JPS6137908A - Operating method of converter - Google Patents

Operating method of converter

Info

Publication number
JPS6137908A
JPS6137908A JP59155545A JP15554584A JPS6137908A JP S6137908 A JPS6137908 A JP S6137908A JP 59155545 A JP59155545 A JP 59155545A JP 15554584 A JP15554584 A JP 15554584A JP S6137908 A JPS6137908 A JP S6137908A
Authority
JP
Japan
Prior art keywords
amount
furnace wall
scrap
converter
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59155545A
Other languages
Japanese (ja)
Inventor
Masaki Okajima
正樹 岡島
Keiji Arima
有馬 慶治
Tetsuji Ibaragi
哲治 茨城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP59155545A priority Critical patent/JPS6137908A/en
Publication of JPS6137908A publication Critical patent/JPS6137908A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PURPOSE:To increase the amt. of scraps to be used in a converter and to operate the converter under the high scrap ratio by detecting the depositing conditions of an unmelted mixture to the furnace wall, and removing the deposited material in accordance with the detected results. CONSTITUTION:The amt. and composition of waste gas are continuously measured during the blowing of gaseous oxygen into a converter in the operating method of the converter wherein >=30wt% scrap is charged along with a carbonaceous source such as coke or coal and gaseous oxygen in supplied from the top or from the top and the bottom. Any one or >=2 among the amt. of C to be burnt, the amt. Os of oxygen accumulated in slag, and a change in the amt. of waste gas is obtained from said measured values, and the depositing conditions of an unmelted mixture on the furnace wall are detected from the correlation of the previously obtained amt. of C to be burnt, Os, and the change in the amt. of waste gas with the conditions of the unmelted mixture on the furnace wall. The deposit is removed in accordance with said detected results.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は転炉操業法に関するものである。[Detailed description of the invention] Industrial applications The present invention relates to a converter operating method.

従来の技術 周知のように転炉においては、溶銑とスクラップを装入
したのち02ガスを供給して精錬し、溶鋼を製造する操
業が行われている。
As is well known in the art, a converter is operated to produce molten steel by charging hot metal and scrap and then supplying O2 gas for refining.

ところで近年転炉における溶鋼歩留りを向上させる為に
、スクラップや鉄鉱石を多量装入する試みが種々行われ
ている。このスクラップ等を多量に装入すると転炉内に
おける熱源が不足することから、コークスあるいは石炭
等のC源が同時に装入される。
Incidentally, in recent years, various attempts have been made to charge large quantities of scrap and iron ore in order to improve the yield of molten steel in converters. If a large amount of this scrap is charged, the heat source in the converter becomes insufficient, so a C source such as coke or coal is charged at the same time.

例えば特開昭57−54212号公報ではスクラップ、
コークスおよび溶銑を順次装入し、酸素吹錬を行う技術
が開示されているが、この技術はコークスの熱量を鉄鉱
石の直接還元に利用すると共に、非燃焼ガス量を増加さ
せるものであって、その実施例から判るようにスクラッ
プの装入量、つまりスクラップ比〔本発明においてスク
ラップ比とは、スクラップ/(溶銑+スクラップ) X
 100を言い、特記なき以外重量%で表す。〕は9%
程度以下であった。
For example, in Japanese Patent Application Laid-open No. 57-54212, scrap,
A technology has been disclosed in which coke and hot metal are sequentially charged and oxygen blowing is performed, but this technology uses the calorific value of coke for direct reduction of iron ore and increases the amount of unburned gas. , As can be seen from the examples, the amount of scrap charged, that is, the scrap ratio [In the present invention, the scrap ratio is scrap/(hot metal + scrap)
100, expressed in weight% unless otherwise specified. ] is 9%
It was below that level.

一方、スクラップ比を高める為スクラップを転炉に装入
する前、あるいは転炉に装入し溶銑を装入する前に加熱
する技術も、例えば特開昭56−29815号公報で提
案されている。ところがこのスクラップ加熱を実施する
技術ではその加熱に長時間を要し、エネルギー原単位も
高騰するうえに、スクラップ比も30〜35%が限度で
あった。
On the other hand, in order to increase the scrap ratio, a technique for heating scrap before charging it into a converter or before charging hot metal into a converter has been proposed, for example, in Japanese Patent Laid-Open No. 56-29815. . However, this scrap heating technique requires a long time for heating, increases the energy consumption rate, and limits the scrap ratio to 30 to 35%.

発明が解決すべき問題点 本発明の目的は、転炉におけるスクラップの使用量を高
めると共に、高スクラップ比のもとで安定した操業を可
能ならしめる方法を提供することにある。
Problems to be Solved by the Invention An object of the present invention is to provide a method that increases the amount of scrap used in a converter and enables stable operation at a high scrap ratio.

