JPS6035409B2 - Method for measuring properties of molten slag in converter - Google Patents

Method for measuring properties of molten slag in converter

Info

Publication number
JPS6035409B2
JPS6035409B2 JP555278A JP555278A JPS6035409B2 JP S6035409 B2 JPS6035409 B2 JP S6035409B2 JP 555278 A JP555278 A JP 555278A JP 555278 A JP555278 A JP 555278A JP S6035409 B2 JPS6035409 B2 JP S6035409B2
Authority
JP
Japan
Prior art keywords
slag
converter
molten slag
probe
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP555278A
Other languages
Japanese (ja)
Other versions
JPS5499024A (en
Inventor
健一郎 鈴木
恭二 中西
秀夫 仲村
彬夫 江島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP555278A priority Critical patent/JPS6035409B2/en
Publication of JPS5499024A publication Critical patent/JPS5499024A/en
Publication of JPS6035409B2 publication Critical patent/JPS6035409B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

【発明の詳細な説明】 この発明は、転炉内熔融スラグの性状測定方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring the properties of molten slag in a converter.

一般に転炉製錬においては溶融スラグの酸化度、又はさ
らに塩基度のごときスラグ性状を適正範囲内に調整する
ことが肝要である。
Generally, in converter smelting, it is important to adjust the slag properties such as the degree of oxidation of the molten slag, or even the basicity, within an appropriate range.

最近、サブランス設備とこれに用いるプローブの開発が
進み、鋼俗につにての情報が容易に得られるようになっ
て吹錬終点のC,T的中率も著しく向上したが、転炉内
溶融スラグの情報に関しては吹鎌中にその情報を利用し
うるような迅速な計測手段は非常に少ない。
Recently, the development of sublance equipment and the probes used for it has progressed, and it has become easier to obtain information on steel production, and the accuracy rate of C and T at the end of blowing has improved significantly. Regarding information on molten slag, there are very few rapid measurement methods that can use that information during blowing.

しかるに転炉内溶融スラグの組成は勿論脱燐の程度に影
響し、また溶融スラグ層内へ鋼俗からはじき出された粒
鉄の量の変化を経て脱炭速度にもかなりの影響を与える
ので転炉吹銭の制御要因としてゆるがせにできない。
However, the composition of the molten slag in the converter naturally affects the degree of dephosphorization, and it also has a considerable effect on the decarburization rate through changes in the amount of granulated iron thrown out from the steel into the molten slag layer. This cannot be ignored as a controlling factor for burobukisen.

この発明は転炉吹鏡中のスラグ相の酸化度、またさらに
は塩基度すなわちスラグ性状を迅速に決定しうる方法を
提供するものである。
The present invention provides a method for rapidly determining the degree of oxidation of the slag phase in a converter blower, as well as the basicity, i.e., the properties of the slag.

酸素転炉の吹錬終点の制御にサブランスおよびプローブ
を用いることが一般的となった。
It has become common to use sublances and probes to control the blowing end point of oxygen converters.

すなわち、吹錬後半に鋼浴中にサブランスを浸潰し、鋼
浴から一部溶鋼をプロープ内に流入させ、その凝固過程
を熱分析して鋼格のC濃度を定める一方、温度計により
浴温度を測定し、ついで上記サプランス情報を基に、.
適当な脱炭速度式、昇温速度式により目標のC濃度、鋼
格温度で吹止めるために必要な送酸量を決定する方法で
ある。この方法を有効に利用することにより、吹錬終点
の制御精度はかなり向上し、目標に対する的中率は70
〜90%に達している。
In other words, in the latter half of blowing, a sublance is immersed in a steel bath, a portion of the molten steel is flowed into the probe from the steel bath, and the solidification process is thermally analyzed to determine the C concentration of the steel grade, while the bath temperature is measured using a thermometer. Then, based on the above supplement information, .
This is a method of determining the amount of oxygen supply necessary to stop blowing at a target C concentration and steel grade temperature using an appropriate decarburization rate formula and temperature increase rate formula. By effectively utilizing this method, the control accuracy of the blowing end point is significantly improved, and the accuracy rate for the target is 70.
It has reached ~90%.

