JPS6041124B2 - How to operate a blast furnace - Google Patents

How to operate a blast furnace

Info

Publication number
JPS6041124B2
JPS6041124B2 JP57202718A JP20271882A JPS6041124B2 JP S6041124 B2 JPS6041124 B2 JP S6041124B2 JP 57202718 A JP57202718 A JP 57202718A JP 20271882 A JP20271882 A JP 20271882A JP S6041124 B2 JPS6041124 B2 JP S6041124B2
Authority
JP
Japan
Prior art keywords
boundary
equation
blast furnace
erosion
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57202718A
Other languages
Japanese (ja)
Other versions
JPS5993808A (en
Inventor
文明 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP57202718A priority Critical patent/JPS6041124B2/en
Publication of JPS5993808A publication Critical patent/JPS5993808A/en
Publication of JPS6041124B2 publication Critical patent/JPS6041124B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/10Cooling; Devices therefor
    • C21B7/106Cooling of the furnace bottom

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)
  • Blast Furnaces (AREA)

Description

【発明の詳細な説明】 この発明は高炉炉底の侵食を軽減し、高炉寿命の延長を
可能にした高炉の操業方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of operating a blast furnace that reduces erosion of the blast furnace bottom and makes it possible to extend the life of the blast furnace.

近年の高生産性を追求した高炉の大型化や操業条件の苛
酷化は、炉底耐火物の破壊を速め高炉寿命を短くしてい
る。そのため低経済成長の状況下における高炉操業では
安定操業を行ない高炉寿命を延長して銑鉄単価を切り下
げることが重要な課題となっている。この高炉の安定操
業と寿命の延長の為には高炉操業中炉底耐火物の侵食状
況を常時把握し、侵食箇所の保護対策を迅速かつ適確に
取ることが不可欠であり、この目的のため高炉炉底部に
は熱電対を複数配設している。従釆、炉底侵食ラインの
推定には炉底各部の熱電対で検出された実測温度を用い
て単なる一次元伝熱計算、あるいは二次元伝熱計算とし
て有限要素法が採用されて釆た。炉底コーナー部の侵食
ラインの推定は一次元の伝熱計算によっては不可能で高
炉炉底を炉のたて軸を対称軸とする鞠対称体(単に「軸
対称体」という)と簡略化しても二次元伝熱計算が不可
欠である。この二次元伝熱計算には一般に有限要素法が
用いられて来たが、これは非常に時間を要する面倒な作
業である。有限要素法や差分法など一般の領域法では軸
対称問題の場合、第1図に示す如く対称軸を1として、
斜線で示した例えば8=0の子午線断面2を要素分割し
、それぞれの要素で熱伝導方程式を満足するように変数
(温度)を決定する。
In recent years, in pursuit of high productivity, blast furnaces have become larger and operating conditions have become more severe, which hastened the destruction of the bottom refractories and shortened the life of blast furnaces. Therefore, in blast furnace operation under conditions of low economic growth, it is important to maintain stable operation, extend the life of the blast furnace, and reduce the unit price of pig iron. In order to ensure stable operation and extend the life of the blast furnace, it is essential to constantly monitor the corrosion status of the bottom refractory during blast furnace operation and to take prompt and appropriate measures to protect the eroded areas. Multiple thermocouples are installed at the bottom of the blast furnace. In order to estimate the furnace bottom erosion line, the finite element method was adopted as a simple one-dimensional heat transfer calculation or a two-dimensional heat transfer calculation using the actually measured temperatures detected by thermocouples at various parts of the hearth bottom. Estimating the erosion line at the corner of the hearth bottom is impossible using one-dimensional heat transfer calculations, so the blast furnace hearth is simplified as a ball-symmetric body (simply referred to as an ``axis-symmetric body'') with the vertical axis of the furnace as its axis of symmetry. However, two-dimensional heat transfer calculations are essential. The finite element method has generally been used for this two-dimensional heat transfer calculation, but this is a very time-consuming and tedious task. In general domain methods such as the finite element method and the finite difference method, in the case of axisymmetric problems, the axis of symmetry is set as 1 as shown in Figure 1, and
For example, the meridian cross section 2 of 8=0 shown by diagonal lines is divided into elements, and variables (temperatures) are determined so that each element satisfies the heat conduction equation.