問題点を解決するための手段拳作用 本発明は、コークスもしくは石炭等のC源と共に、スク
ラップを30重量%以上装入して、上もしくは」二底よ
り02ガスを供給する転炉操業法において、吹錬中に排
ガス量および排ガス成分を連続的に測定し、該測定値か
らC燃焼量、スラグ中蓄積耐素量Os、および排ガス変
化量のいずれか1つ、もしくは2以−ヒを求め、予め求
めておいた前記C燃焼量、O3、および排ガス変化数、
と未溶解混合物の炉壁付着状況との相関関係から炉壁付
着状況を検出し、該検出結果に応じて付着物除去操作を
実施することを特徴とする転炉操業法に関するものであ
る。
Means for Solving the Problems The present invention provides a converter operating method in which 30% by weight or more of scrap is charged together with a carbon source such as coke or coal, and 02 gas is supplied from the top or from the bottom. , Continuously measure the amount of exhaust gas and the components of the exhaust gas during blowing, and calculate one or more of the following: the amount of C combustion, the amount Os of accumulated oxygen in the slag, and the amount of change in the exhaust gas from the measured values. , the C combustion amount, O3, and the number of exhaust gas changes determined in advance,
The present invention relates to a converter operating method characterized in that the state of adhesion to the furnace wall is detected from the correlation between the state of adhesion of the undissolved mixture and the state of adhesion to the furnace wall, and an operation for removing adhesion is performed in accordance with the detection result.

本発明者等は、上吹転炉においてC源としてコークスを
用いると共に、スクラップ比を順次増加させて精錬を実
施した。第9図はその結果の一例を示すもので、横軸に
スクラップ比を、又縦軸に炉壁付着頻度を表すもので、
炉壁付着頻度は全操業回数に対する付着発生回数を百分
率で示した。
The present inventors carried out refining using coke as a C source in a top-blown converter and gradually increasing the scrap ratio. Figure 9 shows an example of the results, with the horizontal axis representing the scrap ratio and the vertical axis representing the frequency of adhesion to the furnace wall.
The frequency of adhesion on furnace walls was expressed as a percentage of the number of times adhesion occurred relative to the total number of operations.

この第9図から判るように、スクラップ比が25%程度
以下であれば、コークスの添加量を増加させることによ
りスクラ・ンプの未溶解現象を発生させることなく、且
つ精錬も支障なく継続することができた。ところがスク
ラップ比が25〜50%、特に30%以上になるとスク
ラップが完全に溶解しない未溶解現象が多発するように
なった。加えて、排ガス量が急激に低下したり、炉内に
おいて異常に大きなスロッピングが発生する等して、安
定した操業が出来ない状態も多発するようになった。
As can be seen from Figure 9, if the scrap ratio is about 25% or less, increasing the amount of coke added will not cause unmelted scrap and refining will continue without any problems. was completed. However, when the scrap ratio exceeds 25 to 50%, particularly 30% or more, undissolved phenomena in which the scraps are not completely dissolved frequently occur. In addition, there are many situations where stable operation is not possible due to sudden decreases in the amount of exhaust gas or abnormally large slopping occurring within the furnace.

この原因について種々調査研究を重ねた結果、スクラッ
プの嵩密度が小さい為スクラップ比を高めると、スクラ
ップ3は第2図に示すように鋼浴1上に分離して堆積す
るようになる。この為」−吹ランス2より02を供給し
て精錬すると、攪拌力の比較的弱い炉壁部分にコールド
・スボッ) (coldspot)が生じやすくなり、
第3図に示すようにスクラップ3やコークス4が未溶解
の状態で付着することが判明した。つまり、スクラップ
3およびコークス4が混合して炉壁に付着し、この結果
鋼浴1へのC減の供給が絶たれて鋼浴9が低下するに伴
い C+1/2・02  → CO の反応量が減少する。この為排ガスの流量が低下すると
共に、鋼浴のFaが酸化されスラグ中のFen濃度が上
昇し、スラグ中蓄積酸素量Os、(以下、単にOsと言
う)の増加する現象が発生する。
As a result of various investigations into the cause of this problem, it was found that since the bulk density of scrap is small, when the scrap ratio is increased, the scrap 3 becomes separated and deposited on the steel bath 1 as shown in FIG. 2. For this reason, when refining is performed by supplying 02 from the blowing lance 2, cold spots are likely to occur on the furnace wall where the stirring force is relatively weak.
As shown in FIG. 3, it was found that scrap 3 and coke 4 were attached in an unmelted state. In other words, scrap 3 and coke 4 are mixed and adhere to the furnace wall, and as a result, the supply of C to the steel bath 1 is cut off, and as the steel bath 9 decreases, the reaction amount of C+1/2・02 → CO2 decreases. decreases. Therefore, as the flow rate of the exhaust gas decreases, Fa in the steel bath is oxidized, the Fen concentration in the slag increases, and a phenomenon occurs in which the amount of oxygen accumulated in the slag Os, (hereinafter simply referred to as Os) increases.

一旦このような現象が発生すると、C燃焼による熱源が
不足することにより益々炉壁付着物の溶解は困難となる
。さらに前記炉壁に付着したスクラップ3およびコーク
ス4が何らかの原因で鋼浴中に落下すると、瞬時にCと
高FeO濃度のスラグとの反応が生じて異常スロッピン
グが発生し、操業の継続が出来なくなったり、種々の設
備損傷を起こさせる事態の発生することが知見された。
Once such a phenomenon occurs, it becomes increasingly difficult to melt the deposits on the furnace wall due to the lack of a heat source due to C combustion. Furthermore, if the scrap 3 and coke 4 adhering to the furnace wall fall into the steel bath for some reason, a reaction between C and the slag with a high FeO concentration occurs, causing abnormal slopping, which makes it impossible to continue the operation. It has been found that situations may occur where equipment is lost or various types of equipment damage occur.

