JPS5834107A - Operating method for blowing-in of blast furnace - Google Patents

Operating method for blowing-in of blast furnace

Info

Publication number
JPS5834107A
JPS5834107A JP13380281A JP13380281A JPS5834107A JP S5834107 A JPS5834107 A JP S5834107A JP 13380281 A JP13380281 A JP 13380281A JP 13380281 A JP13380281 A JP 13380281A JP S5834107 A JPS5834107 A JP S5834107A
Authority
JP
Japan
Prior art keywords
blowing
blast furnace
furnace
conditions
bricks
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13380281A
Other languages
Japanese (ja)
Other versions
JPS616122B2 (en
Inventor
Koichi Kurita
栗田 興一
Michiharu Hatano
羽田野 道春
Hideyuki Yamaoka
山岡 秀行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP13380281A priority Critical patent/JPS5834107A/en
Publication of JPS5834107A publication Critical patent/JPS5834107A/en
Publication of JPS616122B2 publication Critical patent/JPS616122B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/24Test rods or other checking devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To prevent the generation of spalling cracks surely by forecasting and operating the infurnace surface temps. of bricks after the start of blowing-in operations with time in accordance with the numerical models wherein filling conditions prior to starting of the blowing-in operations, the blasting conditions after the start of the blowing-in and the conditions for charging materials are used as factors. CONSTITUTION:Thermocouples 1a, b, c are provided in blast furnace bricks, and the temps. of the bricks are measured actually with thermometers 2a, b, c by using said thermocouples, whereby the infurnace surface temps. of the bricks are estimated. A coefft. correcting operator 3 compares these values and the forecast values in accordance with the numerical models that an operation planning system 4 determines by using the filling conditions prior to starting of the blowing-in operations, the blasting conditions after the start of the blowing-in and the conditions for charging materials as factors, and operates the correction quantity to eliminate the deviations thereof. The correction values are outputted to a hot wind regulator 5. The regulator 5 regulates the flow rate, blasting temp. and moisture of the hot wind through tuyeres 1d.

Description

【発明の詳細な説明】 本発明は高炉の火入れ操業を行う際にレンガに発生しゃ
すいスポーリング割れを防止する方法を提案したもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention proposes a method for preventing spalling cracks that occur in bricks during blast furnace firing operations.

従来高炉の火入れ操業は、火入れ操業前の填充において
、最初に装入する鉱石を加熱溶解せしめるに十分なだけ
枕木及びコークスを鉱石装入に先立って填充しておき、
続いて鉱石、副原料及びコークスを交互に装入填充し、
火入れ操業後は、鉱石が溶解されて炉底部に溜つfc溶
銑の量が例えばその24時間後に出銑口の高さvcまで
達して初出銑が可能な状態となるように行われるが、こ
の操業条件は主に軽験に基いたものであつ友。
Conventionally, in the blast furnace firing operation, in the charging process before the firing operation, the ore to be charged first is charged with enough sleepers and coke to heat and melt the ore before the ore is charged.
Next, ore, auxiliary raw materials and coke are charged and charged alternately.
After the firing operation, the ore is melted and the amount of FC hot metal accumulated at the bottom of the furnace reaches the height of the tap hole VC, for example, 24 hours later, making it possible to tap the iron for the first time. The operating conditions are mainly based on light experience.

また高炉においてレンガにスポーリング割れが発生する
のは、昇温による高炉レンガ炉内面から高炉鉄皮面方向
への温度勾配の経時的変化に起因する応力が原因と考え
られており、その応力はレンガの昇温速度に依存し、従
ってスポーリング割れの発生は第1図に示す如くレンガ
の昇温速度に依存することが知られている。即ち第1図
は横軸にレンガ炉内面温度をとり、縦軸にレンガ昇温速
度をとってスポーリング割れ発生領域(斜線部)を示し
ているが、レンガ昇温速度が大きいとスポーリング割れ
が発生し、またレンガ炉内面温度が高いほどスポーリン
グ割れが発生する限界のレンガ昇温速度は小さいといえ
る。
In addition, the occurrence of spalling cracks in bricks in blast furnaces is thought to be caused by stress caused by changes over time in the temperature gradient from the inner surface of the blast furnace brick furnace to the surface of the blast furnace shell due to temperature rise. It is known that the occurrence of spalling cracks depends on the temperature rise rate of the brick, as shown in FIG. 1. In other words, Figure 1 shows the area where spalling cracks occur (shaded area) with the horizontal axis representing the internal temperature of the brick furnace and the vertical axis representing the brick heating rate. It can be said that the higher the internal temperature of the brick furnace is, the lower the critical brick heating rate at which spalling cracks occur.

