JP3287235B2 - Blast furnace reaction abnormality detection method - Google Patents

Blast furnace reaction abnormality detection method

Info

Publication number
JP3287235B2
JP3287235B2 JP27041996A JP27041996A JP3287235B2 JP 3287235 B2 JP3287235 B2 JP 3287235B2 JP 27041996 A JP27041996 A JP 27041996A JP 27041996 A JP27041996 A JP 27041996A JP 3287235 B2 JP3287235 B2 JP 3287235B2
Authority
JP
Japan
Prior art keywords
furnace
reaction
blast furnace
heat transfer
blast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27041996A
Other languages
Japanese (ja)
Other versions
JPH10121118A (en
Inventor
優 宇治澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP27041996A priority Critical patent/JP3287235B2/en
Publication of JPH10121118A publication Critical patent/JPH10121118A/en
Application granted granted Critical
Publication of JP3287235B2 publication Critical patent/JP3287235B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高炉の安定操業を
維持管理するための高炉内反応異常検知方法に関する。
The present invention relates to a method for detecting a reaction abnormality in a blast furnace for maintaining and controlling a stable operation of the blast furnace.

【0002】[0002]

【従来の技術】高炉においては、炉頂から鉱石、石灰
石、コークス等の原料が装入され、下部の羽口から吹き
込まれた熱風によってコークスがガス化し、発生したC
OとH2により、あるいは直接固体Cにより鉱石が還元
され、溶銑となって炉底に溜まる。この間、炉内では様
々な反応が進行しており、これらの反応を常に正常にコ
ントロールすることが高炉の安定した操業を維持する上
で重要である。
2. Description of the Related Art In a blast furnace, raw materials such as ore, limestone, and coke are charged from the furnace top, and coke is gasified by hot air blown from a tuyere at a lower portion.
The ore is reduced by O and H 2 or directly by solid C and becomes hot metal and accumulates in the furnace bottom. During this time, various reactions are progressing in the furnace, and it is important to always control these reactions normally in order to maintain stable operation of the blast furnace.

【0003】しかし、炉内における反応の進行状況を直
接計測することは困難であるため、従来は、高炉内反応
の異常を検知する方法として、一般に、高炉操業者が過
去に習得した経験や高炉に設置された種々のセンサーか
らの情報を基に、コンピューターシステムを介した統計
解析手法を用いる方法が行われてきた。すなわち、高炉
を所定の条件の下でモデル化し、これに種々の情報(操
業データ)を入力して炉内状況を推定する方法である。
However, since it is difficult to directly measure the progress of the reaction in the furnace, conventionally, as a method for detecting an abnormality in the reaction in the blast furnace, generally, the experience of the blast furnace A method using a statistical analysis method via a computer system based on information from various sensors installed in a computer has been performed. That is, this is a method in which a blast furnace is modeled under predetermined conditions, and various information (operating data) is input thereto to estimate the state in the furnace.

【0004】しかしながら、このような方法では、高炉
操業者の能力・経験等による個人差があり、また過去に
おける操業に関する膨大なデータの蓄積等が必要であ
る。さらに、高炉は、時の経過と共に変化するため、解
析モデルの条件等も必要に応じて修正、改良していく必
要がある。
[0004] However, in such a method, there are individual differences due to the ability and experience of the blast furnace operator, and it is necessary to accumulate enormous data on the operation in the past. Furthermore, since the blast furnace changes over time, it is necessary to modify and improve the conditions of the analysis model as necessary.

【0005】また、高炉内の反応は、羽口への送風条件
や原料の装入条件等の操作量の変化や、原料性状の変
化、荷下がり状況等の外乱因子等によって、時々刻々、
非定常的に変化するものであり、上記の方法、すなわち
操業者の経験や各種センサーからの情報に基づく統計解
析手法によるのでは、高炉内における反応の異常を検知
し、時間的変化を予測して、これに対処するための操作
(操業アクション)を時々刻々実行することは、極めて
困難である。
[0005] The reaction in the blast furnace is momentarily caused by changes in manipulated variables such as air blowing conditions to the tuyere and charging conditions of raw materials, changes in raw material properties, disturbance factors such as unloading conditions, and the like.
The above method, that is, a statistical analysis method based on the operator's experience and information from various sensors, detects abnormal reaction in the blast furnace and predicts the temporal change. Therefore, it is extremely difficult to execute an operation (operation action) for dealing with this moment by moment.