本発明において未溶解混合物とは、前記スクラップ3と
コークス4を主成分として未溶解状態で何着した混合物
を言い、以下単に付着物5と言う。
In the present invention, the undissolved mixture refers to a mixture containing the scrap 3 and coke 4 as main components and deposited in an undissolved state, and hereinafter simply referred to as deposit 5.

本発明は、前記知見を積極的に活用することによって付
着物5の付着状況を検出し、その検出結果に応じて適切
な付着物除去操作を実施し、これにより付着物の生成を
防止して安定した操業を可能ならしめたものである。
The present invention detects the adhesion status of the deposits 5 by actively utilizing the above knowledge, performs an appropriate deposit removal operation according to the detection result, and thereby prevents the generation of deposits. This made stable operations possible.

さて炉壁への付着が生じ、付着物5が生成すると、前述
したように排ガスの量および成分が変動することに着目
した本発明者等は、その変化と付着物5の炉壁付着状況
との相関関係について調査、研究を行った。
Now, the inventors of the present invention have focused on the fact that when the deposits 5 are deposited on the furnace wall, the amount and components of the exhaust gas change as described above. We investigated and researched the correlation between

第1図はその一例を示すもので、第1図(a)は炉壁付
着状況と排ガス流量の関係を、第1図(b)はO5と炉
壁付着状況の関係をしめす。この第1図(a) (b)
から判るように、炉壁に付着物5が生成すると排ガスの
/&量は急激に減少し、又Osも増加する。
FIG. 1 shows an example of this. FIG. 1(a) shows the relationship between the furnace wall adhesion state and the exhaust gas flow rate, and FIG. 1(b) shows the relationship between O5 and the furnace wall adhesion state. This figure 1 (a) (b)
As can be seen, when deposits 5 are formed on the furnace wall, the /& amount of exhaust gas decreases rapidly, and Os also increases.

第1図(c)はC燃焼量と炉壁イ・1着状況との関係を
示す図である。C燃焼量は排ガスの流量、成分から下記
(1)式により求めることができる。
FIG. 1(c) is a diagram showing the relationship between the amount of C burnt and the condition of A/1 deposition on the furnace wall. The amount of carbon burned can be determined from the flow rate and components of the exhaust gas using the following equation (1).

We =I2/22.4 * So Vg ・(Kca
lXco2 ) dt−(1)但し、 Xco:排ガス中CO濃度(Nm’/NmつXco2 
 :排ガス中C□、濃度(N rn’ / N m’ 
)このC燃焼部は、前記付着物5が生成すると減少し、
転炉内の熱バランスが崩れる。下記(2)式は前記転炉
内の熱バランスを示す式であって、左辺が入熱量、右辺
が出熱量である。この(2)式は溶銑の量、成分、温度
、吹1ト目標温度および成分が知られている場合、下記
(3)式のように簡略化できる。
We =I2/22.4 * So Vg ・(Kca
lXco2) dt-(1) However, Xco: CO concentration in exhaust gas (Nm'/NmXco2
: C□ in exhaust gas, concentration (N rn' / N m'
) This C combustion part decreases when the deposit 5 is generated,
The heat balance inside the converter is disrupted. Equation (2) below is an equation showing the heat balance in the converter, where the left side is the amount of heat input and the right side is the amount of heat output. This equation (2) can be simplified as the following equation (3) when the amount, composition, temperature, blowing point target temperature, and composition of hot metal are known.