従って、侵食ラインの推定にはまず、第2図に示す如く
温度実測位置での炉底の子午線断面2を考え、適当に侵
食ライン5を仮定する。第2図の子午線断面2の領域を
要素分割し、各部の温度を計算する。一般に耐火物侵食
ライン5は鉄−炭素系の共融温度(約1150℃)の等
温線に一致すると考えられているので、侵食ライン5上
での境界条件にはこの温度1150℃を与える。他の境
界には炉底冷却条件をそれぞれ与える。第2図はこれに
よって得られた計算結果の一例を示し、各等温線を与え
ている。次に炉底埋設温度計6の位置での計算値と実測
値とを比較する。それらの差がある温度範囲、例えば1
ぴ○より大きいならば、侵食ライン5を少し移動させ新
しい計算領域2を再度分割し上述の操作を繰り返す。す
べての炉底温度計6の位置で計算値と実測値が、ある温
度範囲内で一致するまでこれを繰り返し、侵食ライン5
を決定する。この方法によれば炉底温度計6のある時点
の実測値から一つの侵食ライン5を推定するのに(技術
者1人)×(半日)×(1週間)という多大の工程を要
する。言うまでもなくこの計算には電子計算機が必要で
、また毎回の入力データも非常に多く、かなり大型の計
算機が不可欠である。さらに侵食ライン5を自動的に移
動させ、内部要素の分割も自動化して入力することは不
可能でなし、にしてもそれを実行するアルゴリズムは複
雑となり、また毎回温度計6位置以外の内部の不必要な
温度計算も加わり大きな計算コストを要する。このよう
に従来の有限要素法等領域法を用いて炉底の侵食ライン
5を推定するには多大の時間を要し、そのため、炉底温
度上昇など異常時に際し、すばやく炉底侵食状況を推定
し、迅速かつ適確な炉底保護対策を取ることは不可能で
ある。まして、製鉄所には一般に複数の高炉が存在する
ためそれらの高炉すべての炉底状況を常時把握し長期的
な保護対策を取ると共に、異常時に迅速に対応するとい
った炉体管理は不可能である。このような状況のもとで
発明者は、最近盛んに研究され始めて来た境界要素法な
る数値計算法によって軸対称問題が二次元問題から一次
元問題に変換されることに着目した。
Therefore, in estimating the erosion line, first consider the meridian cross section 2 of the hearth bottom at the actual temperature measurement position as shown in FIG. 2, and appropriately assume the erosion line 5. The region of meridian cross section 2 in FIG. 2 is divided into elements, and the temperature of each part is calculated. It is generally believed that the refractory erosion line 5 coincides with the isotherm of the iron-carbon eutectic temperature (approximately 1150°C), so this temperature of 1150°C is given as the boundary condition on the erosion line 5. The other boundaries are given respective bottom cooling conditions. FIG. 2 shows an example of the calculation results obtained by this method, and provides each isotherm. Next, the calculated value and the actual measured value at the position of the bottom-embedded thermometer 6 are compared. The temperature range where there is a difference between them, for example 1
If it is larger than pi○, move the erosion line 5 a little, divide the new calculation area 2 again, and repeat the above operation. Repeat this until the calculated value and the measured value match within a certain temperature range at all the positions of the hearth bottom thermometer 6, and then
Determine. According to this method, estimating one erosion line 5 from the actual measurement value of the hearth bottom thermometer 6 at a certain point in time requires a large number of steps (one engineer) x (half a day) x (1 week). Needless to say, this calculation requires an electronic computer, and since a large amount of data is input each time, a fairly large computer is essential. Furthermore, it is impossible to automatically move the erosion line 5 and automatically input the division of internal elements, but the algorithm to execute it would be complicated, and each time the internal elements other than the thermometer 6 position Unnecessary temperature calculations are also added, resulting in a large calculation cost. In this way, it takes a lot of time to estimate the erosion line 5 on the hearth bottom using conventional domain methods such as the finite element method. However, it is impossible to take prompt and appropriate measures to protect the hearth bottom. Furthermore, since there are generally multiple blast furnaces in a steelworks, it is impossible to manage the furnace bodies by constantly monitoring the bottom conditions of all of those blast furnaces, taking long-term protection measures, and quickly responding to abnormalities. . Under these circumstances, the inventor focused on the fact that an axisymmetric problem can be converted from a two-dimensional problem to a one-dimensional problem by a numerical calculation method called the boundary element method, which has recently begun to be actively researched.

即ち、第3図に示す如く子午線断面2の境界線4(例え
ば、0=0の子午線断面と軸対称領域の境界面との交線
)を要素分割し、各要素(すなわち線分)9上で熱伝導
方程式に対応する境界積分方程式を満足させればよい。
第4図に境界要素法によって得られた炉底の伝熱計算の
一例と各等温線を示す。第4図からわかるように境界要
素法では境界線4のみ(ただし、れんがの種類が異なる
場合にはそれらの境界線を含めて)を要素分割して計算
すれば、伝熱問題を解くことができ、内部の温度も得ら
れた境界上の変数、即ち温度と熱流東を使用して求める
ことができる。
That is, as shown in FIG. 3, the boundary line 4 of the meridian cross section 2 (for example, the intersection line between the meridian cross section at 0=0 and the boundary surface of the axisymmetric region) is divided into elements, and each element (i.e., line segment) 9 is divided into elements. It is sufficient to satisfy the boundary integral equation corresponding to the heat conduction equation.
Figure 4 shows an example of the heat transfer calculation at the hearth bottom obtained by the boundary element method and each isotherm. As can be seen from Figure 4, in the boundary element method, the heat transfer problem can be solved by dividing only boundary line 4 (including boundary lines if the bricks are of different types) into elements. The internal temperature can also be determined using the obtained boundary variables, namely temperature and heat flow.

境界要素法ではこのように領域内部、即ち炉底部れんが
8の要素分割は不用となり、炉底れんが8の侵食ライン
5の推定の自動化が可能になる。侵食ライン5の推定の
プロセスは上述の有限要素法の場合と同じであるが、境
界要素法を応用することにより、侵食ライン5の移動ご
との内部の要素分割が不要となり、また内部温度の計算
も炉底埋設温度計6の位置のみで行なえばよく不要な計
算は一切なくなる。
In this way, the boundary element method does not require element division of the inside of the region, that is, the furnace bottom brick 8, and it becomes possible to automate the estimation of the erosion line 5 of the furnace bottom brick 8. The process of estimating the erosion line 5 is the same as the finite element method described above, but by applying the boundary element method, there is no need to divide the interior into elements for each movement of the erosion line 5, and calculation of the internal temperature is also possible. This can be done only using the position of the thermometer 6 buried in the bottom of the hearth, eliminating any unnecessary calculations.

この計算法を適用することによって1〜2分の計算時間
で1ケースの解(真の侵食ライン:後述する第6図11
の位置)が得られるため、工数や計算コストの削減は言
うまでもなく、全篇炉の炉底管理、および炉底温度上昇
など異常時に対するアクションの迅速化が可能となり高
炉寿命延長など多大の利益を上げることができる。
By applying this calculation method, one case can be solved in one to two minutes calculation time (true erosion line:
This not only reduces man-hours and calculation costs, but also enables the bottom management of all furnaces and speeds up action in the event of an abnormality such as a rise in bottom temperature, resulting in significant benefits such as extending the life of the blast furnace. can be raised.