然るに火入れ操業中の炉、壁レンガの昇温速度は著しく
大きく、従ってそのレンガは非常にスポーリング割れが
発生しやすい状態となる0この段階で炉壁レンガにスポ
ーリング割れが発生してそのレンガが損耗するとその後
の高炉鉄皮の損耗も著しくなり、高炉の寿命を縮めてし
まうこととなる。
However, during the firing operation, the temperature rise rate of the furnace and wall bricks is extremely high, and therefore the bricks are in a state where spalling cracks are very likely to occur. At this stage, spalling cracks occur in the furnace wall bricks, and the bricks When the blast furnace is worn out, the subsequent wear on the blast furnace shell becomes significant, shortening the life of the blast furnace.

従って火入れ操業に際してはレンガにスポーリング割れ
が発生しないように適正な操業を行うことが非常に重要
なこととなる。
Therefore, during the firing operation, it is very important to perform the operation properly so that spalling cracks do not occur in the bricks.

本発明方法は斯かる事情に鑑みてなさn2ものであり、
炉壁レンガにスポーリング割れが発生するのを防止する
高炉火入れ操業方法を提案し、炉壁レンガの損耗を防止
することにより高炉鉄皮の損耗を防止し、延いては高炉
の長寿命化をはかることを目的とする。
The method of the present invention was made in view of such circumstances,
We proposed a blast furnace firing operation method that prevents spalling cracks from occurring in the furnace wall bricks, and by preventing wear on the furnace wall bricks, we also prevent wear on the blast furnace shell, which in turn extends the life of the blast furnace. The purpose is to measure.

本発明に係る高炉火入れ操業方法は、高炉火入れ操業開
始前における填充条件並びに火入れ操業開始後における
送風条件及び装入物条件を変動の要素とする数学モデル
にて火入れ操業開始後における炉壁レンガの炉内面温度
を経時的に予測演算し、炉壁レンガの炉内面温度及び昇
温速度に基いて予め規定しであるスポーリング割れ発生
領域を、前記予測清算結果を参照して回避すべく、前記
数学モデルの要素夫々についての操業計画を作成し、該
操業計画に基〈火入れ操業を実施することを特徴とする
The method of blast furnace firing operation according to the present invention uses a mathematical model in which the charging conditions before the start of the blast furnace firing operation, the air blowing conditions and the charge conditions after the start of the blast furnace operation are variables. The furnace inner surface temperature is predicted and calculated over time, and the spalling crack generation area, which is predefined based on the furnace inner surface temperature and temperature increase rate of the furnace wall bricks, is avoided by referring to the predicted settlement result. The method is characterized in that an operation plan is created for each element of the mathematical model, and a burning operation is carried out based on the operation plan.

先ず本発明において用いた数学モデルについて説明する
。該数学モデルは以下の3式、即ち熱に関する基礎式: %式% 相とし、ε、εlを夫々填充層の空 隙率、液滞溜率とするとEg:ε(1−εl)。
First, the mathematical model used in the present invention will be explained. The mathematical model is based on the following three equations, that is, the basic equation regarding heat: % equation % When ε and εl are the porosity of the packed layer and the liquid retention rate, respectively, Eg:ε(1−εl).

E:1−εeF’/:εε1 ’rj: j相の温度 ?に: h相の温度 v :j相の空塔換算流速 h]cj二に相−j相間の熱伝達係数 a:代表長さ Q@j相における反応熱及び損失熱量 11 t、g:時間及び炉高さの座標 反応に関する基礎式: %式%(2) (1・ξ1:1成分の質量分率 M =11式のモル重量 R□:1式分の反応速度 質量保存則に関する基礎式: %式% に基いて非定常挙動をシミュレートし得るものである。E:1-εeF'/:εε1 'rj: Temperature of j phase ? To: Temperature of h phase v: j-phase superficial column flow velocity h] heat transfer coefficient between cj second phase and j phase a: Representative length Reaction heat and heat loss in Q@j phase 11 t, g: coordinates of time and furnace height Basic equations for reactions: % formula % (2) (1・ξ1:mass fraction of 1 component M = molar weight of formula 11 R□: Reaction rate for 1 formula Basic formula for the law of conservation of mass: %formula% It is possible to simulate unsteady behavior based on .