【0006】[0006]

【発明が解決しようとする課題】本発明はこのような状
況に鑑みなされたもので、高炉の安定操業を維持管理す
るために必要な高炉内反応(以下、単に「炉内反応」と
もいう)の異常を検知する方法を提供することを目的と
している。
SUMMARY OF THE INVENTION The present invention has been made in view of such a situation, and a reaction in a blast furnace necessary for maintaining and maintaining a stable operation of a blast furnace (hereinafter, also referred to simply as "reaction in a furnace"). It is an object of the present invention to provide a method of detecting an abnormality of a vehicle.

【0007】[0007]

【課題を解決するための手段】本発明の要旨は、下記の
高炉内反応異常検知方法にある。
The gist of the present invention resides in the following blast furnace reaction abnormality detection method.

【0008】高炉内の流動、伝熱に加え、炉内で生じる
鉱石の間接還元反応、水素還元反応および直接還元反応
の速度から求められる、炉内の気体、固体および液体の
移動現象を追跡できる高炉数学モデルを用いて高炉操業
を予測する方法であって、前記高炉数学モデルに刻々の
操業データとして炉頂での装入物条件、羽口への送風条
件および炉体壁での伝熱条件を入力して計算される炉内
反応量と、前記操業データとして炉頂での装入物条件、
羽口への送風条件および炉体壁での伝熱条件に加え、新
たに炉頂ガス組成を用いて算出される実績の炉内反応量
とを比較し、両者の間に差異が認められる場合は、炉内
反応に異常が生じたと判断することを特徴とする高炉内
反応異常検知方法。
[0008] In addition to the flow and heat transfer in the blast furnace, the movement phenomena of gas, solid and liquid in the furnace, which can be determined from the rates of indirect reduction reaction, hydrogen reduction reaction and direct reduction reaction of ore generated in the furnace, can be traced. A method of predicting blast furnace operation using a blast furnace mathematical model, wherein the blast furnace mathematical model includes charging conditions at the furnace top as the operation data every moment, blowing conditions to the tuyeres and heat transfer conditions at the furnace body wall. The reactor reaction amount calculated by inputting, the charge conditions at the furnace top as the operation data,
In addition to the condition of air flow to the tuyere and the condition of heat transfer on the furnace wall, the difference between the two is compared with the actual in-furnace reaction amount calculated using the new top gas composition. Is a method for detecting an abnormality in a reaction in a blast furnace, which comprises determining that an abnormality has occurred in a reaction in the furnace.

【0009】前記の炉内で生じる主要な反応とは、後に
具体的に反応式で示すが、鉱石の間接還元反応、水素還
元反応、および直接還元反応をいう。
The main reactions occurring in the furnace described above are concrete reaction formulas, and refer to indirect reduction reaction, hydrogen reduction reaction and direct reduction reaction of ore.

【0010】また、刻々の操業データとは、前記の高炉
内で生じる反応の反応量を計算するために必要なデータ
で、これについても後述する。
[0010] The instantaneous operation data is data necessary for calculating the reaction amount of the reaction occurring in the blast furnace, and will be described later.

【0011】[0011]

【発明の実施の形態】以下に、本発明の高炉内反応異常
検知方法(以下、「本発明方法」ともいう)について具
体的に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a method for detecting a reaction abnormality in a blast furnace according to the present invention (hereinafter, also referred to as “method of the present invention”) will be specifically described.

【0012】図1は本発明方法に使用するモデル(炉内
反応を考慮した高炉数学モデルで、以下、単に「高炉数
学モデル」という)の構成を模式的に示す図である。図
示したように、羽口から吹き込まれた熱風はコークスと
反応してその温度が上昇し、コークス層を通って炉頂へ
到る間に、コークスをガス化する(図中の「コークスガ
ス化」参照)。ガス化により発生するCOとH2 によっ
て鉱石はFe23 の状態からFe34 、FeOない
しFeの状態に還元される(図中の「間接還元」参
照)。還元された鉱石は半溶融状態になり、逆V字状に
堆積しているコークス層の表面に融着帯を形成するが、
高温の環境下にあってさらに還元が進み(図中の「直接
還元」参照)、鉱石は溶銑となって炉底に滴下し、湯溜
まり部を形成する。
FIG. 1 is a diagram schematically showing the structure of a model (a blast furnace mathematical model taking into account the reaction in the furnace, hereinafter simply referred to as a “blast furnace mathematical model”) used in the method of the present invention. As shown in the figure, the hot air blown from the tuyere reacts with the coke to increase its temperature, and gasifies the coke while reaching the furnace top through the coke layer (see “Coke gasification in the figure”). "reference). The ore is reduced from Fe 2 O 3 to Fe 3 O 4 , FeO or Fe by CO and H 2 generated by gasification (see “indirect reduction” in the figure). The reduced ore is in a semi-molten state and forms a cohesive zone on the surface of the coke layer that is deposited in an inverted V shape.
In a high-temperature environment, the reduction proceeds further (see “direct reduction” in the figure), and the ore becomes hot metal and drops to the furnace bottom to form a pool.