(Hco* (1−R)  +Hco2  * R)*
Wc+ΣHm會ΔM十Qloss          
       ・争・(2)イロ し Hco:C−+COの反応熱(Kcal / K g 
” C)Hco2  : C+C()、の反応熱(Kc
al /K g −C)R:2次燃焼率  R=Xco
2 / (KcalXCo2 )Hm:C以外の元素の
反応熱(Kcal/Kg)ΔM:C以外の元素の反応歇
(K g)Hp:溶銑顕熱(Kcal 7Kg −Pi
g)Wp:溶銑星(K g) Hsfニスラグ生成熱(Kcal /K g @Sta
g)Wsl+スラグ!(Kg) Hfe−c:鋼浴中へのC溶解熱(KCaI/Kg@C
)Hst:溶鋼顕熱(Kcal 7Kg・5teel)
Wscニスクラップ量(K g) Hslニスラグ顕熱(Kcal /K g −Slag
)Cj:溶銑中C(Kg/Kg) Cf:溶鋼中C(Kg/Kg) HO:鉄鉱石分解熱(Kcal / K g * 0r
e)WO:鉄鉱石投入量(Kg) H’co:COガス顕然(CIKg当り)  (Kca
l 7Kg)H’co2:Cαガス顕熱(CIKg当り
)  (Kcal 7Kg)Qloss:その他の放散
熱(Kcal )WSC−AI+WC十B@φ・・・(
3)或いは ΔWsc=As△Wc+Bes拳 (3’)但し A、 B : const ΔWscニスクラップ溶解縫の変化(Kg)△Wc:C
燃焼量の変化(K g) 前記(3)式で示すように、スクラップ溶解量とC燃焼
量との間には直線関係が成り立つ。このことは本発明者
等の実験結果からも確認された。
(Hco* (1-R) +Hco2*R)*
Wc+ΣHmkaiΔMQloss
・Conflict・(2) Iro ShiHco: Heat of reaction of C-+CO (Kcal / Kg
” C) Hco2: C+C(), reaction heat (Kc
al /K g -C)R: Secondary combustion rate R=Xco
2/ (Kcal
g) Wp: Hot metal star (K g) Hsf Nisslag formation heat (Kcal /K g @Sta
g) Wsl+Slag! (Kg) Hfe-c: Heat of C dissolution in steel bath (KCaI/Kg@C
)Hst: Sensible heat of molten steel (Kcal 7Kg・5teel)
Wsc Nislag amount (K g) Hsl Nisslag sensible heat (Kcal /K g -Slag
) Cj: C in hot metal (Kg/Kg) Cf: C in molten steel (Kg/Kg) HO: Heat of iron ore decomposition (Kcal / K g * 0r
e) WO: Iron ore input (Kg) H'co: CO gas apparent (per CIKg) (Kca
l 7Kg) H'co2: Cα gas sensible heat (per CIKg) (Kcal 7Kg) Qloss: Other dissipated heat (Kcal) WSC-AI+WC1B@φ... (
3) Or ∆Wsc=As△Wc+Bes fist (3') However, A, B: const ∆Wsc Change in nickel scrap dissolving stitch (Kg)△Wc:C
Change in Burned Amount (K g) As shown in equation (3) above, a linear relationship exists between the amount of scrap melted and the amount of C burnt. This was also confirmed from the experimental results of the present inventors.

第4図はその結果の一例を示すもので転炉内に溶銑と、
それ以外にコークス等のC源を投入し、スクラップ溶解
量を順次増加させた実験例において、横軸にC燃焼量の
増加分を、縦軸にスクラップ溶解量の増加分を表したも
のである。この第4図から明らかなように、両者間には
直線関係が成立ち、前記(3)或いは(3′)式の成立
することが判る。
Figure 4 shows an example of the results, with hot metal in the converter and
In addition, in an experimental example in which a C source such as coke was introduced and the amount of scrap melted was increased sequentially, the horizontal axis represents the increase in the amount of C burned, and the vertical axis represents the increase in the amount of scrap melted. . As is clear from FIG. 4, there is a linear relationship between the two, and it can be seen that equation (3) or (3') is satisfied.

而して、(3)式より所定のスクラップ溶解量Wscに
対する必要なC燃焼iWcが与えられる。
Therefore, the required C combustion iWc for a predetermined scrap melting amount Wsc is given by equation (3).

第1図(c)における実線Xは、炉壁付着現象が発生せ
ず理想的にスクラップの溶解が行われた場合のC燃焼量
Wcの推移を示すものである。これに対し第1図(C)
における破線yは、実測した排ガス量および排ガス成分
から求めたC燃焼量Wcであり、前記Xとの差△Wcが
前記(3°)より求まるスクラップ溶解量の変化、つま
りスクラップ溶解の遅れ量に相当する。従って前記差△
Wcを求めることにより、炉壁付着状況が検出できる。
The solid line X in FIG. 1(c) shows the change in the C combustion amount Wc when the scrap melting is performed ideally without the occurrence of the furnace wall adhesion phenomenon. In contrast, Fig. 1 (C)
The broken line y in is the C combustion amount Wc determined from the actually measured exhaust gas amount and exhaust gas components, and the difference △Wc from the above X is the change in the scrap melting amount determined from the above (3°), that is, the amount of delay in scrap melting. Equivalent to. Therefore, the difference △
By determining Wc, the state of adhesion to the furnace wall can be detected.

尚、第1図(c)の実線Xにおいて、吹錬初期および末
期にその傾きが小さくなっているのは、前者は初期St
酸化にょるC燃焼が遅れる為であり、又後者は末期鋼浴
9が減少し上吹き火点へのC供給が悪くなり、C燃焼量
も減る為である。
Note that the slope of the solid line X in FIG.
This is because the combustion of C due to oxidation is delayed, and the latter is because the amount of late-stage steel bath 9 is reduced, the supply of C to the top blowing point becomes poor, and the amount of C burned is also reduced.