− +Qj  ’j TjΣR,Ml) = y(”rj)
  −(4)(2)式と(3)式とから いずれも一階の偏微分方程式であり、さらにガスについ
ては、上昇速度vgが早いため となり、ガスについては定常の式で十分である。
− +Qj 'j TjΣR, Ml) = y("rj)
-(4) Equations (2) and (3) are both first-order partial differential equations, and since the rising speed vg is fast for gas, a steady equation is sufficient for gas.

従って、高炉の非定常シミュレーションは装入物の降下
挙動に注目して(4)式、(5)式について次のように
積分を行えばよいことになる。
Therefore, in the unsteady simulation of a blast furnace, it is sufficient to focus on the descending behavior of the charge and perform the integration of equations (4) and (5) as follows.

”’lTj )za=z、−V8dtj j z=z。”’lTj za=z, -V8dtj j z=z.

−(cT) (ξ1)・−・。−vmd、 −(ξ□)2=2゜ 但し、v8:固体荷下り速度 斯くして火入れ操業時の炉内温度分布の経時的変化が求
められ、従ってレンガ炉内面温度の経時的変化が求めら
れるが、この調整には火入れ操業開始前における填充条
件(炉内への枕木、コークス、鉄鉱石及びコークスの項
充方法)並びに火入れ操業開始後における送風条件(送
風量及び送風温度)及び装入物条件(装入(鉱石/コー
クス)比率)の変更が有効であることが分った。
-(cT) (ξ1)・-・. -vmd, -(ξ□)2=2゜where, v8: Solids unloading speed Thus, the time-dependent change in the temperature distribution inside the furnace during the firing operation is determined, and therefore the time-dependent change in the internal temperature of the brick furnace is determined. However, this adjustment includes the charging conditions before the start of the burn-in operation (method of charging sleepers, coke, iron ore, and coke into the furnace), as well as the blowing conditions (air amount and temperature) and charging after the start of the burn-in operation. It was found that changing material conditions (charging (ore/coke) ratio) was effective.

一方前述し友如くレンガのスポーリング割れ発生領域は
レンガ炉内面温度及びその昇温速度に依存し、第1図に
示す如く予め規定されている。従って前記数学モデルを
用いて予測演算したレンガ炉内面温度の経時的変化を参
照して上述のスポーリング割れ発生領域を回避すべく操
業計画を作成し、該計画に基いて火入れ操業を行うこと
によりレンガにスポーリング割れが発生するのを防止で
きる。
On the other hand, as mentioned above, the area where spalling cracks occur in bricks depends on the internal temperature of the brick furnace and its rate of temperature rise, and is predefined as shown in FIG. Therefore, an operation plan is created to avoid the above-mentioned spalling crack generation region by referring to the temporal change in the temperature inside the brick furnace predicted and calculated using the mathematical model, and the firing operation is performed based on the plan. It can prevent spalling cracks from occurring in bricks.

また実炉操業においては予期せざる炉内異常も考えられ
るので、その異常に対して前記数学モデルによる予測値
を操業中に補正してやるとより確実となる。第2図はそ
の方法を模式的に示すものであるが、高炉レンガ内に熱
電対1a、lb、lcを埋め込み(1箇所に付き、レン
ガ厚さ方向2点以上熱電対を埋め込むとよい)、それを
用いて温度計2a、2b、2cにてレンガの温度を実測
することによりレンガ炉内面温度を推定し、その値と操
業計画作成システム4により求めた前記数学モデルによ
る予測値とを比較し、そのずれを解消すべく係数補正演
算器3にて時々刻々補正量を演算し、熱風調整器5によ
り羽口1dからの熱風の送風量、送風温度、湿分を調整
するとよい。
Furthermore, in actual reactor operation, unexpected abnormalities within the reactor may occur, so correcting the predicted values based on the mathematical model during operation for such abnormalities will be more reliable. Fig. 2 schematically shows the method, in which thermocouples 1a, lb, and lc are embedded in the blast furnace brick (it is better to embed thermocouples at two or more points in the thickness direction of the brick at each location), Using this, the internal temperature of the brick furnace is estimated by actually measuring the temperature of the bricks with the thermometers 2a, 2b, and 2c, and the value is compared with the value predicted by the mathematical model obtained by the operation planning system 4. In order to eliminate the deviation, it is preferable that the coefficient correction calculator 3 calculates the correction amount from time to time, and the hot air regulator 5 adjusts the amount of hot air blown from the tuyere 1d, the blown temperature, and the humidity.

