラグの滓化状況を示す操業要因を含む、請求項1または2に記載の溶銑予備処理方法。 The hot metal pretreatment method according to claim 1 or 2, wherein the operation factor during the dephosphorization treatment includes an operation factor indicating a hatching state of the slag during the dephosphorization treatment.
  4.  前記スラグの滓化状況を示す操業要因は、前記転炉内の音響情報に関する操業要因を含む、請求項3に記載の溶銑予備処理方法。 The hot metal preliminary treatment method according to claim 3, wherein the operation factor indicating the hatching status of the slag includes an operation factor related to acoustic information in the converter.
  5.  前記データ取得ステップにおいて、前記脱りん処理後の目標炭素濃度、および前記脱りん処理後に行われる脱炭処理における前記転炉内への吹込み酸素量をさらに取得し、
     推定された前記脱りん処理後の炭素濃度および前記脱りん処理後の目標炭素濃度の比較結果に基づいて、前記吹込み酸素量を修正する酸素量修正ステップをさらに含む、請求項1~4のいずれか1項に記載の溶銑予備処理方法。
    In the data acquisition step, the target carbon concentration after the dephosphorization process and the amount of oxygen blown into the converter in the decarburization process performed after the dephosphorization process are further acquired,
    The oxygen amount correcting step of correcting the blown oxygen amount based on a comparison result of the estimated carbon concentration after the dephosphorization treatment and the target carbon concentration after the dephosphorization treatment, further comprising: The hot metal preliminary treatment method according to any one of the above.
  6.  転炉を用いた溶銑予備処理を制御する溶銑予備処理制御装置において、
     脱りん処理前の溶銑に関する溶銑データ、並びに脱りん処理時に前記転炉から排出された排ガス成分および排ガス流量を含む排ガスデータを取得するデータ取得部と、
     前記排ガスデータに基づいて算出される脱りん処理時の脱炭量を、前記脱りん処理時の操業要因に基づいて算出される補正値を用いて補正し、補正された脱炭量と前記溶銑データとに基づいて脱りん処理後の炭素濃度を推定する炭素濃度推定部と、
     を備える、溶銑予備処理制御装置。
    In the hot metal pretreatment control device for controlling the hot metal pretreatment using the converter,
    A data acquisition unit for acquiring hot metal data relating to hot metal before dephosphorization, and exhaust gas data including exhaust gas components and exhaust gas flow rate discharged from the converter during the dephosphorization process;
    The amount of decarburization at the time of dephosphorization calculated based on the exhaust gas data is corrected using a correction value calculated based on the operating factor at the time of dephosphorization, and the corrected amount of decarburization and the molten iron are corrected. A carbon concentration estimator for estimating the carbon concentration after dephosphorization based on the data;
    A hot metal preliminary treatment control device.
PCT/JP2017/009453 2016-03-23 2017-03-09 Molten pig iron pre-treatment method and molten pig iron pre-treatment control device WO2017163902A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018507205A JP6547901B2 (en) 2016-03-23 2017-03-09 Hot metal pretreatment method and hot metal pretreatment control device
CN201780003670.0A CN108138246B (en) 2016-03-23 2017-03-09 Molten iron pretreatment method and molten iron pretreatment control device
KR1020187010776A KR102133215B1 (en) 2016-03-23 2017-03-09 Method for preliminary chartering and control device for chartering

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-058751 2016-03-23
JP2016058751 2016-03-23

Publications (1)

Publication Number Publication Date
WO2017163902A1 true WO2017163902A1 (en) 2017-09-28

Family

ID=59901216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/009453 WO2017163902A1 (en) 2016-03-23 2017-03-09 Molten pig iron pre-treatment method and molten pig iron pre-treatment control device

Country Status (5)

Country Link
JP (1) JP6547901B2 (en)
KR (1) KR102133215B1 (en)
CN (1) CN108138246B (en)
TW (1) TWI627284B (en)
WO (1) WO2017163902A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117210639A (en) * 2023-11-09 2023-12-12 山东宇信铸业有限公司 Method and system for controlling pretreatment powder spraying of molten iron produced in one tank

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0920912A (en) * 1995-06-30 1997-01-21 Nippon Steel Corp Pretreatment for molten iron
JP2006200021A (en) * 2005-01-21 2006-08-03 Kobe Steel Ltd Operating method of steel-manufacturing facility
JP2009052082A (en) * 2007-08-27 2009-03-12 Jfe Steel Kk Method for deciding oxygen feeding flow rate pattern in converter dephosphorization blowing