【0013】この高炉数学モデルは、炉底の溶銑の湯留
まり部を除く有効反応部で生じる高炉内現象を取り扱
う。具体的には、高炉内の流動、伝熱に加え、前記の図
1に示した炉内で生じる主要な反応を考慮し、これを速
度論的に取り扱う。すなわち、刻々の操業データを用い
てこれら個々の反応の刻々の反応速度を求め、これらの
反応の反応量(炉内反応量)を計算する。ここで、高炉
内の流動とは、気体、固体および液体の流れを意味し、
伝熱とは、主に異相間(気体と固体間、気体と液体間、
および固体と液体間)の対流伝熱(すなわち、熱交
換)、および炉内で生じる主要な反応に伴う反応熱をい
う。なお、これら高炉内の流動、伝熱、および炉内で生
じる前記の主要な反応の速度を考慮した物質移動は、一
般に、微分方程式で表される。
This blast furnace mathematical model deals with phenomena in the blast furnace that occur in the effective reaction section excluding the hot metal pool at the bottom of the furnace. Specifically, in addition to the flow and heat transfer in the blast furnace, the main reactions occurring in the furnace shown in FIG. 1 are considered and treated kineticly. That is, the instantaneous reaction rates of these individual reactions are obtained using the instantaneous operation data, and the reaction amounts of these reactions (reactor amounts in the furnace) are calculated. Here, the flow in the blast furnace means the flow of gas, solid and liquid,
Heat transfer is mainly between different phases (between gas and solid, between gas and liquid,
Convective heat transfer (i.e., heat exchange) between the solid and the liquid and between the solid and the liquid) and the heat of reaction associated with the main reactions occurring in the furnace. Note that mass transfer in consideration of the flow in the blast furnace, heat transfer, and the above-described main reaction speed occurring in the furnace is generally represented by a differential equation.

【0014】図2は本発明方法で使用する高炉数学モデ
ルの基本解析フローである。このモデルに、前記の刻々
の操業データとして、炉頂での装入物条件、羽口への送
風条件、および炉体壁での伝熱条件を与える。炉頂での
装入物条件とは、O/C比(装入原料における「鉱石/
コークス」重量比)、鉱石およびコークスの組成、なら
びに、鉱石およびコークスの粒径であり、羽口への送風
条件とは、送風量、送風温度、湿分、酸素富化量、なら
びに、補助燃料(微粉炭、タール等)量とその成分であ
り、また、炉体壁での伝熱条件とは、耐火物の厚みおよ
び物性(密度、比熱、熱伝導率)、ならびにステーブ等
を含めた炉体壁の強制冷却能力である。
FIG. 2 is a basic analysis flow of a blast furnace mathematical model used in the method of the present invention. This model is provided with the condition of the charge at the furnace top, the condition of air blowing to the tuyere, and the condition of heat transfer at the furnace body wall as the above-mentioned momentary operation data. The charge conditions at the furnace top are defined as the O / C ratio ("Ore /
(Weight ratio of coke), the composition of ore and coke, and the particle size of ore and coke, and the blowing conditions to the tuyere are the blowing volume, the blowing temperature, the moisture, the oxygen enrichment, and the auxiliary fuel. (Pulverized coal, tar, etc.) and their components, and the heat transfer conditions on the furnace wall include the thickness and physical properties (density, specific heat, thermal conductivity) of the refractory, and the furnace including staves etc. It is the forced cooling capacity of the body wall.

【0015】これら刻々の操業データを与えると、モデ
ルに基づいて高炉内の流動、伝熱、および反応に関する
微分方程式の非定常計算が行われ、高炉内の各相(気
体、固体および液体)の炉内における状態分布(すなわ
ち、炉頂ガス情報および炉内情報)、出銑量および出銑
(溶銑)温度(すなわち、出銑情報)、炉体壁内の温度
分布等が予測値として非定常に(つまり、刻々に)出力
される。換言すると、この高炉数学モデルは実炉操業と
基本的に同じ動作を行う完全自立型のシミュレータとし
て構成されている。
Given these instantaneous operation data, an unsteady calculation of differential equations relating to flow, heat transfer, and reaction in the blast furnace is performed based on the model, and each phase (gas, solid and liquid) in the blast furnace is calculated. The state distribution in the furnace (that is, top gas information and furnace information), the tapping amount and the tapping (hot metal) temperature (that is, tapping information), the temperature distribution in the furnace wall, etc. are unsteady as predicted values. (That is, every moment). In other words, the blast furnace mathematical model is configured as a completely independent simulator that performs basically the same operation as actual furnace operation.