次に本発明方法の実施例について説明する。第3図は本
発明方法に基〈火入t14業計両全示してbる0図中(
a) #−i火入れ操業開始前の填充条件であり、羽口
より下の炉底部(破線斜線部)には枕木を項充し、その
上の朝顔部から炉腹部(斜線部)にかけてはコークスを
横充し、その上の部分には一点鎖線で示した(鉱石/コ
ークス)比率で鉱石、副原料及びコークスを填充する。
Next, examples of the method of the present invention will be described. Figure 3 is based on the method of the present invention.
a) #-i This is the charging condition before the start of the burning operation. The bottom of the furnace below the tuyere (shaded area with broken line) is filled with sleepers, and the area from the morning glory above that to the hearth belly (shaded area) is filled with coke. The upper part is filled with ore, auxiliary raw materials, and coke at the (ore/coke) ratio shown by the dashed line.

図中(1))は火入れ操業開始後の操業条件を、横軸に
時間をとり縦軸には各条件をとって示したものであり、
実線は送風量、破線は送風温度、一点鎖1は湿分、二点
鎖線は装入(鉱石/コークス)比率を夫々示している。
(1)) in the figure shows the operating conditions after the start of the burning operation, with time on the horizontal axis and each condition on the vertical axis.
The solid line shows the air flow rate, the broken line shows the air blowing temperature, the chain 1 shows the moisture content, and the two-dot chain line shows the charging (ore/coke) ratio.

第4図はレンガ炉内面温度及びその昇温速度の関係(予
測値と実測値)をスポーリング割れ発生領域−と対比さ
せて示したグラフであり、(a)ti羽口の上方18m
の部分、(b)は羽口の上方13mの部分、(0)は羽
口の上方ツ、5ffiの部分、(d)は羽目の上方4m
の部分について大々示しているO図中斜線部は第1図と
同様、スポーリング割れ発生領域を、また実線は第3図
に示す計画に従って火入れ操業を行うときのレンガ炉内
面温度及びその昇温速度の関係を予測した値を、黒丸は
その計画に従って実際に火入れ操業を行ったときの実測
値を夫々示している。予測したレンガ炉内面温度及びそ
の昇温速度の関係がスポーリング割れ発生領域を回避す
るように第3図に示す火入れ操業計画を立て、該計画に
従って実際に高炉の火入れ操業を行ったが、実測値も予
測値と略一致しており、レンガにはスポーリング割れが
発生しなかったOなおこの実際の操業には第2図に示し
た実炉操業中に補正する方法も併用した0 以上詳述した如く本発明による高炉火入れ操業方法は、
火入れ操業開始前における填充条件並びに火入れ操業開
始後における送風条件及び装入物条件を変動の要素とす
る数学モデルにて火入れ操業開始後におけるレンガ炉内
面温度を経時的に予測演算し、該演算結果に基いてレン
ガにスポーリング割れが発生するのを防止するので確実
にスボIJング割れの発生が抑えられ、高炉の寿命向上
に多大の効果がある。
Figure 4 is a graph showing the relationship between the internal temperature of the brick furnace and its heating rate (predicted values and measured values) in comparison with the area where spalling cracks occur; (a) 18 m above the ti tuyere;
, (b) is the part 13m above the tuyere, (0) is the part above the tuyere, 5ffi, (d) is 4m above the tuyere.
The shaded area in Figure 0, which shows the area shown in Figure 1, is the area where spalling cracks occur, as in Figure 1, and the solid line shows the internal temperature of the brick furnace and its rise when the firing operation is performed according to the plan shown in Figure 3. The black circles show the predicted values of the temperature-speed relationship, and the actual values when the firing operation was actually carried out according to the plan. The firing operation plan shown in Figure 3 was created so that the relationship between the predicted brick furnace inner surface temperature and its temperature increase rate would avoid the spalling crack occurrence area, and the blast furnace firing operation was actually performed according to the plan. The values also roughly matched the predicted values, and no spalling cracks occurred in the bricks.In this actual operation, we also used the method of correcting during actual furnace operation as shown in Figure 2. As mentioned above, the blast furnace firing operation method according to the present invention includes:
The internal temperature of the brick furnace after the start of the burning operation is predicted and calculated over time using a mathematical model that uses the charging conditions before the start of the burning operation and the blowing conditions and charge conditions after the start of the burning operation as fluctuation factors, and the calculated results are calculated. Since spalling cracks are prevented from occurring in the bricks based on this method, the occurrence of spalling cracks is reliably suppressed, and this has a great effect on improving the life of the blast furnace.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はスポーリング割へ発生領域を示すグラフ、第2
図は火入れ操業中に補正する方法を示す模式図、第3図
(a) 、 (t))は本発明方法に基〈火入れ操業計
画を示すグラフ、第4図(a) 、 (t)) 、 (
Q) 、 (d)はレンガ炉内面温度及びその昇温速度
の関係とスボ+ IJング割れ発生領域と−を対比させ
て示したグラフである。 la、 l b、 l c ・−・熱電対代理人 弁理
士 河 野 登 夫
Figure 1 is a graph showing the area where spalling occurs.
The figure is a schematic diagram showing the method of correction during the firing operation, and Figure 3 (a), (t)) is a graph showing the firing operation plan based on the method of the present invention; Figure 4 (a), (t)) , (
Q) and (d) are graphs showing the relationship between the inner surface temperature of a brick furnace and its temperature increase rate, and the comparison between the subbo + IJ crack occurrence area and -. la, l b, l c ---Thermocouple agent Patent attorney Noboru Kono