而して、予め転炉の操業条件や設備条件に応じて炉壁付
着状況と前述のC燃焼部−1O5および排ガス変化量と
の相関関係を求めておき、吹錬中における排ガス量およ
び排ガス成分を連続的に測定し、その測定値からC燃焼
部、Os、排ガス変化量(△Vg)を求めることによっ
て、炉壁付着状況を検出することが可能となる。この場
合、C燃焼量、O3、排ガス変化量のいずれか1つから
でも炉壁付着状況を検出することは可能であり、勿論2
つ以上を組合せて検出することも可能である。
Therefore, the correlation between the furnace wall adhesion state and the above-mentioned C combustion section-1O5 and the amount of change in exhaust gas is determined in advance according to the operating conditions and equipment conditions of the converter, and the amount of exhaust gas and exhaust gas components during blowing are determined. It becomes possible to detect the state of adhesion to the furnace wall by continuously measuring the amount of C and determining the C combustion part, Os, and the amount of change in exhaust gas (ΔVg) from the measured values. In this case, it is possible to detect the furnace wall adhesion status from any one of the C combustion amount, O3, and exhaust gas change amount;
It is also possible to detect a combination of two or more.

本発明者等の経験では、前記排ガスの流量及び成分より
、(1)式によりC燃焼量を求める方法が、炉壁付着状
況をスクラップ溶解の遅れ量△Wscで定量的な指標と
して表すことができ、付着物除去操作をより適切なタイ
ミングで実施するうえから効果的であった。
In the experience of the present inventors, the method of calculating the amount of C burnt using equation (1) from the flow rate and components of the exhaust gas allows the furnace wall adhesion state to be expressed as a quantitative index by the amount of delay in scrap melting △Wsc. This was effective in terms of carrying out the deposit removal operation at a more appropriate timing.

又、排ガス量、排ガス成分よりO5を求めるには、本出
願人が特願昭54−87784号で出願した方法、つま
り排ガス中に出ていく総酸素量と、転炉に導入される総
酸素量との差から求めればよい。
In addition, to determine O5 from the exhaust gas amount and exhaust gas components, the method applied by the present applicant in Japanese Patent Application No. 54-87784, that is, the total amount of oxygen released into the exhaust gas and the total oxygen introduced into the converter. It can be calculated from the difference between the amount and the amount.

下記(4)及び(5)式にその基本式を示す。The basic formulas are shown in formulas (4) and (5) below.

dos=Fo区+Σ(αi+βi+1/2・γ+)*W
p+’−(1/2・Fco” +Fco2 ”)   
   * e * (4)Os= 5”、’、 (do
s)dt      ++ * *(5)但し Fox:送酸純酸素量(Nrn”/sec )Fan”
:炉内にて生成するCO流量(Ntn”/5eC)FC
02r″:炉内にて生成するCO2流量(Nrn”/s
ec )WFi’:炉内に投入された銘柄iなる副原料
の分解反応速度        (Kg/5ec)αi
:炉内に投入された銘柄iなる副原料の02発生係数 
                (Nm”/Kg)β
i:炉内に投入された銘柄iなる副原料のC02発生係
数            (Nゴ/K g)γi:炉
内に投入された銘柄iなる副原料のH20発生係数  
         (Nm’/Kg)dosニスラグ中
蓄積酸素量の変化(Nm”/sec )OSニスラグ中
蓄積酸素量(Nrn”)次いでO5より付着状況を推定
する方法は、炉壁付着が起ったときのOsをOs”とし
、起らないときのOsをOs’とし、その差△OsとC
燃焼の遅れ量△Wcとの間には次の関係がある。(第1
図(b)参照)。
dos=Fo area+Σ(αi+βi+1/2・γ+)*W
p+'-(1/2・Fco"+Fco2")
* e * (4) Os= 5”,', (do
s) dt ++ * * (5) However, Fox: Pure oxygen amount (Nrn”/sec) Fan”
: CO flow rate generated in the furnace (Ntn”/5eC) FC
02r'': CO2 flow rate generated in the furnace (Nrn''/s
ec) WFi': Decomposition reaction rate of auxiliary material of brand i introduced into the furnace (Kg/5ec) αi
: 02 generation coefficient of auxiliary material of brand i charged into the furnace
(Nm”/Kg) β
i: C02 generation coefficient of auxiliary raw material of brand i charged into the furnace (Ngo/K g) γi: H20 generation coefficient of auxiliary raw material of brand i charged into the furnace
(Nm'/Kg) Change in the amount of oxygen accumulated in the dos varnish slag (Nm"/sec) Amount of oxygen accumulated in the OS varnish slag (Nrn") Next, the method of estimating the adhesion status from O5 is Let Os be Os'', Os when it does not occur be Os', and the difference △Os and C
The following relationship exists between the combustion delay amount ΔWc. (1st
(See figure (b)).

ただし △0s=Os本−〇s’ R(2次燃焼率) = Xco2 / Xco+ Xc
o2Xco (co2 )  : co (co2 )
濃度(a)式より△O5から△Wcを求め、これを(3
°)式に代入することにより、スクラップの炉壁材着量
△Scを求めることができる。
However, △0s=Os book -〇s' R (secondary combustion rate) = Xco2 / Xco+ Xc
o2Xco (co2) : co (co2)
Determine △Wc from △O5 from concentration (a) formula, and convert this to (3
By substituting into the equation (°), the amount of scrap furnace wall material deposited ΔSc can be determined.

