JP2009052082A - Method for deciding oxygen feeding flow rate pattern in converter dephosphorization blowing - Google Patents

Method for deciding oxygen feeding flow rate pattern in converter dephosphorization blowing Download PDF

Info

Publication number
JP2009052082A
JP2009052082A JP2007219229A JP2007219229A JP2009052082A JP 2009052082 A JP2009052082 A JP 2009052082A JP 2007219229 A JP2007219229 A JP 2007219229A JP 2007219229 A JP2007219229 A JP 2007219229A JP 2009052082 A JP2009052082 A JP 2009052082A
Authority
JP
Japan
Prior art keywords
flow rate
blowing
charge
rate pattern
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007219229A
Other languages
Japanese (ja)
Inventor
Kengo Akio
賢吾 秋生
Akira Osumi
明 大角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2007219229A priority Critical patent/JP2009052082A/en
Publication of JP2009052082A publication Critical patent/JP2009052082A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for deciding an oxygen feeding flow rate pattern in converter dephosphorization blowing, with which an oxygen feeding quantity is dynamically controlled in accordance with the operating conditions during blowing without fixing an oxygen feeding flow rate pattern, and concentration of phosphorous in a molten steel at the end point of converter blowing is made to accurately hit the target value in a maintenance free state. <P>SOLUTION: Before the start of converter blowing, from molten iron conditions, blowing conditions and target conditions, a vector indicating the characteristics of the charge is obtained. The similar vector similar to the charge is selected from the past actual result database. an approximate model obtaining the optimum oxygen feeding flow rate is created. The optimum oxygen feeding flow rate patter in the charge is calculated using the created approximate model, and the optimum oxygen feeding flow rate pattern is decided as the oxygen feeding flow rate pattern in the charge. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、転炉脱燐吹錬の送酸量パターン決定方法に関するものである。   The present invention relates to a method for determining an acid feed amount pattern in converter dephosphorization blowing.

吹錬設備に主原料、副原料を供給し、酸素を吹き付けて、吹錬終了時点(終点)で所望の組成と温度を有した鋼を出力(出鋼)するまでの1つの工程を「チャージ」と称する。 “Charging” one process from supplying main raw materials and auxiliary raw materials to blowing equipment, spraying oxygen, and outputting steel with the desired composition and temperature at the end of blowing (end point). ".

吹錬設備に供給される銑鉄やスクラップの組成や温度は、チャージ毎に異なるので、全てのチャージにわたって、所望の鋼を出鋼するためには、チャージ毎に最適の吹錬制御を実施する必要がある。   The composition and temperature of pig iron and scrap supplied to the blow smelting equipment vary from charge to charge. Therefore, in order to produce the desired steel over the entire charge, it is necessary to implement optimum blowing control for each charge. There is.

銑鉄には様々の成分が含まれており、本発明で対象とする燐(りん、P)は単独で除去されることもあるし、他の成分と一括で除去されることもある。吹錬操業にあたっては、吹錬終了時の燐濃度(終点P濃度)を適正に制御(転炉吹錬終点制御)することは重要な課題である。   Pig iron contains various components, and phosphorus (phosphorus, P), which is the subject of the present invention, may be removed alone or may be removed together with other components. In blowing operation, it is an important issue to appropriately control the phosphorus concentration (end point P concentration) at the end of blowing (converter end point control).

これまで、転炉における脱燐吹錬では、スタティックな物質収支計算により必要な酸素量を算出する手法や、排ガス情報から脱Pに相関のある溶鋼中のFeO量を推定し、制御する手法が提案されている。操業方法については、吹錬前の溶銑条件から経験的に半固定化された送酸パターンを選択し、またこれをメンテナンスすることで決定している。   Until now, in dephosphorization blowing in converters, there are methods to calculate the required oxygen amount by static material balance calculation, and to estimate and control the amount of FeO in molten steel correlated with de-P from exhaust gas information. Proposed. The operating method is determined by selecting an empirically semi-immobilized acid feed pattern from the hot metal conditions before blowing and maintaining it.

また、特許文献1には、脱炭炉で過去実績から類似実績を抽出し、その都度回帰計算によりモデルを作成するデータベース型モデルの方法が提案されている。
特開2006−233324号公報
Further, Patent Document 1 proposes a database model method in which similar results are extracted from past results in a decarburization furnace and a model is created by regression calculation each time.
JP 2006-233324 A

しかしながら、スタティックな物質収支計算により酸素量を算出する手法や特許文献1に開示されている方法では、操業変動や経時変化を十分に反映することが出来ず、以下のような問題があった。
固定のパターンを使用しているため、吹錬中の操業状態によって送酸量をダイナミックに制御することは出来ない。また、経時変化に追従したパターンのメンテナンスが必要であり、十分でないと最適な操業が出来ない。
However, the method of calculating the amount of oxygen by static material balance calculation and the method disclosed in Patent Document 1 cannot sufficiently reflect operational fluctuations and changes with time, and have the following problems.
Since a fixed pattern is used, the amount of acid sent cannot be controlled dynamically depending on the operating state during blowing. In addition, it is necessary to maintain the pattern following the change with time, and if it is not sufficient, the optimum operation cannot be performed.