Claims (1)

【特許請求の範囲】[Claims] 1、高炉火入れ操業開始前における填充条件並びに火入
れ操業開始後における送風条件及び装入物条件を変動の
要素とする数学モデルにて火入れ操業開始後における炉
壁レンガの炉内面温度を経時的に予測演算し、炉壁レン
ガの炉内面温度及び昇温速度に基いて予め規定しである
スポーリング割れ発生領域を、前記予測演算結果を参照
して回避すべく、前記数学モデルの要素夫々について操
業計画を作成し、該操業計画に基〈火入れ操業を実施す
ることを特徴とする高炉火入れ操業方法0
1. Predicting the furnace inner surface temperature of the furnace wall bricks over time after the start of the blast furnace burning operation using a mathematical model that takes into account the charging conditions before the start of the blast furnace burning operation, and the blowing conditions and charge conditions after the start of the blast furnace operation. The operation plan is calculated for each element of the mathematical model in order to avoid the spalling crack occurrence area, which is predefined based on the furnace inner surface temperature and temperature increase rate of the furnace wall bricks, with reference to the predicted calculation results. A blast furnace firing operation method 0 characterized by creating a blast furnace firing operation and carrying out a firing operation based on the operation plan.
JP13380281A 1981-08-25 1981-08-25 Operating method for blowing-in of blast furnace Granted JPS5834107A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13380281A JPS5834107A (en) 1981-08-25 1981-08-25 Operating method for blowing-in of blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13380281A JPS5834107A (en) 1981-08-25 1981-08-25 Operating method for blowing-in of blast furnace

Publications (2)

Publication Number Publication Date
JPS5834107A true JPS5834107A (en) 1983-02-28
JPS616122B2 JPS616122B2 (en) 1986-02-24

Family

ID=15113370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13380281A Granted JPS5834107A (en) 1981-08-25 1981-08-25 Operating method for blowing-in of blast furnace

Country Status (1)

Country Link
JP (1) JPS5834107A (en)

Also Published As

Publication number Publication date
JPS616122B2 (en) 1986-02-24

Similar Documents

Publication Publication Date Title
Semenov et al. Efficient management of the charging of blast furnaces and the application of contemporary means of control over the variable technological conditions
Ichida et al. Influence of ore/coke distribution on descending and melting behavior of burden in blast furnace
JPS6056003A (en) Method for charging coke into blast furnace
JPS5834107A (en) Operating method for blowing-in of blast furnace
US4227921A (en) Method of controlling a blast furnace operation
JP2727563B2 (en) Blast furnace operation method
JPH11335710A (en) Method for predicting furnace heat in blast furnace
JPS5834108A (en) Operating method for blowing-in of blast furnace
KR960006322B1 (en) Method for removing stuck material on furnace wall in blast-furnace
JP3287242B2 (en) Blast furnace heat prediction method
JP3385831B2 (en) Estimation method of hearth erosion line and hearth structure
JPS58117804A (en) Estimating method for position of melt-stuck zone in blast furnace
JP2897363B2 (en) Hot metal production method
JP2921392B2 (en) Blast furnace operation method
JPH08157917A (en) Estimation of in-furnace condition at the time of blowing down in blast furnace
RU2025495C1 (en) Method to check heat exchange in a blast furnace
JP3722059B2 (en) Operation method of smelting reduction furnace
SU1604858A1 (en) Method of controlling distribution and use of gas in blast furnace
JPS6293304A (en) Method for operating blast furnace
JPS61201711A (en) Operating method for blast furnace
JPS61115992A (en) Forecasting of termination of coking period for coke oven
JP3287235B2 (en) Blast furnace reaction abnormality detection method
JP2004332060A (en) Operation method for initially firing blast furnace
JPS6210203A (en) Operating method for blast furnace
JPH06299215A (en) Operation of blast furnace