【0016】なお、湯留まり部は、コークスが充満し、
その間隙に溶銑が一定量滞留する湯留まり内部とそれを
囲む側壁及び炉底の耐火物から構成されるとし、出銑温
度は、有効反応部からの出銑量および出銑温度を境界条
件として、湯留まり内部を均一混合槽で熱放散のみが生
起するとして算出される。
[0016] The pool is filled with coke,
The gap consists of the inside of the pool where a certain amount of hot metal stagnates, the side wall surrounding it, and the refractory of the furnace bottom.The tapping temperature is determined by the tapping amount and tapping temperature from the effective reaction zone as boundary conditions. Is calculated assuming that only heat dissipation occurs in the uniform mixing tank inside the basin.

【0017】この高炉数学モデルを用いて行う高炉内反
応の異常検知方法を、図3の異常検知の解析手順を示し
たフローチャートに基づいて説明する。
A method of detecting a reaction in the blast furnace using the mathematical model of the blast furnace will be described with reference to a flowchart of FIG.

【0018】高炉数学モデルでは、前記の図2で説明し
たように、実績の操業条件、すなわち装入物条件、送風
条件および炉体伝熱条件が刻々の操業データとして読み
込まれ、図1に示した主要な反応についての炉内反応量
の計算が行われ、それに基づいて炉内温度分布、溶銑温
度等の計算が行われる。なお、炉体伝熱条件のうち、刻
々の操業データとして読み込まれるのは、強制冷却によ
る炉体熱放散量である。
In the blast furnace mathematical model, as described with reference to FIG. 2, the actual operating conditions, that is, the charging conditions, the blasting conditions, and the furnace heat transfer conditions are read as instantaneous operating data and shown in FIG. The reaction amount in the furnace for the main reaction is calculated, and the temperature distribution in the furnace, the hot metal temperature and the like are calculated based on the calculation. Of the furnace body heat transfer conditions, what is read in as the instantaneous operation data is the amount of furnace body heat dissipation due to forced cooling.

【0019】一方、モデルの基本機能としてモデルに取
り込まれてない未解明の異常現象(荷下がり異常、ガス
流れ異常等)、および原料性状の種々の変化に起因する
反応効率の変化(つまり、間接還元反応および直接還元
反応の起こる割合の変化)をモデルに反映させるため
に、実績の炉頂ガス情報(炉頂ガス組成)が新たにモデ
ルの入力データとして読み込まれ、炉内反応量(これ
を、実績の炉内反応量という)が算出される。そして、
この実績の炉内反応量と、モデルで個々の反応の刻々の
反応速度から求めた、いわば速度論的に計算された炉内
反応量との比較がなされ、不一致の場合、炉内反応に異
常が生じたとの判断がなされる。つまり、速度論的に計
算された炉内反応量(計算反応量)と実績の炉内反応量
(実績反応量)との不一致を「異常現象の発生」と定義
し、計算反応量と実績反応量の間に差異が認められた場
合は、炉内に異常が発生したとするのである。この場
合、不一致とは、例えば経験に基づきあらかじめ定めた
範囲を超える差異が認められた場合をそれとみなすこと
としておけばよい。また、異常が発生したときは、警報
等の警告を発するような構成としておいてもよい。
On the other hand, unexplained abnormal phenomena (eg, unloading abnormalities, gas flow abnormalities, etc.) which are not taken into the model as basic functions of the model, and changes in reaction efficiency caused by various changes in the properties of the raw material (that is, indirect effects). In order to reflect the reduction reaction and the ratio of the direct reduction reaction occurring) in the model, actual top gas information (top gas composition) is newly read as input data of the model, and the reactor reaction amount (this is , The actual reactor reaction amount). And
The actual reaction volume in the furnace was compared with the reactor reaction volume calculated from the instantaneous reaction rates of the individual reactions using the model, so to speak. Is determined to have occurred. In other words, the inconsistency between the in-furnace reaction amount (calculated reaction amount) calculated kinetically and the actual in-furnace reaction amount (actual reaction amount) is defined as "the occurrence of an abnormal phenomenon," and the calculated reaction amount and the actual reaction amount are defined. If there is a difference between the quantities, it is considered that an abnormality has occurred in the furnace. In this case, the inconsistency may be regarded as, for example, a case where a difference exceeding a predetermined range based on experience is recognized. Further, a configuration may be adopted in which a warning such as an alarm is issued when an abnormality occurs.