又、排ガス変化量ΔVg(第1図(a)の炉壁材着量の
場合〔点線〕と炉壁付着発生時〔実線〕との流量変化量
)から付着状況を推定する方法は、炉壁付着発生により
C燃焼量が減少しても、排ガス中CO,CO2の濃度そ
のものはあまり変化しないため、C燃焼減少量は簡易的
に△Wc=に5ΔVgdtとなり (Kはconst)
 、(3°)式よりスフラップの炉壁付着量△Scが推
定できる。
In addition, the method of estimating the adhesion status from the amount of change in exhaust gas ΔVg (the amount of change in flow rate between the amount of material deposited on the furnace wall [dotted line] and the time when adhesion occurs on the furnace wall [solid line] in Figure 1 (a)) is to Even if the amount of C combustion decreases due to the occurrence of adhesion, the concentration of CO and CO2 in the exhaust gas itself does not change much, so the amount of decrease in C combustion can be simply calculated as △Wc=5ΔVgdt (K is const)
, (3°), the amount ΔSc of the flap attached to the furnace wall can be estimated.

さて、炉壁付着状況が検出されたら、その検出結果に応
じて、例えば予め設定された限界値を越えたら付着物除
去操作を実施する。この限界値は転炉の設備条件、操業
条件等から決定され、例えば炉壁付着現象により生じた
高FeO濃度スラグとC源との急速反応による、排ガス
回収設備への急激な負荷増大、もしくは安全面等を考慮
して決定すればよい。
Now, when the state of adhesion to the furnace wall is detected, depending on the detection result, for example, if a preset limit value is exceeded, an operation for removing the adhesion is performed. This limit value is determined based on the converter equipment conditions, operating conditions, etc.; It may be determined by taking into consideration the aspects, etc.

次にこの付着物除去操作について説明する。Next, this deposit removal operation will be explained.

炉壁付着状況が検出されると、前記第3図に示すように
炉壁に付着物5が付着した状態となる。
When the state of adhesion to the furnace wall is detected, the deposit 5 becomes attached to the furnace wall as shown in FIG. 3 above.

従って基本的には炉壁近傍における鋼浴の攪拌力を強め
、コールド−スポットを解消して付着物5を溶解させる
操作をすれば良い。
Therefore, basically, the stirring force of the steel bath near the furnace wall can be increased to eliminate cold spots and dissolve the deposits 5.

第5図〜第7図は、その具体的な操作の実施例を説明す
る為の説明図である。即ち第5図は通常の精錬用02ガ
ス供給系21と、02あるいは02にAr、N 2 、
 C02等の不活性ガスを添加混合せしめた、付着物除
去用ガス供給系22の2系統の供給系を有する上吹きラ
ンス20を用いた例である。ガス供給系22の噴出口2
21は、付着物5の生成した炉壁近傍に指向するよう広
角度θに設けられている。而して通常操業時には、αガ
ス供給系21より精錬用αガスが供給されており、ガス
供給系22からは噴出口221に炉内の粉塵やスラグ等
が浸入しない程度の圧力で、パージガスが噴出されてい
る。
FIGS. 5 to 7 are explanatory diagrams for explaining examples of the specific operations. That is, FIG. 5 shows a normal refining 02 gas supply system 21 and 02 or 02 containing Ar, N 2 ,
This is an example using a top blowing lance 20 having two supply systems, a gas supply system 22 for removing deposits, in which an inert gas such as C02 is added and mixed. Nozzle 2 of gas supply system 22
21 is provided at a wide angle θ so as to be directed near the furnace wall where deposits 5 are formed. During normal operation, α gas for refining is supplied from the α gas supply system 21, and purge gas is supplied from the gas supply system 22 at a pressure that does not allow dust, slag, etc. in the furnace to enter the jet port 221. It's being gushed.

一方、付着状況が検出されたら精錬用αガスに加えて、
噴出口221からもαガスを噴射し、炉壁近傍で2次燃
焼を行わせたり、あるいはαに前記不活性ガスを添加混
合し、炉壁に付着した付着物5を溶解させる操作を実施
する。これによって付着物5を鋼浴1に効率的に溶解さ
せ、付着物5を除去することが出来る。
On the other hand, if adhesion is detected, in addition to α gas for refining,
α gas is also injected from the jet port 221 to cause secondary combustion near the furnace wall, or the inert gas is added and mixed to α to dissolve the deposits 5 attached to the furnace wall. . As a result, the deposits 5 can be efficiently dissolved in the steel bath 1 and the deposits 5 can be removed.

第6図は炉壁近傍に底吹きノズル7を設置し、付着状況
が検出されたらこの底吹きノズル7よりAr、 N2 
、 CG等の不活性ガスを吹込み、炉壁近傍の攪拌力を
強化する操作を行うものである。。
In Fig. 6, a bottom blowing nozzle 7 is installed near the furnace wall, and when adhesion is detected, Ar, N2
, CG or other inert gas is blown into the reactor to strengthen the stirring force near the furnace wall. .

さらに、第7図は付着状況が検出された際に、転炉炉体
8を揺動させ、付着物5を溶解させつつ除去する操作を
行う実施例を示すものである。
Furthermore, FIG. 7 shows an embodiment in which, when an adhesion condition is detected, the converter body 8 is swung to remove the adhesion 5 while dissolving it.