上述のように発明者は、 ■ 境界要素法によれば伝熱問題の次元をひとつ下げら
れるため藤対称問題を一次元問題に帰着させ、■ かく
して高炉炉底の侵食ラインの推定にこれを利用して容易
に自動化できるので、炉体のオン・ライン管理ひいては
炉寿命の延長が図れる、ことに着目した。
As mentioned above, the inventor: ■ Boundary element method reduces the dimension of the heat transfer problem by one, so we reduce the wisteria symmetry problem to a one-dimensional problem, and ■ In this way, we use this to estimate the erosion line at the bottom of the blast furnace. We focused on the fact that this process can be easily automated, allowing for online management of the furnace body and, in turn, extending the life of the furnace.

以下に、境界要素法の計算原理とこれを応用し、高炉炉
底れんがの侵食状況をオン・ラインで推定し、複数高炉
の炉体管理および異常時のアクションの迅速化を図る方
法について述べる。
Below, we describe the calculation principle of the boundary element method and a method that applies it to estimate the erosion status of blast furnace bottom bricks online, and to speed up the management of multiple blast furnace bodies and actions in the event of an abnormality.

なお、境界要素法は他に境界積分法、境界積分方程式法
、特異点解法、グリーン関数法、周辺積分有限要素法種
々の名前がつけられているが、計算原理、即ち、場の支
配微分方程式を境界上の積分方程式に帰着させ、これを
有限要素法なる数値解法と類似の方法により離散化、要
素分割して値を求めるということにおいてすべて同一の
ものであり、ここで言う境界要素法とはそれらをすべて
含むものである。計算原理 境界要素法による軸対称ポテンシャル問題(定常伝熱問
題)の定式化、離散化および解法について述べる。
The boundary element method has various other names such as boundary integral method, boundary integral equation method, singular point solution method, Green's function method, and marginal integral finite element method, but the calculation principle is that the governing differential equation of the field is reduced to an integral equation on the boundary, which is then discretized and divided into elements using a method similar to the numerical solution method known as the finite element method to obtain values. includes all of them. Computational Principles This paper describes the formulation, discretization, and solution of axisymmetric potential problems (steady heat transfer problems) using the boundary element method.

○}定式化 第5図に示すような軸対称領域○を考え、その境界面を
r(=r,十r2 十r3)とする。
○}Formulation Consider an axially symmetric region ○ as shown in FIG. 5, and let its boundary surface be r (=r, 10r2 10r3).

ポテンシャル問題の支配方程式と境界条件は次のように
表わされる。支配方程式:▽2u(審)=0
0}ここで、u(為)は○内の任意点るでのポテン
シャル、u({)とq(之)はr上の任意点4でのポテ
ンシャルと流速、u。
The governing equations and boundary conditions of the potential problem are expressed as follows. Governing equation: ▽2u (umpire) = 0
0} Here, u (for) is the potential at an arbitrary point 4 within the circle, u ({) and q (之) are the potential and flow velocity at an arbitrary point 4 on r, and u.

,q。は規定された値を示し、uaとhは周囲ポテンシ
ャルと(熱)伝達係数である。伝熱問題の場合、ポテン
シャルuは温度、流東qは熱流東となる。
,q. denotes a defined value, ua and h are the ambient potential and (heat) transfer coefficient. In the case of heat transfer problems, the potential u is the temperature and the flow east q is the heat flow east.

考慮中の問題に対する境界上の積分方程式は、C(之i
)・u(くi)十′′ru(く)・q・(之i,4)d
r=′Jrq({)・uoKi,く)drは’となる。
The integral equation on the boundary for the problem under consideration is C(no i
)・u(くi)十′′ru(く)・q・(之i,4)d
r='Jrq({)・uoKi,ku)dr becomes'.

ここで、之i,4はr上での任意点を表わし、C(く)
は境界が滑らかな時はC(くi)=0.5であり、滑ら
かでない時は等ポテンシャル条件よりその値を間接的に
求めることができる。重み関数u・(2i,く)、ある
いはu・(る,込)は無限媒体中で式{川こ対応する次
の微分方程式を満たし、基本解と呼ばれる。▽2u・(
¥i,半)十8(卒,之i):0 (4}ここで、ミ
i,ぶはQ内の任意点を表わし、6(込−ろ)はDjr
acのデルタ関数である。
Here, i,4 represents an arbitrary point on r, and C(ku)
When the boundary is smooth, C(kui)=0.5, and when it is not smooth, its value can be indirectly determined from the equipotential condition. The weighting function u·(2i, ku) or u·(ru, ku) satisfies the following differential equation corresponding to the expression {kawako} in an infinite medium and is called the fundamental solution. ▽2u・(
¥i, half) 18 (graduation, no i): 0 (4} Here, mi i, bu represents an arbitrary point in Q, and 6 (komi-ro) is Djr
It is a delta function of ac.

三次元等方物体に対する式【4}の解およびq・(冬i
,拳)は次のように表わされる。u・(冬i,と)=1
/4汀R ‘5}q・(冬i,卒)=6
u* (冬1,牟)/anニ(一・/4汀R2)(aR
/an) (6}ここで、R=l之−卒ilであ
り、単位集中負荷の働く点るiと他の点るとの距離を表
わす。
The solution of equation [4} for a three-dimensional isotropic object and q・(Winter i
, fist) is expressed as follows. u・(winter i, and)=1
/4 汀R '5}q・(Winter i, graduation) = 6
u* (Winter 1, Mu)/anni (1/4 汀R2) (aR
/an) (6} Here, R=l - il, which represents the distance between point i, where the unit concentrated load is applied, and other points.