しかしながら、転炉内における諸反応は種々の吹鎌条件
に影響されるため、再現性は必ずしも良好ではない。し
たがって、終点制御精度向上を意図して吹銭条件の画一
化が計られることが多いが、しかしこれは転炉の本来的
なPなどの不純物除去機能を否定することとなり、かよ
うな画一化は多くの鋼種を同一の転炉で製造する工場で
は実施できない。一方、転炉々口より逸出する排ガス中
のCOおよびC02の量を連続的に測定し鋼格の脱炭量
を推定する方法、いわゆる排ガス分析法も一般的である
が、転炉の装入物とくに溶銑のC濃度に不正確さがあり
、またC○,C02分析計および排ガス流量計の精度が
不十分なため、吹錬開始時期を出発点とする吹銭末期の
鋼裕中のC濃度の推算値には誤差が集積され使用に堪え
ない。
However, since various reactions in the converter are affected by various blowing sickle conditions, reproducibility is not necessarily good. Therefore, standardization of blowout conditions is often attempted with the intention of improving the accuracy of end point control, but this negates the converter's original function of removing impurities such as P. Unification cannot be carried out in factories that manufacture many types of steel in the same converter. On the other hand, a method of continuously measuring the amount of CO and CO2 in the exhaust gas escaping from the converter mouth and estimating the amount of decarburization of the steel grade, the so-called exhaust gas analysis method, is also common. Due to inaccuracies in the C concentration of input materials, especially in hot metal, and insufficient accuracy of C○, C02 analyzers and exhaust gas flowmeters, the Errors accumulate in the estimated value of the C concentration, making it unusable.

また、サプランスにより推定した鋼裕C濃度を基にサブ
ランス装入以降の鋼裕中のC濃度を排ガス分析法で時々
刻々推定する手法においても、吹錬末期における転炉排
ガス回収弁の切替、空気の排ガス中への混入量を調整す
る炉□部のフードの上昇などの外乱が、時間遅れのある
ガス分析および流量測定系で処理しきれず、そのため鋼
浴中のC濃度推定値にかなりの誤差が含まれることとな
り、目標C濃度に対する的中率は高々90%に過ぎない
In addition, even in the method of estimating the C concentration in the steel alloy from time to time by exhaust gas analysis method after sublance charging based on the C concentration in the steel alloy estimated by suprance, switching of the converter exhaust gas recovery valve at the end of blowing, Disturbances such as the rise of the hood in the furnace section, which adjusts the amount of carbon mixed into the exhaust gas, cannot be fully processed by the time-delayed gas analysis and flow measurement system, resulting in a considerable error in the estimated C concentration in the steel bath. is included, and the accuracy rate for the target C concentration is only 90% at most.

上述のように的中率が90%どまりとなる理由はサブラ
ンスあるいは排ガスの情報がいずれも単に鋼俗に関わる
もので、炉内反応に密接に関わる転炉内溶融スラグの情
報を欠いているためである。
As mentioned above, the reason why the accuracy rate is only 90% is that the information on sublance and exhaust gas is simply related to steel industry, and lacks information on the molten slag in the converter, which is closely related to the reaction in the furnace. It is.