実施例 170屯転炉において、棒鋼、線材用AQキルド鋼を製
造する際に本発明を実施した。
Example 170 The present invention was carried out in the production of AQ killed steel for bars and wires in a tun converter.

本実施例に用いた溶銑温度および成分は第1表に示す通
りであり、スクラップ比を50%とし、第2表に示す成
分を有するコークスをC源として18屯装入して、送酸
速度3万N rn’ / Hで吹錬を行った。
The hot metal temperature and components used in this example are as shown in Table 1, the scrap ratio was 50%, 18 tons of coke having the components shown in Table 2 was charged as a C source, and the oxygen delivery rate was Blowing was performed at 30,000 Nrn'/H.

第1表 第  2 表 本実施例では、吹錬中に、排ガス流量をベンチュリー流
量計で、又排ガス成分を質量分析計を用いてそれぞ・れ
連続的に測定し、この測定値から前述の(1)式に基づ
きC燃焼量をもとめた。一方、過去の操業実績から、予
めC燃焼量と炉壁付着状況との相関関係をもとめた。
Table 1 Table 2 In this example, during blowing, the exhaust gas flow rate was continuously measured using a venturi flowmeter, and the exhaust gas components were continuously measured using a mass spectrometer. The amount of C combustion was determined based on equation (1). On the other hand, the correlation between the amount of C burnt and the state of adhesion to the furnace wall was determined in advance from past operational results.

第8図はその一実施例を示すもので、破線V+およびy
2の範囲内が正常な操業状態、つまり目標範囲である。
FIG. 8 shows an example of this, in which broken lines V+ and y
2 is the normal operating state, that is, the target range.

これに対し$8図における実線X1は、前記吹錬中の測
定値より求めたC燃焼量(以下実測C燃焼量と言う)の
推移を示すものである。
On the other hand, the solid line X1 in the $8 chart shows the transition of the C combustion amount (hereinafter referred to as the measured C combustion amount) determined from the measured values during the blowing.

本実施例では、吹錬開始して約20分後に実測C燃焼量
が目標範囲から下方にずれ始め、炉壁付着が発生したこ
とが検出された。そのまま約5分吹錬を続行したが、炉
壁付着状況は解消せず、寧ろ増加してΔWCが許容量の
500Kgを超えた為、a点で転炉炉体8を±5度の範
囲で揺動させる付着物除去操作を実施した。この結果、
スラグ巾の9と炉壁から落下した付着物5中のコークス
との反応によりC燃焼量は上昇し、目標範囲内に復帰し
た。それ以後は、C燃焼量はほぼ目標範囲に沿って推移
し、円滑なスクラップ溶解を行うことができた。
In this example, approximately 20 minutes after the start of blowing, the actually measured C combustion amount began to deviate downward from the target range, and it was detected that the furnace wall was attached. Blowing was continued for about 5 minutes, but the adhesion to the furnace wall did not resolve and instead increased, and ΔWC exceeded the allowable amount of 500 kg. A rocking operation was performed to remove deposits. As a result,
Due to the reaction between the slag width 9 and the coke in the deposit 5 that fell from the furnace wall, the C combustion amount increased and returned to within the target range. After that, the amount of C burned remained almost within the target range, and scrap melting could be carried out smoothly.

発明の効果 本発明の実施により、30%以」二の高スクラップ比の
もとでも安定した操業が可能となった。この為安価なス
クラップの多量使用により、製造コストを5〜lO%程
度低減できた。
Effects of the Invention By implementing the present invention, stable operation has become possible even at a high scrap ratio of 30% or more. Therefore, by using a large amount of inexpensive scrap, the manufacturing cost could be reduced by about 5 to 10%.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に基づく炉壁付着状況との相関関係を示
すもので、第1図(a)は炉壁付着状況と排ガス流量の
関係を、第1図(b)はO8と炉壁付着状況の関係を、
又第1図(C)はC燃焼量と炉壁付着状況との関係を示
す図である。第2図および第3図は、炉壁への付着物生
成状況を説明するための説明図、第4図はスクラップ溶
解量とC燃焼量との相関関係をしめす図、第5図〜第7
図は、付着物除去操作のそれぞれ異なった実施例を説明
するための説明図、第8図は本発明の具体的実施例に基
づく炉壁付着状況と、C燃焼量との相関量係および実測
C燃焼量の推移を示す図、第9図はスクラップ比と炉壁
付着状況との関係を示す図である。 1@・・鋼浴、2・a11ランス、3・・・スクラップ
、4・・・コークス、5・・・付着物、7・・・ノズル
、8・・−炉体、20−@Φランス、21.2211・
・ガス供給系、 221・・・噴出口。
Figure 1 shows the correlation between the furnace wall adhesion status based on the present invention, and Figure 1 (a) shows the relationship between the furnace wall adhesion status and the exhaust gas flow rate, and Figure 1 (b) shows the relationship between O8 and the furnace wall. The relationship between adhesion status,
Further, FIG. 1(C) is a diagram showing the relationship between the amount of C burnt and the state of adhesion to the furnace wall. Figures 2 and 3 are explanatory diagrams for explaining the state of deposit formation on the furnace wall, Figure 4 is a diagram showing the correlation between the amount of scrap melted and the amount of C burnt, and Figures 5 to 7
The figures are explanatory diagrams for explaining different embodiments of the deposit removal operation, and Fig. 8 shows the correlation between the furnace wall deposition situation and the amount of C burnt based on the specific embodiment of the present invention, and the actual measurement. FIG. 9 is a diagram showing the change in the amount of C burned, and FIG. 9 is a diagram showing the relationship between the scrap ratio and the state of adhesion to the furnace wall. 1@...Steel bath, 2.a11 lance, 3...Scrap, 4...Coke, 5...Deposition, 7...Nozzle, 8...-furnace body, 20-@Φ lance, 21.2211・
- Gas supply system, 221... spout.