式側,【6}‘ま、r上の点2i,くに対しても成立す
る。軸対称問題ではポテンシャル、流東とも円周方向に
は無関係に一定である。従って、第5図に示すように式
{劫,{9,【6;を円柱座標系に変換し、離散化して
数値解を求める。ここで、第5図に示すように点2j,
くに対応する8=8′=0の点をそれぞれ之i,年とし
、点年での外向き単位法線を亘=(可,n2,古3)と
する。a=0だから、処2=0となり、点くでの外向き
単位法線9は9によって次のように表わされる。Q=(
n,,山,n3) =(市,cosa,市lsino,万3)
(7)また、0‘ま軸対称であるからAiではなくAi
(8=0)について考察しても一般性は失われない。
On the equation side, [6}' also holds true for point 2i, on r. In an axially symmetric problem, both the potential and the flow are constant regardless of the circumferential direction. Therefore, as shown in FIG. 5, the equation {kalpa, {9, [6; Here, as shown in FIG. 5, points 2j,
Let the points corresponding to 8=8'=0 be respectively i, year, and the outward unit normal at the point year be Wataru=(possible, n2, old 3). Since a=0, the point 2=0, and the outward unit normal 9 at the point is expressed by 9 as follows. Q=(
n,, mountain, n3) = (city, cosa, city lsino, million 3)
(7) Also, since it is 0' axially symmetric, Ai instead of Ai
(8=0) is considered without loss of generality.

従って、8=0として式{51,■中のRとRの法線方
向導関数を円柱座標系で表わすと次のようになる。R=
l4−Ai =〔〆+r′2一公rcos8十(Z一Z′)2〕挽
■aR/6n=(r−rcos8)古1/R+(Z−Z
)蚤/R 側ただし、く:(r,a,
Z)、ね=(r′,0,Z)である。
Therefore, when 8=0 and the normal direction derivatives of R and R in the equation {51, (2) are expressed in a cylindrical coordinate system, the following is obtained. R=
l4-Ai = [〆+r'2ichiko rcos80 (Z1Z')2] ground
■aR/6n=(r-rcos8) old 1/R+(Z-Z
) flea/R side, ku: (r, a,
Z), ne=(r', 0, Z).

今、Z軸を含む8=0の平面と「との交線S上のu,q
の値をそれぞれu,qとすると、軸対称であるから次の
ようになる。u(々);u(べ)、u({i):u(4
;)q({)=q({)、q(々)=q(Ai) 0
0よって、式脚の円柱座標系表現式はC(Ai)・u(
丈i)+′′rcu(年)・を・反j,4)・IJld
rC=JJrcq(Z)・古・(父i,4)・IJld
rc(11)となる。
Now, u, q on the intersection line S between the 8=0 plane including the Z axis and
Letting the values of u and q be respectively, since they are axially symmetrical, it becomes as follows. u(etc); u(be), u({i): u(4
;) q({)=q({), q(etc.)=q(Ai) 0
0, the cylindrical coordinate system expression for the formula leg is C(Ai)・u(
Length i) + ′′rcu (year), anti-j, 4), IJld
rC=JJrcq(Z)・old・(father i, 4)・IJld
rc(11).

ここで、rc,古.・(4i,止),を・(之i,父)
はそれぞれr,u・(Ai,4),q・(4,瓦i)の
円柱座標系表現式であり、!J !は座標変換に伴うヤ
コビアンである。■離散化と解法 式(11)はZ軸を含む8=0の平面とrとの交線S上
のポテンシャルuと流東qに関する積分方程式である。
Here, rc, old.・(4i, stop), を・(之i, father)
are the cylindrical coordinate system expressions of r, u・(Ai, 4), q・(4, tile i), respectively, and! J! is the Jacobian associated with coordinate transformation. (2) Discretization and solution Equation (11) is an integral equation regarding the potential u and the flow q on the intersection line S of the 8=0 plane including the Z axis and r.

従って、二次元問題と全く同様に、Sを要素分割すれば
離散化代数方程式が得られ、これを解けば問題は解決さ
れる。ただし、式(11)中のけすに関する積分は回転
体表面rC上で行なわれる必要があり、二重積分となる
。今、SをN個の境界要素に分割し、節点iでの節点量
を口j,ajと表わす。内そう関数少を用いて要素内の
u,qが次のように表わされると仮定する。u(4)=
?(4)・Q,q(べ)=◇(Z)・9
(12)ここでだと9はそれぞれ節点のuと
qの列ベクトルである。
Therefore, just like a two-dimensional problem, by dividing S into elements, a discretized algebraic equation is obtained, and by solving this, the problem is solved. However, the integration regarding the cage in equation (11) needs to be performed on the rotating body surface rC, resulting in double integration. Now, S is divided into N boundary elements, and the amount of nodes at node i is expressed as j, aj. Assume that u and q within an element are expressed as follows using an inner function. u(4)=
? (4)・Q,q(be)=◇(Z)・9
(12) Here, 9 is the column vector of nodes u and q, respectively.

式(12)を式(11)に代入すると、次の離散化代数
方程式が得られる。
By substituting equation (12) into equation (11), the following discretized algebraic equation is obtained.

− − Nへ N C」4i)‐u(Ai)十2Hij・山=i≧・(薄.
・qi j=1ただし、 Gij:′Jr。
- - To N N C''4i) -u (Ai) 12Hij・mountain=i≧・(thin.
・qi j=1 However, Gij:'Jr.

j○(4).6(柚4)・IJlarc
(1心Gii=J′rCi○(4)
・古・(之i,4)・IJ ldrC
(15)である。ここで、例えば、第5図
に示される境界要素(線分)j上のrとZの関係とZの
変数変換によりrは次にように表わされる。r=aZ十
b=a・△j・t+aZj十b (1母ここで、△Z
i=Zj+,一Zjであり、a,bは6=0平面上での
要素iの勾配と切片を表わす。
j○(4). 6 (Yuzu 4)・IJlarc
(1 heart Gii=J'rCi○(4)
・古・(之i,4)・IJldrC
(15). Here, for example, r is expressed as follows based on the relationship between r and Z on the boundary element (line segment) j shown in FIG. 5 and the variable conversion of Z. r=aZ ten b=a・△j・t+aZj ten b (1 mother here, △Z
i=Zj+, -Zj, and a and b represent the slope and intercept of element i on the 6=0 plane.