すなわち、転炉内熔融スラグは主として吹錬初期に生ず
る鋼浴中のSi,Mn,Feの酸化生成物と副原料とし
て添加されるCa○よりなり、とくに吹錬終点の制御に
密接に関係する溶融スラグ中の酸化鉄の濃度および鉄の
酸化程度は、吹鎌用ランス形状、ランスの傷面からの高
さ、送酸速度、送酸圧力、炉体内壁の形状など吹錬条件
により左右されるばかりでなく、スラグ生成状況、スラ
グ量、炉内のフオーミング程度の他、塊状で供給される
石灰のスラグ化の程度にも依存することが知られている
。このように、溶融スラグ中の酸化濃度はこれを支配す
る要因が多いので、スラグ中酸化鉄濃度と吹錬時間の間
には再現性が乏しいわけである。
That is, the molten slag in the converter mainly consists of oxidation products of Si, Mn, and Fe in the steel bath that are generated in the early stage of blowing, and Ca○ added as an auxiliary raw material, and is particularly closely related to the control of the end point of blowing. The concentration of iron oxide in the molten slag and the degree of iron oxidation are influenced by blowing conditions such as the shape of the blow sickle lance, the height of the lance from the scratched surface, the oxygen supply rate, the oxygen supply pressure, and the shape of the furnace wall. It is known that it depends not only on the slag generation situation, the amount of slag, the degree of forming in the furnace, but also on the degree of slagging of the lime supplied in lumps. As described above, there are many factors that control the oxidation concentration in the molten slag, and therefore there is poor reproducibility between the iron oxide concentration in the slag and the blowing time.

一方、転炉内の反応に参画するCa0は、塊状で炉内に
供給されるがCa○の融点は高く、Ca○とスラグ中の
Si02の反応により、父a○・Si02,*a○・S
i02がCa○表面に強固に形成されるため、Ca○の
スラグ中への均一化は停滞しやすく、また溶鋼の循環方
向との関連もあって炉壁付近に偏在することが知られて
いるし、Ca○のスラグ化はスラグ中の酸化鉄の存在に
より促進されることも既知であって、このような意味で
は均一スラグ中の酸化鉄濃度とCaの農度は互いに影響
を及ぼしつつ吹鎌中に変化すると見て良い。したがって
、スラグ鋼浴界面あるいは粒鉄界面での脱炭反応に密接
な関連を持つスラグ中の酸化鉄濃度と脱燐、脱硫反応と
関連するCaの膿度の2要因の定量的把握が転炉におけ
る終点制御精度をさらに高める上で不可欠と考えてよい
On the other hand, Ca0, which participates in the reaction in the converter, is supplied into the furnace in the form of lumps, but the melting point of Ca○ is high, and the reaction between Ca○ and Si02 in the slag causes the formation of father a○, Si02, *a○, S
Because i02 is strongly formed on the Ca○ surface, the homogenization of Ca○ into the slag tends to stagnate, and it is also known that it is unevenly distributed near the furnace wall due to the relationship with the circulation direction of molten steel. However, it is also known that the formation of Ca○ into slag is promoted by the presence of iron oxide in the slag. It's nice to see it change to Kamachu. Therefore, it is important to quantitatively understand two factors: iron oxide concentration in slag, which is closely related to decarburization reactions at the slag steel bath interface or grain iron interface, and Ca purulence, which is related to dephosphorization and desulfurization reactions. This can be considered indispensable for further increasing the end point control accuracy.

しかるに前述のように転炉内溶融スラグの組成の制御が
重要なことは知られていたが、その組成あるいはこれに
準ずる情報の取得法はこれまで明らかにされていなかっ
たのである。そこで発明者らは、紙質又は木質の圧縮成
形体又は黒鉛成形体よりなる円筒状容器の側壁にスラグ
流入口を設け、その外面に金属薄板などをはりつけ密閉
し、該容器に熱軍対を設けその感熱端(熱接点)を容器
内に突出させ、この容器内に適量の易酸化性金属をあら
かじめ装入したスラグプローブを開発し次の実験を行っ
た。
However, as mentioned above, although it has been known that controlling the composition of molten slag in a converter is important, a method for obtaining information on the composition or similar information has not been clarified until now. Therefore, the inventors provided a slag inlet in the side wall of a cylindrical container made of a paper or wood compression molded product or a graphite molded product, sealed the container by gluing a thin metal plate or the like to its outer surface, and installed a thermocouple in the container. We developed a slug probe whose heat-sensitive end (thermal contact) protruded into a container and pre-filled the container with an appropriate amount of easily oxidizable metal, and conducted the following experiments.