【0020】上記のように高炉数学モデルによって炉内
反応に異常が生じたとの判断がなされると同時に、計算
反応量と実績反応量とが一致するようにモデルで取り扱
う反応の速度(これを、「理論反応速度」という)が時
々刻々修正され、図示するように、前記の炉内反応量の
計算にフィードバックされる。
As described above, at the same time that the blast furnace mathematical model determines that an in-furnace reaction has occurred, the reaction speed handled by the model (this is referred to as The "theoretical reaction rate" is corrected from time to time, and is fed back to the calculation of the in-furnace reaction amount as shown in the figure.

【0021】ここで、モデルで取り扱う反応、つまり、
異常であるか否かの判断の対象となる反応は、下記の
(1)式〜(3)式に示す鉱石の間接還元反応、(4)
式〜(6)式に示す鉱石の水素還元反応、および(7)
式〜(9)式に示す鉱石の直接還元反応である。なお、
これら鉱石の間接還元反応、水素還元反応、および直接
還元反応のトータルとしての反応量(トータル量)を
(10)式〜(12)式に示した。
Here, the reaction handled by the model, that is,
The reaction to be determined whether or not the reaction is abnormal is an indirect reduction reaction of ore represented by the following equations (1) to (3), and (4)
A hydrogen reduction reaction of the ore represented by the formulas (6) to (6), and (7)
This is a direct reduction reaction of the ore represented by the formulas (9) to (9). In addition,
The total reaction amount (total amount) of the indirect reduction reaction, hydrogen reduction reaction, and direct reduction reaction of these ores is shown in equations (10) to (12).

【0022】 (鉱石の間接還元反応) Rh :3Fe23 +CO→2Fe34 +CO2 ・・・(1) Rm : Fe34 +CO→3FeO+CO2 ・・・(2) Rw : FeO +CO→ Fe +CO2 ・・・(3) (鉱石の水素還元反応) Rh′:3Fe23 +H2 →2Fe34 +H2 O ・・・(4) Rm′: Fe34 +H2 →3FeO+H2 O ・・・(5) Rw′: FeO +H2 → Fe +H2 O ・・・(6) (鉱石の直接還元反応) Rsr : FeO(liquid)+C→Fe(liquid)+CO ・・(7) (ソリューションロス反応) Rsl : CO2 +C→2CO ・・・(8) Rsl ′: H2 O+C→ CO+H2 ・・・(9) (間接還元反応のトータル量) RI =Rh+Rm+Rw−Rsl ・・・(10) (水素還元反応のトータル量) RH =Rh′+Rm′+Rw′−Rsl ′ ・・・(11) (直接還元反応のトータル量) RD =Rsr +Rsl +Rsl ′ ・・・(12) また、前記の計算反応量と実績反応量とを一致させるよ
うに行う修正は、上記の(10)式〜(12)式に示し
た間接還元反応のトータル量RI 、水素還元反応のトー
タル量RH および直接還元反応のトータル量RD が、実
績の炉頂ガス情報(炉頂ガス組成)と装入物条件および
送風条件から算出される実績の間接還元反応量RI 、水
素還元反応量RH および直接還元反応量RD にそれぞれ
一致するように理論反応速度(すなわち、前記(1)〜
(9)の各反応の反応速度)を修正しつつ収束計算を実
施することにより行う。なお、反応速度の修正は、反応
速度定数を修正することにより行う。
(Indirect reduction reaction of ore) Rh: 3Fe 2 O 3 + CO → 2Fe 3 O 4 + CO 2 (1) Rm: Fe 3 O 4 + CO → 3FeO + CO 2 (2) Rw: FeO + CO → Fe + CO 2 (3) (hydrogen reduction reaction of ore) Rh ': 3Fe 2 O 3 + H 2 → 2Fe 3 O 4 + H 2 O (4) Rm': Fe 3 O 4 + H 2 → 3FeO + H 2 O (5) Rw ′: FeO + H 2 → Fe + H 2 O (6) (direct reduction reaction of ore) Rsr: FeO (liquid) + C → Fe (liquid) + CO (7) (Solution loss reaction) Rsl: CO 2 + C → 2CO (8) Rsl ′: H 2 O + C → CO + H 2 (9) (Total amount of indirect reduction reaction) RI = Rh + Rm + Rw-Rsl ... (10) (Total amount of hydrogen reduction reaction) RH = Rh '+ Rm' + Rw'-Rsl (11) (Total amount of direct reduction reaction) RD = Rsr + Rsl + Rsl '(12) In addition, the correction performed so that the calculated reaction amount matches the actual reaction amount is as described in the above ( The total amount RI of the indirect reduction reaction, the total amount RH of the hydrogen reduction reaction, and the total amount RD of the direct reduction reaction shown in Expressions 10) to (12) are combined with the actual top gas information (top gas composition). The theoretical reaction rates (that is, the above (1) to (1) to (4)) correspond to the actual indirect reduction reaction amount RI, hydrogen reduction reaction amount RH, and direct reduction reaction amount RD calculated from the input condition and the blowing condition, respectively.
The convergence calculation is performed while correcting (reaction speed of each reaction in (9)). The reaction rate is corrected by correcting the reaction rate constant.