式(16)を用い要素jをベクトル表示すると、上=(
a・△Zi・t+aa十b)coso・一十(△Zj+
t十Zj)・半 (17)となる。ここで、
一,J,奥まx,,x2,杉軸方向の単位ベクトルであ
る。これを用いれば、式側の亘や式(11)のIJIは
次のように表わされる。重=(△Zj/li)(↓−a
冬) (1がIJ I:li・(a・△Zi・t
十aZj十b)(19Dただし、liは要素jの長さ、
lj:〔(rM−r,)2十(△Zj)2〕珍である。
またdr=ljl・drc=IJl・dひ・dtであり
、式【5},【61,【勘,‘9’,(18),(19
)を式(14),(15)に代入し、0=0〜2中、t
=0〜1の間で積分を行なうことにより、百ijとGi
jを評価することができる。Z=一定の平面上にある境
界要素に対しても全く同様に式(14),(15)を評
価することが可能である。すべての境界節点に関し式(
13)・を考え、r,上ではuの値が、r2とr3上で
はqの値が規定されていることに注意すれば、未知数は
N個で全体系の代数方程式は次式のようになる。
When element j is represented as a vector using equation (16), upper = (
a・△Zi・t+aatenb)coso・ten(△Zj+
t10Zj)・half (17). here,
1, J, depth x,, x2, is a unit vector in the cedar axis direction. Using this, Wataru on the equation side and IJI of equation (11) can be expressed as follows. Weight = (△Zj/li) (↓-a
Winter) (1 is IJ I:li・(a・△Zi・t
10aZj1b) (19D, where li is the length of element j,
lj: [(rM-r,)20(△Zj)2] It is rare.
Also, dr=ljl・drc=IJl・dhi・dt, and the formulas [5}, [61, [hunch, '9', (18), (19
) into equations (14) and (15), and when 0=0 to 2, t
By performing integration between = 0 and 1, 100 ij and Gi
j can be evaluated. It is possible to evaluate equations (14) and (15) in exactly the same way for boundary elements on a plane where Z=fixed. For all boundary nodes, the formula (
13) Considering that the value of u is defined on r, and the value of q is defined on r2 and r3, there are N unknowns and the algebraic equation for the entire system is as follows: Become.

牟冬=E (20)ここで、今は
係数マトリックス、XとFはそれぞれ未知節点量のみと
既知量のみとを含む列ベクトルである。
Mufuyu=E (20) Here, now the coefficient matrix, X and F are column vectors containing only unknown nodal quantities and only known quantities, respectively.

式(20)をXについて解けばよい。0内の任意点るで
のポテンシャルは、境界上の節点量を用いて次式により
計算することができる。
Equation (20) can be solved for X. The potential at any point within 0 can be calculated by the following equation using the amount of nodes on the boundary.

N N u(冬i)ニ Z Gij・qj‐Z Hij・uj
(21)j=l j〒1以上の計算原理は次のよう
に要約することができる。
N N u (winter i) ni Z Gij・qj‐Z Hij・uj
(21) j=l j〒1 The calculation principle above can be summarized as follows.

■ 定常熱伝導問題の支配微分方程式(ラプラス方程式
){11を境界条件【21と結合して重みつき残差表現
式を作る。
■ Combine the governing differential equation (Laplace equation) of the steady heat conduction problem {11 with the boundary condition [21] to create a weighted residual expression.

■ この重みつき残差表現式を境界上の積分方程式‘3
’に変換する。
■ This weighted residual expression is converted into the integral equation on the boundary '3
Convert to '.

■ 軸対称性を考慮して式{31を円柱座標系表現式(
11)に変換する。
■ Taking into consideration the axial symmetry, formula {31 is transformed into a cylindrical coordinate system expression (
11).

■ 式(11)の解を数値的に解くために、領域○(第
5図)の境界面rc要素分割すると、式(13)の離散
化代数方程式を得る。
(2) In order to numerically solve the solution of equation (11), the boundary surface of the region ○ (FIG. 5) is divided into rc elements to obtain the discretized algebraic equation of equation (13).

■ 式(,3)の係数台ij.G;j(式(14),(
15))を評価するために分割された各境界要素面rd
をベクトルによって助変数表示(式(17))する。
■ Coefficient stand ij of equation (,3). G; j (Formula (14), (
15)) Each boundary element surface rd divided to evaluate
is expressed as an auxiliary variable by a vector (Equation (17)).

■ 式(17)を用いれば、式(14),(15)を二
重積分に変換することができ、それらの値を数値的に求
めることが可能となる。
(1) Using equation (17), equations (14) and (15) can be converted into double integrals, and their values can be determined numerically.

■ 各要素rcjについて式(13)を考えると未知数
N個、式の数N個の代数方程式(20)ができ上がり、
これを解けば、境界上のすべての温度と熱流東が決定さ
れる。
■ Considering equation (13) for each element rcj, an algebraic equation (20) with N unknowns and N equations is created,
Solving this will determine all temperatures and heat flow east on the boundary.

■ 領域○内部の温度は境界上の温度、熱流東を用い、
式(21)によって計算される。
■ The temperature inside the region ○ is calculated using the temperature on the boundary and the heat flow east.
Calculated by equation (21).

境界要素法の応用は次のとおりである。Applications of the boundary element method are as follows.

【1)境界要素法なる数値計算法により、軸対称領域の
伝熱問題(変数、即ち温度と熱流東は円周方向に無関係
となり、領域のひとつの子午線断面を対象として解くの
で二次元問題となる)を藤対称領域の子午線断面の境界
上での積分問題(境界は線分で表現できるので−次元問
題となる)に変換する。
[1] A numerical calculation method called the boundary element method solves a heat transfer problem in an axisymmetric region (variables, that is, temperature and heat flow east, are independent of the circumferential direction, and the problem is solved for one meridional cross section of the region, so it is a two-dimensional problem. ) is converted into an integration problem on the boundary of the meridional section of the wisteria-symmetric region (the boundary can be expressed as a line segment, so it becomes a -dimensional problem).