すなわち、サブランスの先端に上記プローブを取付け転
炉内の溶融スラグ層に浸潰し、該プローブ内に適量のス
ラグを流入させることにより、易酸化性金属を、該スラ
グ中の酸化鉄と反応させた。この反応は発熱反応であり
、スラグの温度は反応開始後に増加し、極大値を示した
のち低下し、従って、この過程を熱電対により追跡すれ
ば、所定の易酸化性金属重量に対する反応熱はスラグ中
の酸化鉄含量と比例関係にあることから、適切な条件下
での測定結果を解析すればスラグ中の酸化鉄舎量を推定
することができるわけである。
That is, the above-mentioned probe was attached to the tip of the sublance and immersed in the molten slag layer in the converter, and an appropriate amount of slag was allowed to flow into the probe, thereby causing the easily oxidizable metal to react with the iron oxide in the slag. . This reaction is exothermic, and the temperature of the slag increases after the reaction starts, reaches a maximum value, and then decreases. Therefore, if this process is followed by a thermocouple, the heat of reaction for a given weight of easily oxidizable metal is Since it is proportional to the iron oxide content in the slag, the amount of iron oxide in the slag can be estimated by analyzing the measurement results under appropriate conditions.

以下この発明の構成効果を具体例でくわしく説明する。
実施例 1 プローブを、内径2物奴、高さ5仇舷の円筒形として圧
縮成型紙により製作した。
The structural effects of this invention will be explained in detail below using specific examples.
Example 1 A cylindrical probe with an inner diameter of 2 mm and a height of 5 mm was manufactured from compression molded paper.

プローブのスラグ流入口として内径5柳の孔を、高さ4
5肌の位置に設け、その外側に0.1柳厚さの銅箔をは
りつけて密閉した。
A willow hole with an inner diameter of 5 and a height of 4 is used as the slag inlet of the probe.
A copper foil with a thickness of 0.1 willow was pasted on the outside to seal it.

熱電対は線径0.2肋のPt−13%Rh・Ptとし、
先端2物肋を、プローブ内に突出させた。易酸化性金属
としてはN線あるいはN粉末を、スラグ採取重量の5%
に相当する量を予めスラグプ。
The thermocouple is Pt-13% Rh/Pt with a wire diameter of 0.2 ribs,
The two tip ends protruded into the probe. As an easily oxidizable metal, use N wire or N powder at 5% of the weight of the slag collected.
Slug the amount equivalent to beforehand.

ーブの反応室内に装てんした。スラグ格はこ)ではとく
に夕−ル含浸マグネシアるつぼで10k9溶製し、15
00o0に調整した。
It was loaded into the reaction chamber of the tube. For slag grade (here), 10k9 is melted in a twilight-impregnated magnesia crucible, and 15
Adjusted to 00o0.

その組成は(%Fe○)t:5〜3止 Ca○/Si0
221〜4、%Mg025〜10である。この調製スラ
グとAIとの反応を追跡したところ、反応は2〜5秒で
開始し5〜1の砂で温度‐時間曲線に極大値を生じた。
Its composition is (%Fe○)t: 5-3 stops Ca○/Si0
221-4, %Mg025-10. When the reaction between this prepared slag and AI was followed, the reaction started in 2 to 5 seconds and a maximum value was produced in the temperature-time curve at 5 to 1 sand.

この温度上昇△Tと(%Fe○)tの関係の例を第1図
に示す。
An example of the relationship between this temperature rise ΔT and (%Fe○)t is shown in FIG.

図中パラメータはスラグの塩基度である。この結果から
該反応による温度上昇△Tを測定**すればスラグ中の
酸化鉄濃度を推定することができる。
The parameter in the figure is the basicity of the slag. From this result, the iron oxide concentration in the slag can be estimated by measuring the temperature rise ΔT caused by the reaction.