本発明は、このような問題を鑑みなされたものであり、送酸流量パターンを固定することなく吹錬中の操業状態によって送酸量をダイナミックに制御し、かつメンテナンスフリーに転炉吹錬終点の溶鋼中燐濃度を目標値に精度良く的中させることが可能な転炉脱燐吹錬の送酸流量パターン決定方法を提供することを目的とする。   The present invention has been made in view of such a problem, and dynamically controls the amount of acid fed according to the operating state during blowing without fixing the acid flow rate pattern, and is the maintenance-free converter blowing end point. It is an object of the present invention to provide a method for determining an acid flow rate pattern of converter dephosphorization blowing that can accurately target the phosphorus concentration in molten steel to a target value.

本発明の請求項1に係る発明は、転炉吹錬開始前に、溶銑条件、吹錬条件、および目標条件から当該チャージの特徴を表す当該ベクトルを求め、過去実績データベースから当該チャージと類似した類似ベクトルを抽出し、抽出した類似ベクトルに基づき最適送酸流量を求める近似モデルを作成し、作成した近似モデルを用いて当該チャージの最適送酸流量パターンを算出し、この最適送酸流量パターンを当該チャージの送酸流量パターンと決定することを特徴とする転炉脱燐吹錬の送酸流量パターン決定方法である。   The invention according to claim 1 of the present invention is similar to the charge from the past performance database, obtaining the vector representing the characteristics of the charge from the hot metal condition, the blowing condition, and the target condition before the start of the converter blowing. A similar vector is extracted, an approximate model for obtaining the optimal oxygen delivery flow rate is created based on the extracted similar vector, and an optimum oxygen delivery flow rate pattern for the charge is calculated using the created approximate model. This is a method for determining an acid flow rate pattern for converter dephosphorization blowing, wherein the flow rate is determined to be an acid flow rate pattern for the charge.

また本発明の請求項2に係る発明は、転炉脱燐吹錬中に、排ガス情報に基づき、吹錬途中の溶鋼中炭素濃度、溶鋼中酸素濃度、溶鋼中燐濃度、および溶鋼温度を推定し、当該チャージの特徴を表す当該ベクトルを求め、過去実績データベースから当該チャージと類似した類似ベクトルを抽出し、抽出した類似ベクトルに基づき最適送酸流量を求める近似モデルを作成し、作成した近似モデルを用いて当該チャージの最適送酸流量パターンを算出し、この最適送酸流量パターンで算出タイミング以降の当該チャージの送酸流量パターンを変更することを特徴とする転炉脱燐吹錬の送酸流量パターン決定方法である。   The invention according to claim 2 of the present invention estimates the carbon concentration in the molten steel, the oxygen concentration in the molten steel, the phosphorus concentration in the molten steel, and the molten steel temperature based on the exhaust gas information during the dephosphorization blowing of the converter. Then, the vector representing the characteristics of the charge is obtained, a similar vector similar to the charge is extracted from the past performance database, and an approximate model for obtaining the optimal oxygen flow rate is created based on the extracted similar vector, and the created approximate model Is used to calculate the optimum acid flow rate pattern of the charge and to change the acid flow rate pattern of the charge after the calculation timing with the optimum acid flow rate pattern. This is a flow rate pattern determination method.

また本発明の請求項3に係る発明は、請求項1または2に記載の転炉脱燐吹錬の送酸流量パターン決定方法において、前記類似ベクトルの抽出にあたって、当該ベクトルと、過去実績の吹錬ベクトルとの偏差のノルムに基づいて、類似ベクトルを抽出することを特徴とする転炉脱燐吹錬の送酸流量パターン決定方法である。   Further, the invention according to claim 3 of the present invention is the method of determining the oxygen flow rate pattern of converter dephosphorization blowing according to claim 1 or 2, wherein the similar vector is extracted in the method of extracting the similar vector and the past performance blowing. A method for determining an acid flow rate pattern for converter dephosphorization blowing, wherein a similar vector is extracted based on a norm of deviation from a smelting vector.