‘21 高炉炉底部(れんが積み部8)は軸対称体と考
えられるので、第4図に示す如くこの炉底のある子午線
断面(炉底埋設温度計6の位置を含む面)の境界4を微
少な境界要素(線分)9に分割する。
'21 Since the bottom of the blast furnace (brickwork section 8) is considered to be an axially symmetrical body, the boundary 4 of the meridian section (plane including the position of the bottom-embedded thermometer 6) where the bottom is located is as shown in Fig. 4. Divide into 9 minute boundary elements (line segments).

‘3’ 侵食ライン5の初期位置として高炉建設時のれ
んが積み8の内部面を考え、その部分の境界要素9上の
節点10の境界条件として鉄−炭素系の共融温度115
0qoを与える。
'3' Consider the internal surface of the brickwork 8 at the time of blast furnace construction as the initial position of the erosion line 5, and set the iron-carbon system eutectic temperature 115 as the boundary condition of the node 10 on the boundary element 9 of that part.
Give 0qo.

‘41 他の外部境界上の要素9上の節点101こ対し
ては外部の冷却条件(抜熱量、あるいは冷却の熱伝達系
数)を与える。
'41 For the node 101 on the element 9 on the other external boundary, external cooling conditions (heat removal amount or cooling heat transfer coefficient) are given.

(51 各境界要素9上の節点10は境界条件として温
度、熱流東、あるいは熱伝達系数の何れかひとつが与え
られるので、問題が規定され解くことができる。
(51) Since the node 10 on each boundary element 9 is given one of temperature, heat flow, or heat transfer coefficient as a boundary condition, the problem can be defined and solved.

即ち、境界要素法により問題を解くことができ、全境界
要素9上の節点10での温度と熱流東が決定される。‘
61 このように決定された各境界要素9上の節点10
1こおける温度と熱流東とを使用し、境界要素法で導か
れた式によって炉底埋設各温度計6の位置での温度を計
算する。
That is, the problem can be solved by the boundary element method, and the temperature and heat flow east at the nodes 10 on all the boundary elements 9 are determined. '
61 Node 10 on each boundary element 9 determined in this way
The temperature at the position of each thermometer 6 buried in the hearth bottom is calculated using the temperature at the bottom of the furnace and the heat flow east by an equation derived by the boundary element method.

{71 温度計6の位置での計算値と実測値とを比較し
、その差がすべての温度計6の位置で予め決められた温
度範囲(例えば1ooo)内にあれば、始めに仮定した
侵食ライン5を温度計側時の真の侵食ライン11とする
{71 Compare the calculated value and the actual measured value at the position of thermometer 6, and if the difference is within a predetermined temperature range (for example, 1ooo) at all thermometer 6 positions, the erosion as originally assumed Let line 5 be the true erosion line 11 on the thermometer side.

‘8} もし、一点でも計算値と実測値との差がその範
囲より大きければ、その温度計6の付近の侵食ライン5
をその温度差に応じて自動的に移動させる。
'8} If the difference between the calculated value and the measured value at even one point is larger than that range, the erosion line 5 near that thermometer 6
automatically moves according to the temperature difference.

■ 新しい侵食ライン5を元に上記脚〜‘7’のプロセ
スを実行する。
(2) Execute the process of leg ~'7'' above based on the new erosion line 5.

【IQ すべての温度計6の位置で条件を満足するまで
【3}〜‘7)のプロセスを繰り返し、真の侵食ライン
11を決定する。
[IQ] Repeat the process of [3} to '7) until the conditions are satisfied at all thermometer 6 positions, and determine the true erosion line 11.

(11)ある時刻の測定値から真の侵食ライン11を推
定するための所要計算時間は1〜2分であるので、時々
刻々の計測値からオン・ラインで温度計6の埋設面の推
定炉底侵食ライン11をCRT表示し、操炉者に速報す
る。
(11) Since the calculation time required to estimate the true erosion line 11 from the measured values at a certain time is 1 to 2 minutes, the estimated furnace of the buried surface of the thermometer 6 can be calculated online from the measured values from moment to moment. The bottom erosion line 11 is displayed on a CRT and is immediately reported to the reactor operator.

(12 これにより高炉炉底部の侵食状況を常時把握し
、より侵食された部分の短期的長期的な保護対策を迅速
にかつ適確に行うことが可能となる。
(12) This makes it possible to constantly monitor the erosion situation at the bottom of the blast furnace and quickly and accurately take short-term and long-term protection measures for the more eroded areas.

(13)例えば、予想される炉底側壁の侵食量に対し、
次のようなステップで侵食された部位の耐火物保護対策
を実施する。
(13) For example, for the expected amount of erosion on the side wall of the bottom of the furnace,
Implement refractory protection measures for eroded areas using the following steps:

表 1. 炉底側壁れんが保護対策実施要領表中の数値
は基準量K対する増減量を表わす。
Table 1. The numerical values in the table of implementation guidelines for protection measures for furnace bottom side wall bricks represent increases and decreases with respect to the standard amount K.

なお実施条件および対策で示した数値が各高炉によって
異なるのは当然のことである。(1山 保護対策の実施
により、予想残存れんが厚が増加(即ち、れんがの稼動
面に溶銃、コークス、れんが破片等の凝固層が生成)し
た場合には、その厚みに応じてステップmから1へと保
護対策を緩和して行く。
It goes without saying that the numerical values shown in the implementation conditions and countermeasures differ depending on each blast furnace. (1 pile) If the expected thickness of the remaining brick increases due to the implementation of protective measures (i.e., a solidified layer of melt gun, coke, brick fragments, etc. is formed on the working surface of the brick), proceed from step m according to the thickness. Protection measures will be relaxed to 1.