Claims (1)

【特許請求の範囲】[Claims] コークスもしくは石炭等のC源と共にスクラップを30
重量%以上装入して、上もしくは上底よりO_2ガスを
供給する転炉操業法において、吹錬中に排ガス量および
排ガス成分を連続的に測定し、該測定値からC燃焼量、
スラグ中蓄積酸素量Os、および排ガス変化量のいずれ
か1つ、もしくは2以上を求め、予め求めておいた前記
C燃焼量、Os、および排ガス変化量と未溶解混合物の
炉壁付着状況との相関関係から炉壁付着状況を検出し、
該検出結果に応じて付着物除去操作を実施することを特
徴とする転炉操業法。
30 scrap with C source such as coke or coal
In a converter operation method in which O_2 gas is charged from the top or the upper bottom with a charge of more than % by weight, the exhaust gas amount and exhaust gas components are continuously measured during blowing, and from the measured values, the C combustion amount,
One or more of the amount of oxygen accumulated in the slag, Os, and the amount of change in exhaust gas are determined, and the previously determined amount of C combustion, Os, and amount of change in exhaust gas are compared with the state of adhesion of the undissolved mixture to the furnace wall. Detect the furnace wall adhesion status from the correlation,
A converter operating method characterized in that a deposit removal operation is performed according to the detection result.
JP59155545A 1984-07-27 1984-07-27 Operating method of converter Pending JPS6137908A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59155545A JPS6137908A (en) 1984-07-27 1984-07-27 Operating method of converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59155545A JPS6137908A (en) 1984-07-27 1984-07-27 Operating method of converter

Publications (1)

Publication Number Publication Date
JPS6137908A true JPS6137908A (en) 1986-02-22

Family

ID=15608398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59155545A Pending JPS6137908A (en) 1984-07-27 1984-07-27 Operating method of converter

Country Status (1)

Country Link
JP (1) JPS6137908A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH035280Y2 (en) * 1987-10-23 1991-02-12
JPH0459911A (en) * 1990-06-29 1992-02-26 Kawasaki Steel Corp Blowing method in bottom blow converter
CN110306005A (en) * 2018-03-20 2019-10-08 邯郸钢铁集团有限责任公司 A kind of high scrap ratio process for making suitable for 120~260 tons of converters

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH035280Y2 (en) * 1987-10-23 1991-02-12
JPH0459911A (en) * 1990-06-29 1992-02-26 Kawasaki Steel Corp Blowing method in bottom blow converter
CN110306005A (en) * 2018-03-20 2019-10-08 邯郸钢铁集团有限责任公司 A kind of high scrap ratio process for making suitable for 120~260 tons of converters

Similar Documents

Publication Publication Date Title
US6585929B1 (en) Direct smelting vessel
CA2010356C (en) Method for manufacturing molten metal containing ni and cr
US6171364B1 (en) Method for stable operation of a smelter reactor
CA1188518A (en) Metal refining processes
EP2877606B1 (en) Starting a smelting process
JPS6137908A (en) Operating method of converter
AU724385B2 (en) Method for controlling a smelting reduction process
US4348227A (en) Process for producing steel with low hydrogen content in a through-blowing oxygen converter
JPH01127613A (en) Method and apparatus for refining molten metal
JP2736555B2 (en) Metal smelting reduction method
JP2560669B2 (en) Method of manufacturing hot metal
JP3290844B2 (en) Scrap iron dissolution method
JP6947343B1 (en) Fluctuation detection method of solidified layer and blast furnace operation method
JPH08199213A (en) Production of molten iron
JP2666396B2 (en) Hot metal production method
JP2541200B2 (en) Converter for preventing melting of furnace wall due to high temperature gas
JPH0438815B2 (en)
JP2004115910A (en) Method for refining molten iron
AU773908B2 (en) Direct smelting vessel
JP3806282B2 (en) Method of melting iron-containing cold material
JPS6249347B2 (en)
JPS62192513A (en) Method and apparatus for melt reduction
JPH01283309A (en) Method for operating smelting reduction furnace
JPH08311525A (en) Method for melting steel scrap and melting furnace
JPH1161220A (en) Smelting reduction refining method of metallic oxide