また本発明の請求項4に係る発明は、請求項1乃至3のいずれか1項に記載の転炉脱燐吹錬の送酸流量パターン決定方法において、前記近似モデルを、前記類似ベクトルの回帰式として作成することを特徴とする転炉脱燐吹錬の送酸流量パターン決定方法である。   The invention according to claim 4 of the present invention is the method for determining an acid flow rate pattern of converter dephosphorization blowing according to any one of claims 1 to 3, wherein the approximation model is a regression of the similar vector. This is a method for determining an acid flow rate pattern of converter dephosphorization blowing, characterized in that it is created as an equation.

また本発明の請求項5に係る発明は、請求項1乃至3のいずれか1項に記載の転炉脱燐吹錬の送酸流量パターン決定方法において、前記近似モデルを、吹錬の各ステージにおける送酸実績の当該チャージと類似チャージとの距離に応じた荷重和として作成することを特徴とする転炉脱燐吹錬の送酸流量パターン決定方法である。   The invention according to claim 5 of the present invention is the method for determining the flow rate of acid flow for converter dephosphorization blowing according to any one of claims 1 to 3, wherein the approximate model is used for each stage of blowing. This is a method for determining an acid feed flow rate pattern of converter dephosphorization blowing, characterized in that it is created as a sum of loads corresponding to the distance between the charge of the actual acid feed performance and a similar charge.

さらに本発明の請求項6に係る発明は、請求項1乃至5のいずれか1項に記載の転炉脱燐吹錬の送酸流量パターン決定方法を用いて決められら送酸流量パターンで送酸流量を制御して、吹錬終了時点で所望の組成と温度にすることを特徴とする転炉吹錬終点制御方法である。   Furthermore, the invention according to claim 6 of the present invention is configured to send an acid flow rate pattern determined using the method for determining the oxygen feed flow rate pattern of converter dephosphorization blowing according to any one of claims 1 to 5. It is a converter blowing end point control method characterized by controlling the acid flow rate to obtain a desired composition and temperature at the end of blowing.

本発明は上述のような構成をとるようにしているので、排ガス情報により、ダイナミック制御モデルが適用可能なため、転炉吹錬終点の溶鋼中燐濃度を目標値に精度良く的中させることが可能となる。また、これまで人の手で行ってきた、固定パターンのメンテナンスは構築したデータベースをその都度更新することにより不要となり、最適な状態を維持できる。その結果、製品品質及び鉄歩留りが向上するのみならず、転炉耐火物の延命効果、二次精錬の不可低減などの波及効果が得られ、工業上有益な効果がもたらされる。   Since the present invention is configured as described above, the dynamic control model can be applied based on the exhaust gas information, so that the phosphorus concentration in the molten steel at the end of the converter blowing can be accurately targeted at the target value. It becomes possible. Further, the maintenance of the fixed pattern, which has been performed manually by the user, becomes unnecessary by updating the constructed database each time, and the optimum state can be maintained. As a result, not only the product quality and the iron yield are improved, but also a ripple effect such as a life extension effect of the converter refractory and an inability to reduce secondary refining is obtained, and an industrially beneficial effect is brought about.

以下、図面を参照しながら、本発明を具体的に説明してゆく。図1は、本発明に係る転炉脱燐吹錬の送酸流量パターン決定方法の処理手順1を示すブロック図である。この処理手順1は、吹錬開始前の処理手順を示すものであり、このブロック図にそって以下説明する。   Hereinafter, the present invention will be specifically described with reference to the drawings. FIG. 1 is a block diagram showing a processing procedure 1 of a method for determining an acid flow rate pattern of converter dephosphorization blowing according to the present invention. This processing procedure 1 shows a processing procedure before the start of blowing, and will be described below with reference to this block diagram.

Step01:吹錬条件ベクトルを定義(溶銑条件)
溶銑条件などの新規吹錬条件から、次式(1)のように新規吹錬条件ベクトルVaを定義する。
Step01: Define blowing condition vector (hot metal condition)
From new blowing conditions such as hot metal conditions, a new blowing condition vector Va is defined as in the following equation (1).

Va=(x1、x2、x3、x4、x5、x6、x7、x8、…、xn)・・・・・(1)
ただし、新規に実施するチャージは吹錬前なので、終点時の情報がないため、終点実績温度x6、終点C濃度x7、終点P濃度x8には目標値等を入力する。また、新規に実施するチャージにおける1〜nの各項目における実際の値x1、x2、x3、x4、x5、x6、x7、x8、…、xnは、操作者により与えられるのみならず、上位計算機から与えられる場合もある。
Va = (x 1, x 2 , x 3, x 4, x 5, x 6, x 7, x 8, ..., x n) ····· (1)
However, since the charge to be newly implemented is before blowing, there is no information at the end point, so the target value or the like is input to the end point actual temperature x 6 , end point C concentration x 7 and end point P concentration x 8 . Further, the actual value x 1 for each item of 1~n in charge of implementing the new, x 2, x 3, x 4, x 5, x 6, x 7, x 8, ..., x n , the operator In some cases, it may be given by a host computer.