【0023】上記のように、炉内反応に異常が発生し、
理論反応速度に修正が加えられた場合、その修正が間接
還元反応速度および水素還元反応速度のいずれか一方ま
たは両方に対するものであるときは、図3に示したよう
に、炉上部での異常と判断し、直接還元反応速度に対す
るものであるときは、炉下部での異常と判断する。ま
た、その修正幅(すなわち、反応速度定数の修正の大き
さ)を求め、修正した反応の種類および修正幅の大きさ
によって、異常現象の内容およびその大きさを評価す
る。
As described above, an abnormality occurs in the furnace reaction,
When a correction is made to the theoretical reaction rate and the correction is made to one or both of the indirect reduction reaction rate and the hydrogen reduction reaction rate, as shown in FIG. If it is determined that the value is for the direct reduction reaction rate, it is determined that there is an abnormality in the lower part of the furnace. Further, the correction width (that is, the magnitude of the modification of the reaction rate constant) is obtained, and the content and magnitude of the abnormal phenomenon are evaluated based on the type of the modified reaction and the magnitude of the modification width.

【0024】なお、この評価に基づき、異常を修復して
炉況を正常化するべく操業条件を適正化し、それを実績
操業条件に反映させることにより高炉の安定操業を維持
することが可能となる(図3において、「異常検知のル
ープ」と表示)。
On the basis of this evaluation, the operating conditions are optimized in order to repair the abnormality and normalize the furnace condition, and by reflecting the results in the actual operating conditions, it is possible to maintain a stable operation of the blast furnace. (In FIG. 3, "loop of abnormality detection" is displayed.)

【0025】本発明方法を実施するにあたっては、高炉
内の流動、伝熱、およびモデルで取り扱う反応に関する
微分方程式の非定常計算を時々刻々行う必要があるが、
現在のコンピュータの演算スピードをもってすれば、充
分可能である。
In carrying out the method of the present invention, it is necessary to carry out moment-by-moment unsteady calculation of differential equations relating to flow, heat transfer, and reactions handled by the model in the blast furnace.
With the speed of the current computer, this is possible.

【0026】上記本発明方法によれば、高炉内反応の異
常を時々刻々検知することができる。したがって、本発
明方法を実炉の炉況管理システムに組み込めば、高炉の
安定操業に大きく寄与することが可能となる。
According to the method of the present invention, it is possible to detect an abnormality of the reaction in the blast furnace every moment. Therefore, if the method of the present invention is incorporated into a furnace condition management system for an actual furnace, it can greatly contribute to the stable operation of the blast furnace.

【0027】また、ある時刻における操業の操作量と理
論反応速度の修正幅を固定して、実績の炉頂ガス情報は
読み込まない条件で炉内反応量の計算を行えば(すなわ
ち、モデルを独立させて計算を実施すれば)、上記各反
応の反応量ならびに炉内状態の変化の将来予測が可能と
なる。その結果、事前に炉内状態の変化を推定でき、操
業アクションの適正化を図ることができる。
Further, if the operation amount of the operation at a certain time and the correction range of the theoretical reaction rate are fixed and the furnace reaction amount is calculated under the condition that the actual top gas information is not read (that is, the model is independent) If the calculation is performed), it is possible to predict the reaction amount of each of the above-described reactions and changes in the furnace state in the future. As a result, a change in the furnace state can be estimated in advance, and the operation action can be optimized.

【0028】なお、本発明方法は完全自立型の数学モデ
ルをベースとしているため、汎用性が高く、他高炉への
適用も容易に行える。
Since the method of the present invention is based on a completely independent mathematical model, it has high versatility and can be easily applied to other blast furnaces.

【0029】[0029]

【実施例】実炉(炉内容積:5000m3 )に対して本
発明方法を適用し、その有効性を調査した。
EXAMPLE The method of the present invention was applied to a real furnace (volume inside the furnace: 5000 m 3 ), and its effectiveness was investigated.