この場合第1図から明らかなようにスラグの塩基度が前
述の温度上昇と酸化鉄濃度の関係に多少影響するので、
測定時点のスラグ塩基度をあらかじめ吹鎌条件との関連
で概略定めておけば、スラグ中酸化鉄濃度の決定精度は
かなり向上する。
In this case, as is clear from Figure 1, the basicity of the slag has some influence on the relationship between the temperature rise and iron oxide concentration, so
If the slag basicity at the time of measurement is roughly determined in advance in relation to the blow sickle conditions, the accuracy of determining the iron oxide concentration in the slag will be considerably improved.

第1図の関係を実験とスラグの化学分析により定め、つ
いで山添加量の異なる場合(10%)について第2図に
もとめた。ひきつづき、実験を行ない△Tを測定し、種
々の条件でスラグ中の(%Fe○)tを推定し、分析値
との対応関係をみたのが表1である。
The relationship shown in Figure 1 was established through experiments and chemical analysis of slag, and was then plotted in Figure 2 for cases where the amount of addition of slag was different (10%). Subsequently, an experiment was carried out to measure ΔT, and (%Fe○)t in the slag was estimated under various conditions. Table 1 shows the correspondence with the analytical values.

表1 スラク中の(多Fe○)tの推定、A乙添加量5
その場合表中で(%Fe0)三は平均的な塩基度2.4
を想定した推定値;(%Fe○)乳ま吹錬条件により定
まる塩基度の推定値を用いたスラグ中の(%Fe○)上
の推定値である。
Table 1 Estimation of (poly Fe○)t in slack, A B addition amount 5
In that case, (%Fe0)3 in the table is the average basicity 2.4
Estimated value assuming (%Fe○) This is an estimated value of (%Fe○) in the slag using the estimated value of basicity determined by the milk blowing conditions.

ここに注目すべきことは、従来の迅速分析法を駆使し、
サンプリングの迅速化を計っても、スラグの組成に関す
る情報を得るのに最短5分間を要したものが、(Fe○
)tの情報には過ぎないが熱分析により即刻推定可能と
なったので、転炉吹鎌のような高速プロセスへの適用の
道が開かれたことにある。
What is noteworthy here is that by making full use of conventional rapid analysis methods,
Even with speedy sampling, it took at least 5 minutes to obtain information about the composition of the slag (Fe○
) Although it is only information about t, it has become possible to estimate it immediately by thermal analysis, opening the way for its application to high-speed processes such as converter blowing sickles.

さらに同一のスラグに対し、山添加量を変えて昇温を測
定すれば、(%Fe0)tと△Tの関係はこの2つの場
合で異なるので、スラグの塩基度も推定することができ
る。
Furthermore, if the temperature rise is measured for the same slag by changing the amount of addition of peaks, the basicity of the slag can also be estimated since the relationship between (%Fe0)t and ΔT is different in these two cases.

すなわち、例えばAI添加量5%、10%のときの昇温
をそれぞれ、△T,,△Lとすれば、第1図上で△T,
を満足する(%Fe○)tと塩基度の関係が定まり、一
方第2図上でも同様の第1図の場合とは異なる関係が求
められる。
That is, for example, if the temperature increase when the amount of AI added is 5% and 10%, respectively, is △T, △L, then △T,
A relationship between (%Fe○)t and basicity that satisfies the following is determined, and on the other hand, a relationship different from that in the similar case of FIG. 1 is obtained in FIG.