Step02:過去実績のベクトル作成
吹錬実績データベースに記憶されている実績の各チャージの吹錬条件実績[x1、x2、x3、x4、x5、x6、x7、x8、…、xn](例えば、吹錬条件、吹錬の各ステージにおける送酸実績、吹錬後の的中精度等)をそれぞれ(2)式に示すように実績吹錬ベクトルVbとして定義する。
Vb=(x1、x2、x3、x4、x5、x6、x7、x8、…、xn)・・・・・(2)
Step02: blowing conditions results in the charge record which is stored in the vector generating blowing record database of past results [x 1, x 2, x 3, x 4, x 5, x 6, x 7, x 8, ..., x n ] (for example, blowing conditions, actual results of acid feeding in each stage of blowing, accuracy of accuracy after blowing, etc.) are defined as actual blowing vector Vb as shown in equation (2).
Vb = (x 1, x 2 , x 3, x 4, x 5, x 6, x 7, x 8, ..., x n) ····· (2)

これに続き、吹錬実績データベースに記憶されている各項目1〜nの実際の各値xi(i=1、2、 …、 n)を全てのチャージにわたって平均し、平均値ui及び標準偏差σiを算出する。次に、各チャージにおける実績吹錬条件における各項目の値xi(i=1、2、 …、 n)を正規化する。正規化ベクトルの各項目の値xibは次式(3)で計算される。
xib=(xi−ui)/σi・・・・・(3)
Following this, the actual values x i (i = 1, 2,..., N) of the items 1 to n stored in the blowing performance database are averaged over all charges, the average value u i and the standard Deviation σ i is calculated. Next, the value x i (i = 1, 2,..., N) of each item in the actual blowing conditions in each charge is normalized. The value x ib of each item of the normalized vector is calculated by the following equation (3).
x ib = (x i −u i ) / σ i (3)

次に、各チャージの実績吹錬ベクトルVbの各項目値xiを、正規化された値xibに置き換えた(4)式に示す実績吹錬正規化ベクトルVboを定義する。
Vbo=(x1b、x2b、x3b、x4b、x5b、x6b、x7b、x8b、…、xnb)・・・・・(4)
Next, the actual blown normalized vector Vbo shown in the equation (4) in which each item value x i of the actual blown vector Vb for each charge is replaced with the normalized value x ib is defined.
Vbo = (x 1b , x 2b , x 3b , x 4b , x 5b , x 6b , x 7b , x 8b ,..., X nb ) (4)

Step03:当該チャージのベクトル作成
さらに、当該チャージの新規吹錬ベクトルVaの各項目値x iを、前述の吹錬実績データベースの各値から計算した平均値及び標準偏差を用いて下式(5)にしたがって正規化する。
xia=(x i−ui)/σi・・・・・(5)
そして、この正規化された各値に置き換えて、新規吹錬正規化ベクトルVaoを(6)式のように定義する。
Vao=(x1a、x2a、x3a、x4a、x5a、x6a、x7a、x8a、…、xna)・・・・・(6)
Step03: The charge vectors created yet, under each item value x 'i of the novel blowing vector Va of the charge, using the mean value and standard deviation were calculated from the values of blowing results database described above expression (5 ) To normalize.
x ia = (x i −u i ) / σ i (5)
Then, by replacing with each normalized value, a new blowing normalization vector Vao is defined as in equation (6).
Vao = (x 1a , x 2a , x 3a , x 4a , x 5a , x 6a , x 7a , x 8a ,..., X na ) (6)

Step04:類似実績を抽出
次に、この新規吹錬正規化ベクトルVaoと各実績吹錬正規化ベクトルVboとの間の各偏差ベクトルΔVabを、(7)式のように設定する。
ΔVab=Vao−Vbo・・・・・(7)
Step 04: Extract similar results Next, each deviation vector ΔVab between this new blowing normalization vector Vao and each actual blowing normalization vector Vbo is set as shown in equation (7).
ΔVab = Vao−Vbo (7)