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0673428A (en) * 1992-06-22 1994-03-15 Kawasaki Steel Corp Method for estimating carbon concentration in steel tapped from converter
KR100428582B1 (en) * 1999-12-29 2004-04-30 주식회사 포스코 Method for forecasting post combustion ratio of corbon in converter for top and bottom blowing process and method for forecasting carbon concentration in molten steel
JP5527180B2 (en) 2010-11-29 2014-06-18 新日鐵住金株式会社 Converter blowing method and converter blowing system
CN202401090U (en) * 2011-11-11 2012-08-29 田陆 System for controlling finishing point of converter steelmaking
TWI593803B (en) * 2012-01-27 2017-08-01 杰富意鋼鐵股份有限公司 Melting method of high cleanness steel
JP5790607B2 (en) * 2012-08-20 2015-10-07 新日鐵住金株式会社 Hot metal dephosphorization method, hot metal dephosphorization system, low phosphorus hot metal manufacturing method and low phosphorus hot metal manufacturing apparatus
BR112015016931B1 (en) * 2013-01-18 2020-04-07 Jfe Steel Corp pre-treatment method of cast iron
WO2014112432A1 (en) * 2013-01-18 2014-07-24 Jfeスチール株式会社 Converter steelmaking process
BR112015025470A2 (en) * 2013-04-10 2017-07-18 Jfe Steel Corp correcting apparatus, correction method and steel refinement method
WO2015011910A1 (en) * 2013-07-25 2015-01-29 Jfeスチール株式会社 Method for removing phosphorus from hot metal
CN105593381B (en) * 2013-09-30 2017-05-10 杰富意钢铁株式会社 Control device and control method for converter furnace blowing equipment
JP6314484B2 (en) * 2014-01-14 2018-04-25 新日鐵住金株式会社 Hot metal dephosphorization method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0920912A (en) * 1995-06-30 1997-01-21 Nippon Steel Corp Pretreatment for molten iron
JP2006200021A (en) * 2005-01-21 2006-08-03 Kobe Steel Ltd Operating method of steel-manufacturing facility
JP2009052082A (en) * 2007-08-27 2009-03-12 Jfe Steel Kk Method for deciding oxygen feeding flow rate pattern in converter dephosphorization blowing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117210639A (en) * 2023-11-09 2023-12-12 山东宇信铸业有限公司 Method and system for controlling pretreatment powder spraying of molten iron produced in one tank
CN117210639B (en) * 2023-11-09 2024-02-23 山东宇信铸业有限公司 Method and system for controlling pretreatment powder spraying of molten iron produced in one tank

Also Published As

Publication number Publication date
TWI627284B (en) 2018-06-21
JP6547901B2 (en) 2019-07-24
CN108138246B (en) 2020-03-10
KR102133215B1 (en) 2020-07-13
KR20180052749A (en) 2018-05-18
JPWO2017163902A1 (en) 2018-06-14
TW201734214A (en) 2017-10-01
CN108138246A (en) 2018-06-08

Similar Documents

Publication Publication Date Title
WO2018012257A1 (en) Method for estimating phosphorus concentration in molten steel and converter blowing control device
JP6897261B2 (en) Phosphorus concentration estimation method in molten steel, converter blowing control device, program and recording medium
KR102348892B1 (en) Molten metal component estimation apparatus, molten metal component estimation method, and molten metal manufacturing method
JP6515385B2 (en) Hot metal pretreatment method and hot metal pretreatment control device
JP2019073799A (en) Molten metal temperature correction device, molten metal temperature correction method, and production method of molten metal
JP6897260B2 (en) Phosphorus concentration estimation method in molten steel, converter blowing control device, program and recording medium
CN111032887B (en) Method for estimating phosphorus concentration in molten steel, converter blowing control device, program, and recording medium
WO2017163902A1 (en) Molten pig iron pre-treatment method and molten pig iron pre-treatment control device
JP2017089001A (en) Molten metal condition estimation device, molten metal condition estimation method, and manufacturing method of molten metal
WO2019220800A1 (en) Melt component estimation device, melt component estimation method, and method for producing melt
JP7376787B2 (en) Device for estimating phosphorus concentration in molten steel, statistical model construction device, method for estimating phosphorus concentration in molten steel, statistical model construction method, and program
WO2023095647A1 (en) Intra-furnace state inference device, intra-furnace state inference method, and molten steel manufacturing method
JP6795133B1 (en) Blow control method and smelt control device for converter type dephosphorization smelting furnace
JP2024005899A (en) Device, method, and program for statistical model construction, and device, method and program for estimating phosphorus concentration in molten steel
BR112021018589B1 (en) BLOW CONTROL METHOD AND BLOW CONTROL APPARATUS FOR CONVERTER TYPE DEPHOSPHORIZATION REFINING FURNACE
CN117925938A (en) Method, device, medium and equipment for judging steelmaking decarburization strength of converter
JP2021031684A (en) Converter blowing control device, statistic model construction device, converter blowing control method, statistic model construction method and program
JP2013072095A (en) Method and apparatus for controlling preliminary treatment of molten pig iron

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018507205

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187010776

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17769947

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17769947

Country of ref document: EP

Kind code of ref document: A1