この場合被測定スラグは同一であるので前出の2つの関
係を満す(%Fe○)tと塩基度の組がひとつだけ定ま
る。その場合の実施例を表2に示した。推定値は分析値
と良く対応しており、決定精度は(%Fe○)tで士1
.0%、塩基度で±0.2程度と考えられる。表2 ス
ラグ中の(多Fe○)t、塩基度の推定実施例 2転炉
用サブランスに取付け可能な構造として実施例1記載の
スラグプローブ2ヶを同一構造内に有しスラグ流入口に
高さが同一で流入口が1800ずれている圧縮紙製プロ
ーブを製作し、16比on転炉操業で試験を行なった。
In this case, since the slags to be measured are the same, only one set of (%Fe◯)t and basicity that satisfies the above two relationships is determined. Examples in that case are shown in Table 2. The estimated value corresponds well to the analytical value, and the determination accuracy is (%Fe○)t.
.. 0%, basicity is considered to be about ±0.2. Table 2 Example of estimating (poly Fe○)t and basicity in slag 2 As a structure that can be attached to a sub-lance for a converter, two slag probes described in Example 1 are installed in the same structure, and the slag inlet has a high Compressed paper probes with the same diameter and an inlet port offset by 1800 were manufactured and tested in a 16-ratio converter operation.

スラグプローブ2ケのうと、1ヶにはAIを採取スラグ
重量の5%、他の1ヶには10%あらかじめ装入してお
いた。吹鏡前の傷面測定により、鋼浴表面の位置を定め
、吹銭条件により定まる吹鉄用酸素ランス直下の凹み深
さも考慮し、スラグプローブの浸債位置をスラグ流入口
が鋼格より2仇帆ないし8仇岬上部のスラグ層内となる
よう定めた。スラグ層の厚さは通常吹鎌ではlow舷程
度以上あって、前出の位置はスラグプローブへの鋼格の
侵入を防ぎ、上部ブローブヘスラグが混入しないため最
適の位置であった。
Of the two slag probes, one was charged with AI at 5% of the weight of the collected slag, and the other one was charged with AI at 10%. The position of the steel bath surface was determined by measuring the scratch surface in front of the blowing mirror, and the depth of the dent directly under the blowing iron oxygen lance determined by the blowing coin conditions was also taken into account, and the immersion position of the slag probe was determined so that the slag inlet was 2 points below the steel grade. It was determined that it would be within the slag layer above Qianfan or 8qi Cape. The thickness of the slag layer is usually equal to or greater than the low gunwale of a blow sickle, and the above-mentioned position was the optimal position because it prevented the steel grate from entering the slag probe and the slag from getting mixed into the upper probe.

スラグプローブは吹鎌終了予定の約2〜4分前にサブラ
ンス先端に付けて降下させて、スラグ層に浸潰した。
Approximately 2 to 4 minutes before the scheduled end of blowing, the slag probe was attached to the tip of the sublance and lowered to immerse it in the slag layer.

この結果、実施例1と同様に浸債後5〜1の砂で温度‐
時間曲線に極大値を生じた。この温度上昇とスラグ組成
の関係を求めたところ、該関係は第1図、第2図のそれ
と実質的に同じであったので、この関係を用いて(%F
e○)tと塩基度を推定したところ、(%Fe○)」塩
基度の推定値と分析値との差の標準偏差は(%Fe0)
・t=10〜25塩基度2〜4の範囲でそれぞれ1.5
,0.2であった。この場合の測定数28である。
As a result, as in Example 1, the temperature -
A local maximum occurred in the time curve. When we determined the relationship between this temperature rise and the slag composition, we found that the relationship was substantially the same as that in Figures 1 and 2. Using this relationship, we used (%F
When e○)t and basicity were estimated, the standard deviation of the difference between the estimated value and the analytical value of basicity was (%Fe○).
・t=10-25 basicity 1.5 each in the range of 2-4
,0.2. The number of measurements in this case is 28.