ベクトルVao、Vbo相互間の類似度の定量的な評価基準として、ノルム|ΔVab|を算出する。ノルムの計算方法を次の(8)式に示す。
|ΔVab|=[w1(x1a−x1b)2+w2(x2a−x2b)2+…+wn(xna−xnb)2]1/2・・・・(8)
ここで、w1、w2、…、wnは吹錬条件の各項目毎の重み係数である。なお、ここでは、類似度の定量的な評価基準として、当該チャージと類似チャージとの距離を表すノルムの例を示しているが、これに限られるものでなく他の評価基準を用いるようにしても良い。
A norm | ΔVab | is calculated as a quantitative evaluation criterion of the degree of similarity between the vectors Vao and Vbo. The norm calculation method is shown in the following equation (8).
| ΔVab | = [w 1 (x 1a −x 1b ) 2 + w 2 (x 2a −x 2b ) 2 +... + W n (x na −x nb ) 2 ] 1/2 ... (8)
Here, w 1, w 2, ... , w n is a weighting factor for each item of blowing conditions. In addition, although the example of the norm showing the distance between the charge and the similar charge is shown here as a quantitative evaluation standard of the similarity, the present invention is not limited to this, and other evaluation standards are used. Also good.

算出された各ノルム|ΔVab|のうちの小さい方からk個(所定数)のノルム|ΔVab|に対応するチャージを選択し、選択した類似チャージのベクトルを読み込む。   Charges corresponding to k (predetermined) norms | ΔVab | are selected from the smaller ones of the calculated norms | ΔVab |, and a vector of the selected similar charges is read.

Step05:最適送酸流量パターンを算出
類似チャージのベクトルを用いて、最適送酸流量Qsを求める近似モデルを作成する。近似モデルは、例えば、下記に示す回帰式(9)とする。ここで、説明変数は、ベクトルの各項目であるり、c0、c1、c2、c3、c4、c6、c7、c8、…、cnは係数であり、選択された実績チャージのデータにおいて推定精度が高くなるように調整される。
Qs=c0+c1x1+c2 x2+c3 x3+c4x4+c6 x6+c7 x7+c8x8+ … +cn xn・・・(9)
Step 05: Calculate the optimum oxygen delivery flow rate pattern Using the similar charge vector, create an approximate model for obtaining the optimum delivery oxygen flow rate Qs. The approximate model is, for example, the regression equation (9) shown below. Here, the explanatory variable is each item of the vector, or c 0 , c 1 , c 2 , c 3 , c 4 , c 6 , c 7 , c 8 ,..., C n are coefficients and are selected The actual charge data is adjusted so that the estimation accuracy is high.
Qs = c 0 + c 1 x 1 + c 2 x 2 + c 3 x 3 + c 4 x 4 + c 6 x 6 + c 7 x 7 + c 8 x 8 +… + c n x n (9)

作成された近似モデルに、新規吹錬条件ベクトルの各項目を代入して、最適送酸流量パターンを算出する。
また、最適送酸流量Qsを求める近似モデルには、吹錬の各ステージにおける送酸実績の当該チャージと類似チャージとの距離に応じた荷重和とすることもできる。図3は、吹錬開始前の最適送酸流量パターン算出を説明する図である。3つの類似チャージの送酸流量パターンの類似度に応じた荷重和を取り最適送酸流量パターンを求めている。
By substituting each item of the new blowing condition vector into the created approximate model, the optimum oxygen delivery flow rate pattern is calculated.
In addition, the approximate model for obtaining the optimum acid delivery flow rate Qs can be a load sum corresponding to the distance between the charge and the similar charge of the actual acid delivery performance in each stage of blowing. FIG. 3 is a diagram for explaining the calculation of the optimum acid flow rate pattern before the start of blowing. The optimal oxygen delivery flow rate pattern is obtained by calculating the load sum corresponding to the similarity of the oxygen delivery flow rate patterns of three similar charges.

Step06:送酸流量パターンを決定
以上にて求められた最適送酸流量パターンを当該チャージの送酸流量パターンとして決定する。
Step 06: Determining the acid delivery flow rate pattern The optimum acid delivery flow rate pattern obtained above is determined as the acid delivery flow rate pattern for the charge.

図2は、本発明に係る転炉脱燐吹錬の送酸流量パターン決定方法の処理手順2を示すブロック図である。この処理手順2は、吹錬中の処理手順を示すものであり、図1の処理手順1とは、Step01とStep06、さらにStep01からStep06までを定周期で繰り返す点が異なっている。同じ処理の説明は省略し、異なる処理のみを説明する。   FIG. 2 is a block diagram showing the processing procedure 2 of the method for determining the acid flow rate pattern for converter dephosphorization blowing according to the present invention. This processing procedure 2 shows the processing procedure during blowing, and is different from the processing procedure 1 of FIG. 1 in that Step 01 and Step 06, and Step 01 to Step 06 are repeated at a constant cycle. Description of the same processing is omitted, and only different processing is described.