(15)従来は温度計の指示値を基準に判断していたが
、同じ指示値であっても使用れんが、冷却条件等によっ
て残存れんが厚が異なり、どのような形状で侵食されて
いるか、どの程度危険な状態にあるかの迅速な判断は困
難であった。
(15) Previously, judgments were made based on the readings on the thermometer, but even if the readings were the same, the thickness of the remaining bricks would vary depending on the bricks used and the cooling conditions. It was difficult to quickly judge whether the situation was dangerous or not.

即ち、従来は炉底各部の温度が上昇するたびに、オフラ
インで多大の工数を費して侵食状態を予測していたため
、保護対策は迅速に、かつ適確に行なうことは困難であ
った。(16)しかしながら、この発明によれば、炉底
の侵食状態を常時把握できるため、表1に示すような対
策を迅速かつ適確に実施することが可能である。
That is, conventionally, each time the temperature at each part of the furnace bottom rose, a large amount of man-hours were required off-line to predict the state of erosion, making it difficult to take protective measures quickly and accurately. (16) However, according to the present invention, the corrosion state of the hearth bottom can be constantly monitored, so it is possible to quickly and accurately implement the countermeasures shown in Table 1.

日産銑鉄5000トン級の大型高炉において炉底埋設温
度計6の、ある実測値に対する炉底れんが侵食ライン1
1の例を第6図に示す。
Furnace bottom brick erosion line 1 based on a certain actual measurement value of the thermometer 6 buried in the bottom of a large blast furnace of 5,000 tons of Nissan pig iron
An example of No. 1 is shown in FIG.

炉底埋設温度計6の位置を含む子午線断面を考え、その
境界4を要素9に分割する。
A meridian cross section including the position of the thermometer 6 buried in the hearth bottom is considered, and its boundary 4 is divided into elements 9.

高炉建設時のれんが積み8の内面を侵食ライン5の初期
位置とし、その上の境界節点101こ境界条件として1
150ooを与える。他の炉底れんが8の外面上の境界
節点10‘こは各冷却条件を与える。境界要素法を適用
して全境界節点10での温度と熱流東、および温度計6
の位置での温度を計算する。温度計6の実測値と計算値
とがある範囲ですべて一致するまで侵食ライン5の移動
を繰り返し、その結果、第6図に示すような真の侵食ラ
イン11が決定される。侵食ライン5の初期位置と決定
された侵食ライン11の位置が遠ければ、推定に要する
計算時間は2分近くなるが、常時推定しておれば1〜2
回の繰り返しで真の侵食ライン11は決定され、計算時
間は10〜2鼠砂程度となる。
The inner surface of the brickwork 8 during blast furnace construction is the initial position of the erosion line 5, and the boundary node 101 above it is set as the boundary condition 1.
Give 150oo. Boundary nodes 10' on the outer surface of the other bottom bricks 8 provide the respective cooling conditions. Applying the boundary element method, calculate the temperature and heat flow east at all boundary nodes 10, and the thermometer 6
Calculate the temperature at location. The movement of the erosion line 5 is repeated until the measured values of the thermometer 6 and the calculated values all match within a certain range, and as a result, a true erosion line 11 as shown in FIG. 6 is determined. If the initial position of erosion line 5 and the determined position of erosion line 11 are far apart, the calculation time required for estimation will be close to 2 minutes, but if constant estimation is performed, it will take 1 to 2 minutes.
The true erosion line 11 is determined by repeating the process several times, and the calculation time is about 10 to 2 hours.

いま平均出銑量500mノdayの上記高炉において火
入れ後、約7ケ月の時点で炉底側壁温度が急上昇し、そ
の時の推定れんが残存厚は1.0仇以下となった。
In the above-mentioned blast furnace with an average pig iron tapping capacity of 500 m/day, the bottom side wall temperature rose rapidly about 7 months after firing, and the estimated remaining thickness of the bricks at that time was less than 1.0 mm.