ただし、測定数2については、山とスラグの反応がプロ
ーブ内で完結していない例があることが判明したので、
あらかじめNの他に酸化剤としてMn02をAI量の1
0%添加しておくと、該反応は完結することを実施例1
と類似の実験により実験数50について確認した。この
程度のMn02添加量であれば、第1図、第2図に示し
た温度上昇と(%Fe○)tの関係は実質的に維持され
ることが判明している。上述実施例においてスラグプロ
ーブ内に予め装てんする易酸化性金属は、Nの場合につ
いて説明をしたが、この発明ではAIのほかCa、希土
類金属、Cr、Sj、TiおよびZrなどが用い得る。
またMn02に代る酸化剤もCの2、Cr03、Fe2
03などが適合する。この発明に従って転炉内溶融スラ
グの塩基度を酸化度とともに計測するとき、スラグプロ
ーブを2個用いるほかに、2個の独立した反応室を有す
るスラグプローブを用いると浸債操作が一層簡便となる
However, regarding measurement number 2, it was found that there were cases where the reaction between the mountain and slag was not completed within the probe.
In addition to N, Mn02 was added as an oxidizing agent to 1 of the amount of AI in advance.
Example 1 shows that the reaction is completed when 0% is added.
This was confirmed in 50 experiments using similar experiments. It has been found that with this amount of Mn02 added, the relationship between the temperature rise and (%Fe◯)t shown in FIGS. 1 and 2 is substantially maintained. In the above-described embodiments, N was described as the easily oxidizable metal pre-loaded in the slag probe, but in the present invention, in addition to AI, Ca, rare earth metals, Cr, Sj, Ti, Zr, etc. can be used.
Also, oxidizing agents that replace Mn02 are C2, Cr03, Fe2
03 etc. are suitable. When measuring the basicity of molten slag in a converter together with the degree of oxidation according to this invention, in addition to using two slag probes, using a slag probe having two independent reaction chambers will make the bonding operation even simpler. .

この発明の実施により、すでに述べた課題、問題点は有
利に解決されて、転炉内溶融スラグの性状を即刻検知し
得るので、これに応じた該スラグの酸化度またさらに塩
基度を容易に調整することができる。
By carrying out this invention, the above-mentioned problems and problems can be advantageously solved, and the properties of the molten slag in the converter can be detected immediately, so that the oxidation degree and basicity of the slag can be easily determined accordingly. Can be adjusted.

しかしプローブ浸績位置が適当でないと適正な測定値を
示さないことは留意されなければならない。この発明は
酸化物スラグを用いる精錬工程のすべてに適用可能なの
はもちろんである。
However, it must be noted that if the probe immersion position is not appropriate, proper measured values will not be obtained. This invention is of course applicable to all refining processes that use oxide slag.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はプローブ内反応による温度上昇とスラグ中の(F
e0)t含量の関係とこれにおよぼす塩基度の影響を示
し、第1図はNをスラグ重量の5%、第2図はNを10
%添加した場合の例についてのグラフである。 第1図 第2図
The figure shows the temperature rise due to the reaction inside the probe and the (F) in the slag.
e0) The relationship between the t content and the influence of basicity on it. Figure 1 shows N at 5% of the slag weight, Figure 2 shows N at 10
% addition is a graph. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 1 酸素転炉の吹錬中、転炉々口の上部より転炉内の溶
融スラグ層へ、プローブを浸漬して該プローブ内に該ス
ラグを流入させ、該プローブ内に予め装てんした易酸化
性金属と該スラグとを反応させ、該プローブ内に設置し
た感熱素子により検出した該反応による反応熱を熱分析
して、転炉内溶融スラグの酸化度を決定することを特徴
とする転炉内溶融スラグの性状測定方法。 2 酸素転炉の吹錬中、転炉々口の上部より転炉内の溶
融スラグ層へ、互いに異なる量の易酸化性金属を反応室
内にそれぞれ装てんしたプローブを浸漬して各反応室内
に該スラグを流入させ、該スラグと易酸化性金属との反
応熱を各反応室内に設置した感熱素子により検出、熱分
析して、転炉内溶融スラグの酸化度および塩基度を決定
することを特徴とする転炉内溶融スラグの性状測定方法
[Claims] 1. During blowing in an oxygen converter, a probe is immersed into the molten slag layer in the converter from the upper part of the converter mouth to allow the slag to flow into the probe. The degree of oxidation of the molten slag in the converter is determined by causing the slag to react with the oxidizable metal loaded in advance, and thermally analyzing the reaction heat generated by the reaction detected by a heat-sensitive element installed in the probe. Characteristic method for measuring the properties of molten slag in a converter. 2. During blowing in an oxygen converter, probes loaded with different amounts of easily oxidizable metals are immersed into the molten slag layer in the converter from the upper part of the converter mouth to each reaction chamber. The oxidation degree and basicity of the molten slag in the converter are determined by allowing slag to flow in and detecting and thermally analyzing the heat of reaction between the slag and an oxidizable metal using a heat-sensitive element installed in each reaction chamber. A method for measuring the properties of molten slag in a converter.
JP555278A 1978-01-21 1978-01-21 Method for measuring properties of molten slag in converter Expired JPS6035409B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP555278A JPS6035409B2 (en) 1978-01-21 1978-01-21 Method for measuring properties of molten slag in converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP555278A JPS6035409B2 (en) 1978-01-21 1978-01-21 Method for measuring properties of molten slag in converter

Publications (2)

Publication Number Publication Date
JPS5499024A JPS5499024A (en) 1979-08-04
JPS6035409B2 true JPS6035409B2 (en) 1985-08-14

Family

ID=11614350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP555278A Expired JPS6035409B2 (en) 1978-01-21 1978-01-21 Method for measuring properties of molten slag in converter

Country Status (1)

Country Link
JP (1) JPS6035409B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH055241Y2 (en) * 1986-06-02 1993-02-10

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60244846A (en) * 1984-05-21 1985-12-04 Kansai Coke & Chem Co Ltd Method for discriminating degree of oxidation of coal
JP6485432B2 (en) * 2015-12-07 2019-03-20 Jfeスチール株式会社 Blowing method for converter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH055241Y2 (en) * 1986-06-02 1993-02-10

Also Published As

Publication number Publication date
JPS5499024A (en) 1979-08-04

Similar Documents

Publication Publication Date Title
US4667725A (en) Method for producing cast-iron, and in particular cast-iron which contains vermicular graphite
KR0161714B1 (en) Thermal analysis of molten cast iron
JP5225308B2 (en) Vacuum decarburization refining method for chromium-containing molten steel
JPS6035409B2 (en) Method for measuring properties of molten slag in converter
US4229412A (en) Apparatus for the determination of bond forms of gases
US3489518A (en) Carbon determination method and apparatus
US4149877A (en) Controlling pig iron refining
JP3553107B2 (en) Smelting reduction method with improved recovery of metal components
US4042378A (en) Controlling pig iron refining
US4150973A (en) Method of controlling molten steel temperature and carbon content in oxygen converter
US3565606A (en) Method for controlling carbon removal in a basic oxygen furnace
US3607230A (en) Process for controlling the carbon content of a molten metal bath
US3572124A (en) Apparatus for simultaneous determination of carbon-temperature in liquid steel during blowing
US3540879A (en) Method for controlling phosphorus removal in a basic oxygen furnace
JP3235884B2 (en) Method for quantitative analysis of oxygen in readily reducible metal oxides contained in steelmaking slag
JPS59136652A (en) Method for estimating molten steel constituent
Russell et al. Probing for more than temperature
JPH057651B2 (en)
US3955968A (en) Method for determining the temperature of a molten metal bath
JP2005308579A (en) Method and apparatus for estimating concentration of si in molten steel in production of stainless steel
JPS5877515A (en) Controlling method for temperature of blown up steel bath in oxygen top blown converter
JPH09316514A (en) Method for estimating carbon and chromium contents in molten steel in converter process of chromium-containing steel and device therefor and method for tapping molten steel thereof
JP2953903B2 (en) Probe for molten metal
JPH0219416A (en) Converter blow-refining method
US3610599A (en) System for controlling phosphorus removal in a basic oxygen furnace