【0030】結果の一例を図4に示す。同図において、
直接還元反応修正幅および間接還元反応修正幅とは、そ
れぞれ、前述したように計算反応量と実績反応量とが一
致するように理論反応量を修正した際の理論反応速度定
数の修正の大きさである。
FIG. 4 shows an example of the result. In the figure,
The correction width of the direct reduction reaction and the correction width of the indirect reduction reaction are, as described above, the magnitude of the correction of the theoretical reaction rate constant when the theoretical reaction amount is corrected so that the calculated reaction amount and the actual reaction amount match. It is.

【0031】この図に示されるように、直接還元反応速
度の修正幅が大きい時(図中において、修正幅を表す実
線に上向きの矢印を付して示した)、すなわち炉下部で
異常が生じていると判断されたときには、図中に斜線を
施した棒線でその発生時点を表示したが、投入した原料
の層高が急激に下がる荷下がり異常(通常、「スリッ
プ」と称される)が発生した。
As shown in this figure, when the correction width of the direct reduction reaction rate is large (in the figure, the solid line representing the correction width is indicated by an upward arrow), that is, an abnormality occurs in the lower part of the furnace. When it is determined that the time of occurrence is indicated by a hatched bar in the figure, the occurrence time is indicated. However, the unloading abnormality in which the height of the layer of the input raw material decreases rapidly (usually referred to as "slip") There has occurred.

【0032】また、間接還元反応速度が大幅に修正され
ている時(図中に下向きの矢印を付して示した)、すな
わち炉上部で異常が生じていると判断されたときには、
Bガス振りが発生した(図中に黒塗り三角印でその発生
時点を表示)。なお、Bガス振りとは、炉内における局
所的な荷下がり異常やガス流れ異常により反応効率が変
化し、炉頂部の排ガス量が急激に増減する現象である。
When the rate of the indirect reduction reaction is significantly corrected (indicated by a downward arrow in the figure), that is, when it is determined that an abnormality has occurred in the upper part of the furnace,
B gas swing occurred (the point of occurrence is indicated by a black triangle in the figure). The B gas swing is a phenomenon in which the reaction efficiency changes due to local unloading abnormality and gas flow abnormality in the furnace, and the amount of exhaust gas at the furnace top rapidly increases and decreases.

【0033】この結果からみて、高炉内の異常現象(こ
の例では、スリップおよびBガス振り)と直接還元反応
修正幅および間接還元反応修正幅とは非常によく対応し
ており、本発明の炉内反応速度を考慮した高炉数学モデ
ルによる炉内反応の異常検知が可能であることが確認さ
れた。
As can be seen from the results, the abnormal phenomena in the blast furnace (in this example, slip and B gas swing) correspond very well to the correction width of the direct reduction reaction and the correction width of the indirect reduction reaction. It has been confirmed that it is possible to detect anomalies in the reactor by using a mathematical model of the blast furnace considering the reactor reaction rate.

【0034】また、直接還元反応修正幅は、溶銑温度の
低下幅、すなわち図中の記号A〜Dを付した部分(時
刻)における溶銑温度の基準温度(図中に破線で表示)
からの低下幅によって把握することができる炉熱低下幅
とも対応しており、本発明の高炉内反応異常検知方法
は、炉熱管理に応用できる可能性があることが示唆され
た。
The correction range of the direct reduction reaction is the range of decrease in the hot metal temperature, that is, the reference temperature of the hot metal temperature at the portions (time) indicated by the symbols A to D in the figure (indicated by broken lines in the figure).
This also corresponds to the furnace heat decrease width that can be grasped from the decrease width from the above, suggesting that the method of detecting a reaction abnormality in a blast furnace of the present invention may be applicable to furnace heat management.

【0035】[0035]

【発明の効果】本発明方法によれば、高炉内反応の異常
を検知することができる。これにより、炉内で生じる異
常現象(例えば、スリップおよびBガス振り)を検知す
ることが可能となるので、この方法を実炉の炉況管理シ
ステムに組み込めば、炉況管理の精度向上に大きな効果
がある。
According to the method of the present invention, it is possible to detect an abnormal reaction in the blast furnace. This makes it possible to detect abnormal phenomena (for example, slip and B gas swing) occurring in the furnace. If this method is incorporated into a furnace condition management system of an actual furnace, it will greatly improve the accuracy of furnace condition management. effective.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明方法に使用する高炉数学モデルの構成図
である。
FIG. 1 is a configuration diagram of a blast furnace mathematical model used in the method of the present invention.

【図2】本発明方法に使用する高炉数学モデルの基本解
析フローである。
FIG. 2 is a basic analysis flow of a blast furnace mathematical model used in the method of the present invention.

【図3】高炉内における反応の異常検知の解析手順を示
すフローチャートである。
FIG. 3 is a flowchart showing an analysis procedure for detecting a reaction abnormality in a blast furnace.