このため、表1.ステップ1に示される短期的な対策■
,■をとり、同時に■■を実施した。対策■■を実施し
た後、約5日間でれんがの侵食の進行が停止し、残存厚
が増加傾向(れんが稼動面での銑鉄、コークス、れんが
破片等の凝固層の形成)を示した。従って、対策実施後
、約9日目対策■■を徐々に緩和し、約15日後に対策
■■を停止した。対策■■はその後も実施し、約30日
後推定れんが厚が1のを越えたので対策■,■も打ち切
り、通常操業とした。従来の方法ではこのような短時間
に真の侵食ライン11を推定することは不可能であり、
従って侵食状態のオン・ライン表示や異常時の迅速な保
護対策はもをろんのこと、複数高炉の長期的な炉体管理
も困難であったのに反して、この発明によれば以上のべ
た如く、高炉炉底の侵食状態を常時把握することができ
これによって、長期的、短期的な炉底保護対策を迅速、
かつ適確に取り、炉底耐火物、ひいては高炉寿命を延長
することが容易に可能となる。
For this reason, Table 1. Short-term measures shown in step 1■
,■ were taken, and ■■ was carried out at the same time. After implementing countermeasure ■■, the progress of erosion of the bricks stopped in about 5 days, and the remaining thickness showed an increasing tendency (formation of a solidified layer of pig iron, coke, brick fragments, etc. on the working surface of the bricks). Therefore, about 9 days after implementing the countermeasures, countermeasures ■■ were gradually relaxed, and about 15 days later, countermeasures ■■ were stopped. Measures ■■ were continued after that, and after about 30 days, the estimated brick thickness exceeded 1, so measures ■ and ■ were also discontinued, and normal operations resumed. With conventional methods, it is impossible to estimate the true erosion line 11 in such a short time.
Therefore, it has been difficult not only to display the erosion state online and take quick protective measures in the event of an abnormality, but also to manage the furnace bodies of multiple blast furnaces over a long period of time. As a result, the corrosion status of the blast furnace bottom can be monitored at all times, allowing for quick and short-term long-term and short-term bottom protection measures.
In addition, it becomes possible to easily extend the life of the bottom refractory and, ultimately, the life of the blast furnace.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は有限要素法等領域法による計算領域(斜線部)
を示す説明図、第2図は有限要素法による炉底伝熱計算
の一例を示す炉底温度分布図であり、第3図は境界要素
法による計算領域(断面境界線)を示す説明図、第4図
は境界要素法による炉底伝熱計算の一例を示す炉底温度
分布図、第5図は、軸対称領域Qと境界面r、およびr
とx2=0(8=0)平面との交線Sを示す説明図、第
6図は、高炉炉底部の侵食ラインの推定例の説明図であ
る。 第1図 第2図 第3図 第4図 第5図 第6図
Figure 1 shows the calculation area (shaded area) using the finite element method and equal domain method.
2 is a hearth temperature distribution diagram showing an example of hearth heat transfer calculation by the finite element method, and FIG. 3 is an explanatory diagram showing the calculation area (cross-sectional boundary line) by the boundary element method. Figure 4 is a hearth temperature distribution diagram showing an example of hearth heat transfer calculation using the boundary element method, and Figure 5 is an axially symmetric region Q, boundary surface r, and r
FIG. 6 is an explanatory diagram showing an intersection line S between the x2=0 (8=0) plane and the x2=0 (8=0) plane, and FIG. 6 is an explanatory diagram of an example of estimating the erosion line at the bottom of the blast furnace. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】[Claims] 1 境界要素法を用い、高炉炉底を炉のたて軸を対称軸
とする軸対称体として伝熱解析を行ない炉底侵食形状を
予測し、 該炉底侵食形状のうち、局部侵食の成長を阻
止する操業条件を選択して 該操業条件により高炉操業
を行うことを特徴とする高炉の操業方法。
1 Using the boundary element method, conduct a heat transfer analysis of the blast furnace hearth as an axisymmetric body with the vertical axis of the furnace as the axis of symmetry, predict the hearth bottom erosion shape, and predict the growth of local erosion in the hearth bottom erosion shape. 1. A method for operating a blast furnace, comprising: selecting operating conditions that prevent this, and operating the blast furnace under the operating conditions.
JP57202718A 1982-11-18 1982-11-18 How to operate a blast furnace Expired JPS6041124B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57202718A JPS6041124B2 (en) 1982-11-18 1982-11-18 How to operate a blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57202718A JPS6041124B2 (en) 1982-11-18 1982-11-18 How to operate a blast furnace

Publications (2)

Publication Number Publication Date
JPS5993808A JPS5993808A (en) 1984-05-30
JPS6041124B2 true JPS6041124B2 (en) 1985-09-14

Family

ID=16462003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57202718A Expired JPS6041124B2 (en) 1982-11-18 1982-11-18 How to operate a blast furnace

Country Status (1)

Country Link
JP (1) JPS6041124B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105005632A (en) * 2014-04-17 2015-10-28 宝山钢铁股份有限公司 Erosion prediction method for blast furnace hearth with multi-layer refractory brick furnace wall structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106870878B (en) * 2016-12-29 2018-08-31 北京精密机电控制设备研究所 A kind of wearable thermal protection method of space flight servo mechanism attaching type

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105005632A (en) * 2014-04-17 2015-10-28 宝山钢铁股份有限公司 Erosion prediction method for blast furnace hearth with multi-layer refractory brick furnace wall structure
CN105005632B (en) * 2014-04-17 2017-11-28 宝山钢铁股份有限公司 The blast furnace crucible corrosion Forecasting Methodology of multiple layer refractory tile stove wall construction

Also Published As

Publication number Publication date
JPS5993808A (en) 1984-05-30

Similar Documents

Publication Publication Date Title
CN105005632B (en) The blast furnace crucible corrosion Forecasting Methodology of multiple layer refractory tile stove wall construction
CN102776303A (en) Method for estimating inner surface temperature of blast furnaces
CN110781566B (en) Hearth iron solidification layer calculation method, hearth iron solidification layer calculation system, storage medium and electronic terminal
Serajzadeh et al. Unsteady state work-roll temperature distribution during continuous hot slab rolling
CN113111549B (en) Erosion model modeling method and modeling system for casting repaired blast furnace hearth
JPS6041124B2 (en) How to operate a blast furnace
KR102531803B1 (en) Method for monitoring wear of refractory linings of blast furnaces
WO2014030118A2 (en) A method and a system for determination of refractory wear profile in a blast furnace
JP6669024B2 (en) Method of estimating hot metal flow velocity in blast furnace and operating method of blast furnace
Zhou et al. Computational fluid dynamics analysis of 3D hot metal flow characteristics in a blast furnace hearth
JPS6137328B2 (en)
JPS6137327B2 (en)
JPS6136049B2 (en)
Wick Estimation of ingot Temperatures in a soaking pit using an extended kalman filter
JP4634660B2 (en) Management method for the bottom of the blast furnace
Baker et al. Inverse determination of eroded smelter wall thickness variation using an elastic membrane concept
Ghosh et al. Hearth monitoring of blast furnace using finite element analysis and artificial intelligence
JP3512042B2 (en) Cooling method of blast furnace refractory
Wang et al. Thermofluid-Solid Coupling Numerical Simulation Model of Blast Furnace Hearth Protection Measures
KR101185330B1 (en) Method of detecting distribution of gas stream in blast furnace
JP3590442B2 (en) Blast furnace operation method
Cheek et al. Estimation and prediction of ingot temperatures on a pilot scale soaking pit
CN104313224A (en) Method for alarming leaching and thickening of hearth of vanadium titano-magnetite blast furnace without ceramic cup
JPS62257004A (en) Method for detecting eroded state of furnace floor wall of shaft furnace
JPH0586411A (en) Method for assuming eroded line in furnace bottom of blast furnace