Step01:吹錬条件ベクトルを定義(排ガス情報による溶鋼中推定成分)
吹錬中に測定した排ガス情報により、炉内成分、温度、FeO量などをオンラインで推定した結果を用いて、吹錬条件ベクトルを定義する。
Step01: Define blowing condition vector (estimated component in molten steel from exhaust gas information)
A blowing condition vector is defined using on-line estimation results of in-furnace components, temperature, FeO amount, and the like based on exhaust gas information measured during blowing.

Step06:送酸流量パターンを変更
図4は、吹錬中の最適送酸流量パターンの算出を説明する図である。吹錬中に測定した排ガス情報により、抽出された類似ベクトルが前回抽出した類似ベクトルと異なれば、求められる最適送酸流量パターンは前回計算した(吹錬開始後初めてであれば、吹錬開始前に計算した)最適送酸流量パターンと異なってくる。図4でも、類似チャージ3が前回と異なっており、前回と異なった最適送酸流量パターンが最新のパターンとして求められている様子を示している。そこで、計算したタイミング以降の送酸流量パターンを変更するものである。
Step 06: Change the oxygen delivery flow rate pattern FIG. 4 is a diagram for explaining the calculation of the optimum oxygen delivery flow rate pattern during blowing. If the extracted similar vector is different from the previously extracted similar vector based on the exhaust gas information measured during blowing, the optimum flow rate of oxygen delivery calculated was calculated last time (if this is the first time after the start of blowing, It is different from the optimal oxygen delivery flow rate pattern. FIG. 4 also shows that the similar charge 3 is different from the previous time, and the optimum oxygen delivery flow rate pattern different from the previous time is obtained as the latest pattern. Therefore, the oxygen delivery flow rate pattern after the calculated timing is changed.

そして、排ガス情報入手により定周期又は不定期にStep01からStep06までを繰り返す。計算周期を細かく設定することにより、これまでの固定パターンによる操業から、最適な送酸量を逐次求めて更新することが出来る。   Then, Step 01 to Step 06 are repeated at regular intervals or irregularly by obtaining exhaust gas information. By finely setting the calculation cycle, it is possible to sequentially obtain and update the optimum amount of acid sent from the operation with the fixed pattern so far.

そして、処理手順1ならび、処理手順2で決定された送酸流量パターンになるように、操業プロコンの管理の下に転炉吹錬終点制御が行われる。   Then, the converter blowing end point control is performed under the management of the operation procedure so that the acid flow rate pattern determined in the processing procedure 1 and the processing procedure 2 is obtained.

以上説明を行ったように、排ガス情報により、ダイナミック制御モデルが適用可能なため、転炉吹錬終点の溶鋼中燐濃度を目標値に精度良く的中させることが可能となる。また、これまで人の手で行ってきた、固定パターンのメンテナンスは構築したデータベースをその都度更新することにより不要となり、最適な状態を維持できる。その結果、製品品質及び鉄歩留りが向上するのみならず、転炉耐火物の延命効果、二次精錬の不可低減などの波及効果が得られ、工業上極めて優れた効果を奏するものである。   As described above, since the dynamic control model can be applied based on the exhaust gas information, it is possible to accurately target the phosphorus concentration in the molten steel at the end point of the converter blowing to the target value. Further, the maintenance of the fixed pattern, which has been performed manually by the user, becomes unnecessary by updating the constructed database each time, and the optimum state can be maintained. As a result, not only the product quality and the iron yield are improved, but also the ripple effect such as the life extension effect of the converter refractory and the inability to reduce the secondary refining is obtained, and the industrially excellent effect is achieved.

本発明に係る転炉脱燐吹錬の送酸流量パターン決定方法の処理手順1を示すブロック図である。It is a block diagram which shows the process procedure 1 of the acid feeding flow rate pattern determination method of the converter dephosphorization blowing which concerns on this invention. 本発明に係る転炉脱燐吹錬の送酸流量パターン決定方法の処理手順2を示すブロック図である。It is a block diagram which shows the process procedure 2 of the acid sending flow rate pattern determination method of the converter dephosphorization blowing which concerns on this invention. 吹錬開始前の最適送酸流量パターン算出を説明する図である。It is a figure explaining the optimal acid-feed flow pattern calculation before blowing. 吹錬中の最適送酸流量パターン算出を説明する図である。It is a figure explaining the optimal oxygen delivery flow rate pattern calculation during blowing.

Claims (6)

転炉吹錬開始前に、溶銑条件、吹錬条件、および目標条件から当該チャージの特徴を表す当該ベクトルを求め、過去実績データベースから当該チャージと類似した類似ベクトルを抽出し、抽出した類似ベクトルに基づき最適送酸流量を求める近似モデルを作成し、作成した近似モデルを用いて当該チャージの最適送酸流量パターンを算出し、この最適送酸流量パターンを当該チャージの送酸流量パターンと決定することを特徴とする転炉脱燐吹錬の送酸流量パターン決定方法。 Prior to the start of converter blowing, the vector representing the characteristics of the charge is obtained from the hot metal conditions, blowing conditions, and target conditions, a similar vector similar to the charge is extracted from the past performance database, and the extracted similar vector is obtained. Create an approximate model for determining the optimal oxygen delivery flow rate based on the calculated approximate delivery rate flow pattern for the charge using the approximate model and determine the optimum acid delivery flow rate pattern as the charge delivery flow rate pattern for the charge. A method for determining an acid flow rate pattern of converter dephosphorization blowing. 転炉脱燐吹錬中に、排ガス情報に基づき、吹錬途中の溶鋼中炭素濃度、溶鋼中酸素濃度、溶鋼中燐濃度、および溶鋼温度を推定し、当該チャージの特徴を表す当該ベクトルを求め、過去実績データベースから当該チャージと類似した類似ベクトルを抽出し、抽出した類似ベクトルに基づき最適送酸流量を求める近似モデルを作成し、作成した近似モデルを用いて当該チャージの最適送酸流量パターンを算出し、この最適送酸流量パターンで算出タイミング以降の当該チャージの送酸流量パターンを変更することを特徴とする転炉脱燐吹錬の送酸流量パターン決定方法。 During converter dephosphorization, the carbon concentration in the molten steel, the oxygen concentration in the molten steel, the phosphorus concentration in the molten steel, and the molten steel temperature are estimated based on the exhaust gas information, and the vector representing the characteristics of the charge is obtained. Then, a similar vector similar to the charge is extracted from the past performance database, an approximate model for obtaining the optimum oxygen delivery flow rate based on the extracted similar vector is created, and the optimum acid delivery flow rate pattern of the charge is calculated using the created approximate model. A method for determining an acid flow rate pattern for converter dephosphorization blowing, wherein the oxygen flow rate pattern of the charge after the calculation timing is changed using the optimum oxygen flow rate flow pattern. 請求項1または2に記載の転炉脱燐吹錬の送酸流量パターン決定方法において、
前記類似ベクトルの抽出にあたって、
当該ベクトルと、過去実績の吹錬ベクトルとの偏差のノルムに基づいて、類似ベクトルを抽出することを特徴とする転炉脱燐吹錬の送酸流量パターン決定方法。
In the method for determining the acid flow rate pattern of the converter dephosphorization blowing according to claim 1 or 2,
In extracting the similar vector,
A method for determining an oxygen flow rate pattern for converter dephosphorization blowing, wherein a similar vector is extracted based on a norm of a deviation between the vector and a past performance blowing vector.
請求項1乃至3のいずれか1項に記載の転炉脱燐吹錬の送酸流量パターン決定方法において、
前記近似モデルを、前記類似ベクトルの回帰式として作成することを特徴とする転炉脱燐吹錬の送酸流量パターン決定方法。
In the method for determining the acid flow rate pattern of converter dephosphorization blowing according to any one of claims 1 to 3,
The approximate model is created as a regression equation of the similar vector, and a method for determining an acid flow rate pattern for converter dephosphorization blowing.
請求項1乃至3のいずれか1項に記載の転炉脱燐吹錬の送酸流量パターン決定方法において、
前記近似モデルを、吹錬の各ステージにおける送酸実績の当該チャージと類似チャージとの距離に応じた荷重和として作成することを特徴とする転炉脱燐吹錬の送酸流量パターン決定方法。
In the method for determining the acid flow rate pattern of converter dephosphorization blowing according to any one of claims 1 to 3,
A method for determining an acid flow rate pattern for converter dephosphorization blowing, wherein the approximate model is created as a load sum corresponding to a distance between the charge and the similar charge of the actual acid transfer performance in each stage of blowing.
請求項1乃至5のいずれか1項に記載の転炉脱燐吹錬の送酸流量パターン決定方法を用いて決められら送酸流量パターンで送酸流量を制御して、吹錬終了時点で所望の組成と温度にすることを特徴とする転炉吹錬終点制御方法。 The oxygen feed flow rate is controlled by the acid feed flow rate pattern determined using the method for determining the oxygen feed flow rate pattern of converter dephosphorization blowing according to any one of claims 1 to 5, and at the end of blowing. A converter blowing end point control method characterized by having a desired composition and temperature.
JP2007219229A 2007-08-27 2007-08-27 Method for deciding oxygen feeding flow rate pattern in converter dephosphorization blowing Pending JP2009052082A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007219229A JP2009052082A (en) 2007-08-27 2007-08-27 Method for deciding oxygen feeding flow rate pattern in converter dephosphorization blowing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007219229A JP2009052082A (en) 2007-08-27 2007-08-27 Method for deciding oxygen feeding flow rate pattern in converter dephosphorization blowing

Publications (1)

Publication Number Publication Date
JP2009052082A true JP2009052082A (en) 2009-03-12

Family

ID=40503411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007219229A Pending JP2009052082A (en) 2007-08-27 2007-08-27 Method for deciding oxygen feeding flow rate pattern in converter dephosphorization blowing

Country Status (1)

Country Link
JP (1) JP2009052082A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012214850A (en) * 2011-04-01 2012-11-08 Jfe Steel Corp Molten iron temperature estimation method
WO2015045766A1 (en) * 2013-09-30 2015-04-02 Jfeスチール株式会社 Control device and control method for converter furnace blowing equipment
WO2017163902A1 (en) * 2016-03-23 2017-09-28 新日鐵住金株式会社 Molten pig iron pre-treatment method and molten pig iron pre-treatment control device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012214850A (en) * 2011-04-01 2012-11-08 Jfe Steel Corp Molten iron temperature estimation method
WO2015045766A1 (en) * 2013-09-30 2015-04-02 Jfeスチール株式会社 Control device and control method for converter furnace blowing equipment
JP5822053B2 (en) * 2013-09-30 2015-11-24 Jfeスチール株式会社 Control device and control method for converter blowing equipment
KR20160040732A (en) * 2013-09-30 2016-04-14 제이에프이 스틸 가부시키가이샤 Control device and control method for converter furnace blowing equipment
KR101657930B1 (en) 2013-09-30 2016-09-19 제이에프이 스틸 가부시키가이샤 Control device and control method for converter furnace blowing equipment
WO2017163902A1 (en) * 2016-03-23 2017-09-28 新日鐵住金株式会社 Molten pig iron pre-treatment method and molten pig iron pre-treatment control device
JPWO2017163902A1 (en) * 2016-03-23 2018-06-14 新日鐵住金株式会社 Hot metal pretreatment method and hot metal pretreatment control device
TWI627284B (en) * 2016-03-23 2018-06-21 Nippon Steel & Sumitomo Metal Corp Molten pig iron preparation processing method and molten pig iron preparation processing control device

Similar Documents

Publication Publication Date Title
JP6515385B2 (en) Hot metal pretreatment method and hot metal pretreatment control device
JPWO2019181562A1 (en) Molten metal component estimation device, molten metal component estimation method, and molten metal manufacturing method
JP2018178200A (en) Phosphorus concentration estimation method in molten steel, converter blowing control device, program, and recording medium
JP2009052082A (en) Method for deciding oxygen feeding flow rate pattern in converter dephosphorization blowing
JP2005036289A (en) Model parameter decision method and program therefor, and model prediction method and program therefor
JP4998661B2 (en) Converter blowing end point control method
JP6687080B2 (en) Molten metal temperature correction device, molten metal temperature correction method, and molten metal manufacturing method
JP4677955B2 (en) Converter blowing control method, converter blowing control device, and computer program
JP2012136767A (en) Method for estimating phosphorus concentration in converter
JP2008007828A (en) Method and apparatus for controlling dephosphorization
JP2021163085A (en) Optimal calculation method of energy operation condition in iron mill, optimal calculation device of energy operation condition in iron mill, and operation method of iron mill
KR101246436B1 (en) Prediction method for product measuring of pig iron
JP5375318B2 (en) Method for adjusting concentration and temperature of molten metal component and method for producing steel
KR102579633B1 (en) Operation result prediction method, learning model learning method, operation result prediction device, and learning model learning device
EP3989013A1 (en) Method for controlling process, operation guidance method, method for operating blast furnace, method for manufacturing molten iron, and device for controlling process
JP6516906B1 (en) Wind blow calculation method, blow blow calculation program
JP2004059954A (en) Method for controlling converter blowing
TWI627284B (en) Molten pig iron preparation processing method and molten pig iron preparation processing control device
JP5924310B2 (en) Blowing control method and blowing control device
CN112863609A (en) Method and device for calculating oxygen blowing amount and coolant amount in converter steelmaking
JP2016132809A (en) Dephosphorization method for molten iron
WO2022050139A1 (en) Smelting process control device and smelting process control method
JP2016180127A (en) Converter blowing end time objective molten steel temperature set device and method therefor
JP2020105606A (en) Converter blowing control device, converter blowing control method, and program
JP6795133B1 (en) Blow control method and smelt control device for converter type dephosphorization smelting furnace