【図4】本発明方法を実炉に適用した結果の一例を示す
図である。
FIG. 4 is a diagram showing an example of a result of applying the method of the present invention to an actual furnace.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】高炉内の流動、伝熱に加え、炉内で生じる
鉱石の間接還元反応、水素還元反応および直接還元反応
の速度から求められる、炉内の気体、固体および液体の
移動現象を追跡できる高炉数学モデルを用いて高炉操業
を予測する方法であって、前記高炉数学モデルに刻々の
操業データとして炉頂での装入物条件、羽口への送風条
件および炉体壁での伝熱条件を入力して計算される炉内
反応量と、前記操業データとして炉頂での装入物条件、
羽口への送風条件および炉体壁での伝熱条件に加え、新
たに炉頂ガス組成を用いて算出される実績の炉内反応量
とを比較し、両者の間に差異が認められる場合は、炉内
反応に異常が生じたと判断することを特徴とする高炉内
反応異常検知方法。
1. In addition to the flow and heat transfer in the blast furnace, it occurs in the furnace.
Indirect, hydrogen and direct reduction of ores
Blast furnace operation using a blast furnace mathematical model that can track the movement phenomena of gas, solid and liquid in the furnace determined from the velocity of the blast furnace
The blast furnace mathematical model , as the operating data of the blast furnace as charging data at the top of the furnace, air blown to the tuyere
And the reactor reaction amount calculated by inputting the heat transfer conditions at the furnace body wall, and the charge condition at the furnace top as the operation data,
In addition to the condition of air flow to the tuyere and the condition of heat transfer at the furnace wall,
In addition , the blast furnace is characterized by comparing the actual reaction amount in the furnace calculated using the top gas composition, and if there is a difference between the two, it is determined that an abnormality has occurred in the furnace reaction. Internal reaction abnormality detection method.
JP27041996A 1996-10-14 1996-10-14 Blast furnace reaction abnormality detection method Expired - Fee Related JP3287235B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27041996A JP3287235B2 (en) 1996-10-14 1996-10-14 Blast furnace reaction abnormality detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27041996A JP3287235B2 (en) 1996-10-14 1996-10-14 Blast furnace reaction abnormality detection method

Publications (2)

Publication Number Publication Date
JPH10121118A JPH10121118A (en) 1998-05-12
JP3287235B2 true JP3287235B2 (en) 2002-06-04

Family

ID=17486016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27041996A Expired - Fee Related JP3287235B2 (en) 1996-10-14 1996-10-14 Blast furnace reaction abnormality detection method

Country Status (1)

Country Link
JP (1) JP3287235B2 (en)

Also Published As

Publication number Publication date
JPH10121118A (en) 1998-05-12

Similar Documents

Publication Publication Date Title
Dong et al. Modelling of multiphase flow in a blast furnace: Recent developments and future work
EP0827554B1 (en) Stable operation of a smelter reactor
WO2022009621A1 (en) Operation guidance method, method for operating blast furnace, method for manufacturing molten iron, operation guidance device
Williams Control and analysis in iron and steelmaking
Azadi et al. Nonlinear prediction model of blast furnace operation status
JP3287235B2 (en) Blast furnace reaction abnormality detection method
JPH11335710A (en) Method for predicting furnace heat in blast furnace
JP3287242B2 (en) Blast furnace heat prediction method
JPH11323412A (en) Detection of furnace temperature drop in blast furnace
Larsen et al. Intelligent control of cupola melting
JP4244477B2 (en) Blast furnace operation method
Nightingale et al. Blast furnace hearth condition monitoring and taphole management techniques
Azadi et al. Model predictive control of molten iron and slag quality indices in a large-scale ironmaking blast furnace using a hybrid dynamic model
JP7384150B2 (en) Operation guidance method, blast furnace operation method, hot metal production method and operation guidance device
US20020157582A1 (en) Furnace and a method of controlling a furnace
JP2897363B2 (en) Hot metal production method
CN104805240A (en) Method for judging liquid permeability of lower part of blast furnace
JP2003328017A (en) Method for educating blast furnace operation
JP2668486B2 (en) Blast furnace operation method using hydrogen gas utilization rate
JPH10140218A (en) Method for controlling furnace bottom of blast furnace
Aukrust AISI Direct Steelmaking Program. Annual technical report for year ending November 30, 1991
JP2003306708A (en) Method for stably operating blast furnace
JPS6137908A (en) Operating method of converter
JPH05239522A (en) Production of molten iron
Yagi et al. A mathematical model for blast furnace analysis based on the four fluid model

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees