JPH0227625B2 - TATEGATARONIOKERUROHEKIHYOMENGASURYUNOTSUYOSASUITEIHOHO - Google Patents

TATEGATARONIOKERUROHEKIHYOMENGASURYUNOTSUYOSASUITEIHOHO

Info

Publication number
JPH0227625B2
JPH0227625B2 JP11981983A JP11981983A JPH0227625B2 JP H0227625 B2 JPH0227625 B2 JP H0227625B2 JP 11981983 A JP11981983 A JP 11981983A JP 11981983 A JP11981983 A JP 11981983A JP H0227625 B2 JPH0227625 B2 JP H0227625B2
Authority
JP
Japan
Prior art keywords
temperature
furnace
wall
gas flow
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11981983A
Other languages
Japanese (ja)
Other versions
JPS6011169A (en
Inventor
Kozo Tanaka
Takeshi Yabata
Shigeru Takano
Takefumi Horiuchi
Takeo Kawate
Nobuyuki Nagai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP11981983A priority Critical patent/JPH0227625B2/en
Publication of JPS6011169A publication Critical patent/JPS6011169A/en
Publication of JPH0227625B2 publication Critical patent/JPH0227625B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/10Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring thermal variables

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)
  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)

Description

【発明の詳細な説明】 本発明は竪型炉、例えば高炉の操業における炉
内ガス流分布の推定方法に関し、詳しくは高炉の
羽口上部から炉胸部上位に亘つての炉壁表面ガス
流強さを長期間安定して推定し得る方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for estimating gas flow distribution in a furnace during the operation of a vertical furnace, such as a blast furnace, and more specifically, the present invention relates to a method for estimating gas flow distribution on the furnace wall surface from the upper part of the tuyere to the upper part of the furnace chest of the blast furnace. The present invention relates to a method for stably estimating the long-term stability.

高炉の最終目的は、良質の銑鉄を安定的に、能
率良く、しかも低コストで大量に生産することで
ある。この目的に沿つて、与えられた原・燃料条
件及び設備条件のもとに、原・燃料装入、溶融物
抽出、送風、炉頂ガス制御等の諸操作を行なつて
炉内反応を制御している。これらの制御を行なう
に当つては炉内状況を適確に把握することが大前
提であるにもかかわらず、高炉内は一種のブラツ
クボツクスであり、炉内状況を動的に把握するこ
とは困難なこととされていた。本発明は炉内を上
昇するガスの実態、特に炉壁表面のガス流強さを
高精度に推定把握する方法に関するもので、それ
によつて原・燃料装入や送風制御の強化を図ろう
とするものである。
The ultimate purpose of a blast furnace is to produce large quantities of high-quality pig iron stably, efficiently, and at low cost. In line with this purpose, under the given raw material/fuel conditions and equipment conditions, various operations such as raw material/fuel charging, melt extraction, air blowing, and top gas control are performed to control the reaction in the reactor. are doing. Although accurately understanding the situation inside the furnace is a major premise for performing these controls, the inside of the blast furnace is a kind of black box, and it is difficult to dynamically understand the situation inside the furnace. It was considered difficult. The present invention relates to a method for estimating and grasping the actual state of gas rising in a furnace, particularly the strength of gas flow on the surface of the furnace wall, with high accuracy, and thereby aims to strengthen raw material/fuel charging and air blow control. It is something.

高炉羽口から吹込まれた熱風はレースウエイに
おいて燃料を燃焼させ、還元性ガスとなつて朝顔
部から炉胸部を経て炉口部に至る間に鉄鉱石の還
元を進めつつ自らは所定の変化を受けて、最終的
には炉頂から排出される。即ち熱風中のO2
H2O成分はコークスや重油等と反応してCOやH2
に変化すると共に朝顔部から炉胸部を通過する間
にCO2やH2Oに変化しながら色々な炉内ガス流分
布を形成する。この炉内ガス流は高炉の中心部付
近を流れるいわゆる中心ガス流と高炉内壁表面
(表面近傍を含む)に沿つて流れる炉壁表面ガス
流(以下周辺ガス流と称す)とに大別して捉える
ことができる。一般的に、中心ガス流が過多にな
ると通気性の面で余裕でき、炉壁への熱負荷も軽
減できるが、ガスの利用率は悪くなり、燃料比が
上昇する傾向が現われる。一方、周辺ガス流が過
多になるとガスの利用率は高くなるが、通気性が
悪化し、炉壁への熱負荷も大きくなる傾向が現わ
れる。そこで実操業においては、これら両者の兼
ね合いを考慮して炉内ガス流分布の制御が行なわ
れている。
The hot air blown in from the blast furnace tuyere burns fuel in the raceway, becomes reducing gas, and progresses through the reduction of the iron ore as it travels from the morning glory section through the furnace chest to the furnace mouth, while also undergoing certain changes. Finally, it is discharged from the top of the furnace. In other words, O 2 in hot air and
The H 2 O component reacts with coke, heavy oil, etc. to produce CO and H 2
While passing from the morning glory section to the furnace chest, it changes into CO 2 and H 2 O, forming various gas flow distributions in the furnace. This in-furnace gas flow can be roughly divided into the so-called core gas flow, which flows near the center of the blast furnace, and the furnace wall surface gas flow, which flows along the blast furnace inner wall surface (including the vicinity of the surface) (hereinafter referred to as peripheral gas flow). Can be done. Generally, when the central gas flow becomes excessive, there is a margin in terms of ventilation and the heat load on the furnace wall can be reduced, but the gas utilization rate deteriorates and the fuel ratio tends to increase. On the other hand, when the surrounding gas flow becomes excessive, the gas utilization rate increases, but there is a tendency for the ventilation to deteriorate and the heat load on the furnace wall to increase. Therefore, in actual operation, the in-furnace gas flow distribution is controlled in consideration of the balance between the two.

ところでこのようなガス流分布の制御は、通常
炉口部での周辺ガス流強さを温度基準で実測(中
心流の実測でもある)し、その円周方向の偏り具
合及び中心ガス流との比率に応じてコークス、鉱
石類の装入物の装入制御(方向及び分配量の制
御)することにより行なつている。しかし炉内反
応に直接影響するのは朝顔部から炉胸部中位にか
けてのガス流分布であるから、当該位置での周辺
ガス流の実測データをも制御要素とする方が好ま
しいことは言うまでもない。これまでにも炉胸部
中位〜下位に検出端を取付けて、炉内の周辺ガス
流強さを実測する試みがなされたが、検出端に対
する熱負荷があまり厳し過ぎて信頼できるデータ
を安定して収集できるまでには至つていない。
By the way, such control of gas flow distribution is usually achieved by actually measuring the strength of the surrounding gas flow at the furnace mouth using a temperature standard (this is also an actual measurement of the center flow), and then determining its deviation in the circumferential direction and its relationship with the center gas flow. This is done by controlling the charging of coke and ores (direction and distribution amount control) according to the ratio. However, since it is the gas flow distribution from the morning glory section to the middle of the furnace chest that directly affects the reaction in the furnace, it goes without saying that it is preferable to also use actual measurement data of the surrounding gas flow at that position as a control element. Attempts have been made to measure the strength of gas flow around the reactor by installing a detection end in the middle to lower part of the reactor chest, but the thermal load on the detection end was too severe and it was difficult to obtain stable reliable data. It has not yet reached the point where it can be collected.

又炉況管理として特に問題となるのが炉壁熱負
荷であつて、実炉操業の安全性且つ安全性を維持
する上で炉壁の損耗状況を知り、補修時期を把握
することは勿論必要であるが、同時に炉壁を冷却
したりミルク状耐火物を注入することによつて損
耗を積極的に防止することも必要である。この場
合冷却効果を高める為には、壁内の温度変動だけ
でなく周辺ガス流分布を知り、その状況をも加味
した冷却制御を行なうことが好ましい。それは、
壁内の温度変動は周辺ガス流分布よりもかなり遅
れて伝播するので、この壁内温度変動のみに頼つ
て制御したのでは必ずしも十分な冷却効率が得ら
れないからである。そこでこの様な見地からして
も炉壁熱負荷の比較的厳しい部位、即ち朝顔部か
ら炉胸部にかけての周辺ガス流強さの実測が求め
られている。
In addition, the heat load on the furnace wall is a particular problem in furnace condition management, and it is of course necessary to know the wear and tear of the furnace wall and know when to repair it in order to maintain the safety of actual furnace operation. However, at the same time, it is also necessary to actively prevent wear and tear by cooling the furnace walls and injecting milky refractories. In this case, in order to enhance the cooling effect, it is preferable to know not only the temperature fluctuation within the wall but also the surrounding gas flow distribution, and perform cooling control that also takes this situation into consideration. it is,
This is because temperature fluctuations within the wall propagate much later than the surrounding gas flow distribution, so controlling only by relying on the temperature fluctuations within the wall will not necessarily provide sufficient cooling efficiency. Therefore, from this point of view, there is a need to actually measure the strength of the gas flow around the area where the heat load on the furnace wall is relatively severe, that is, from the morning glory section to the furnace chest.

本発明はこうした状況下になされたものであ
り、羽口上部特に朝顔部から炉胸部に亘つての周
辺ガス流強さを長期間に亘つて正確に推定するこ
とにより炉内ガス制御の精度を高めて炉内反応性
を向上せしめると共に、炉壁熱負荷等の炉況管理
を一層効率良く行なうことができる様な周辺ガス
流強さの推定方法の提供を目的とするものであ
る。
The present invention was made under these circumstances, and it is possible to improve the accuracy of gas control in the furnace by accurately estimating the strength of the surrounding gas flow from the upper part of the tuyere, especially from the morning glory part to the furnace chest, over a long period of time. The object of the present invention is to provide a method for estimating the strength of the surrounding gas flow, which can improve the reactivity in the furnace and also enable more efficient management of the furnace condition such as the heat load on the furnace wall.

しかして本発明に係る周辺ガス流強さの推定方
法とは、壁厚方向に3以上の感温部を有し、壁厚
方向の異なる位置での温度を検知する測温センサ
ーを、竪型炉の周方向耐火壁中に適当数埋設し、
各測温センサーにより得られた炉壁内の温度変動
信号と炉内の温度変動信号との相関々係から耐火
壁の現在内面位置を推定し、該推定内面位置に相
当する炉内側壁温及び該推定内面位置から比較的
近い測温センサー上の一点に相当する炉外側壁温
を夫々求め、更に前記推定内面位置と前記比較的
近い測温センサー上の一点の間を流れる熱流を各
測温センサーについて算出し、その平均値の経時
的変化をもつて炉壁表面ガス流強さの定量的な経
時的変化を推定する点に要旨を有するものであ
る。
However, the method for estimating the strength of the surrounding gas flow according to the present invention is to use a vertical temperature sensor that has three or more temperature sensing parts in the wall thickness direction and detects temperatures at different positions in the wall thickness direction. Embed an appropriate number in the circumferential refractory wall of the furnace,
The current inner surface position of the refractory wall is estimated from the correlation between the temperature fluctuation signal in the furnace wall and the temperature fluctuation signal in the furnace obtained by each temperature sensor, and the inner wall temperature and temperature corresponding to the estimated inner surface position are estimated. The furnace outer wall temperature corresponding to a point on the temperature sensor relatively close to the estimated inner surface position is determined, and the heat flow flowing between the estimated inner surface position and a point on the temperature sensor relatively close is determined for each temperature measurement. The gist of this method is to estimate quantitative changes in the gas flow strength on the furnace wall surface over time based on the changes in the average value over time.

以下図面を参照しながら本発明方法の構成及び
作用効果を説明するが、理解の便を考慮して構成
要件毎に順を追つて説明する。即ち本発明方法で
は、まず、 (1) 壁厚方向に3以上の感温部を有し、壁厚方向
の異なる位置での温度を検知する測温センサー
を、高炉の耐火壁中の周方向に適当数埋設し、
各測温センサーにより温度情報を得る。即ち第
1図は本発明方法を高炉の炉胸部中位に適用し
た場合の概略説明図で、Bは本発明に使用する
測温センサー(以下単にセンサーという)を示
し、該センサーBは鉄皮C及びスタンプ層Dを
貫いて耐火壁Wのほぼ内面に及ぶ位置まで又は
貫通する様に高炉の周方向に適当数埋設されて
いる。又センサーとしては壁厚方向に少なくと
も3以上の感温部を有するものであれば型式、
構造を特に問われないが、この様なセンサーの
好ましい一例としてのセンサーBについて説明
する。即ち第2図は該センサーBの一部破断斜
視図を示し、又第3図は第2図の展開断面相当
図を示している。これらの図において1は外套
シース管でセンサーB全体の保護部材としての
役割を果す。2aはシース型熱電対で、更に該
熱電対2aには熱電効果を示す1対の金属線
4,4′が挿通され、その先端はシース内にお
いて測温接点即ち感温部P1,P2,……P6(以下
代表的に言うときはPと表記する)を構成す
る。そしてこれらの感温部Pは長さ方向の異な
る位置を占める様に構成され、図では炉内側
(I側)から鉄皮側(O側)へかけてほぼ等ピ
ツチで長さ方向の位置を変更してP1,P2,…
…P6を設けている。更に感温部Pの先端には、
シース型熱電対2aと全く同一素材からなるシ
ース型熱電対2bをダミーとして接続する(図
中の6は接続部を示す)。又3は外套シース管
1内に充填されてなる耐火性の絶縁材であつ
て、熱じよう乱の影響をできるだけ抑えるため
に耐火壁特性に合つた熱伝導率を有するものを
使用する。従つてこの様なセンサーBにおける
各感温部Pでの測温性能は精度的にも耐久度的
にも十分信頼のおけるものといえる。尚本出願
人の提案に係る実開昭57−81531号のセンサー
を使用すれば耐火壁の損耗にかかわらず長期間
安全に使用することができる。
The configuration and effects of the method of the present invention will be described below with reference to the drawings, and each component will be explained in order for ease of understanding. That is, in the method of the present invention, first, (1) a temperature sensor having three or more temperature sensing parts in the wall thickness direction and detecting temperatures at different positions in the wall thickness direction is installed in the circumferential direction of the refractory wall of the blast furnace; Bury an appropriate number of
Obtain temperature information from each temperature sensor. That is, FIG. 1 is a schematic explanatory diagram when the method of the present invention is applied to the middle part of the furnace chest of a blast furnace. A suitable number of them are buried in the circumferential direction of the blast furnace so as to penetrate through C and the stamp layer D and reach or penetrate almost the inner surface of the refractory wall W. In addition, if the sensor has at least 3 or more temperature sensing parts in the wall thickness direction, the model
Sensor B will be described as a preferable example of such a sensor, although its structure is not particularly limited. That is, FIG. 2 shows a partially cutaway perspective view of the sensor B, and FIG. 3 shows a developed cross-sectional view corresponding to FIG. 2. In these figures, reference numeral 1 denotes a jacket sheath tube that serves as a protective member for the entire sensor B. Reference numeral 2a denotes a sheath type thermocouple, and a pair of metal wires 4 and 4' exhibiting a thermoelectric effect are inserted through the thermocouple 2a, and the tips of the metal wires 4 and 4' serve as temperature measuring junctions, that is, temperature sensing parts P 1 and P 2 within the sheath. ,...P 6 (hereinafter referred to as P when speaking representatively) constitutes. These temperature sensing parts P are configured to occupy different positions in the length direction, and in the figure, the positions in the length direction are approximately equal from the inside of the furnace (I side) to the shell side (O side). Change P 1 , P 2 ,…
…P 6 has been established. Furthermore, at the tip of the temperature sensing part P,
A sheathed thermocouple 2b made of the same material as the sheathed thermocouple 2a is connected as a dummy (6 in the figure indicates a connection part). Further, 3 is a fire-resistant insulating material filled in the outer sheath tube 1, which has a thermal conductivity suitable for the fire-resistant wall characteristics in order to suppress the influence of thermal disturbances as much as possible. Therefore, it can be said that the temperature measurement performance of each temperature sensing part P in such a sensor B is sufficiently reliable in terms of accuracy and durability. If the sensor proposed by the present applicant, disclosed in Japanese Utility Model Application No. 57-81531, is used, it can be safely used for a long period of time regardless of wear and tear on the fireproof wall.

(2) 各感温部より得られた炉壁内の温度変動信号
と炉内の温度変動信号との相関々係から耐火壁
(付着物を含む)の現在内面位置即ち壁厚lw
把握する: 炉壁内に測温センサーを埋設して壁厚方向で
の異なる位置における温度を測定し、その温度
情報に基づいて耐火壁の内面位置を推定するこ
と等については、従来からも幾つかの提案がな
されているが、本発明者等の開発に係る下記方
法(仮称:トリガーレスボンス解析法:特公昭
57−51444号)は、極めて高精度に内面位置を
推定し得る方法であり、特に好ましいのは、本
発明においてもこの方法を利用することとし
た。
(2) Ascertain the current inner surface position of the refractory wall (including deposits), that is, the wall thickness l w , from the correlation between the temperature fluctuation signal within the furnace wall obtained from each temperature sensing part and the temperature fluctuation signal inside the furnace. There have been several methods in the past, such as embedding temperature sensors in the furnace wall to measure the temperature at different positions in the wall thickness direction, and estimating the inner surface position of the refractory wall based on the temperature information. However, the following method (tentative name: Triggerless Bonus Analysis Method: Tokkosho
No. 57-51444) is a method that can estimate the inner surface position with extremely high accuracy, and it is particularly preferable to use this method in the present invention.

即ち第4図はトリガーレスポンス解析法の説
明図で、P0,P1,P3,……はセンサーBの測
温点を示し、T0,T1,T2,T3,…は各測温点
において検知されている温度を示すが、本方法
においては、各測温点における検知温度の絶対
値を利用せず、下記の様に解析する。即ち第4
図の下方に示すグラフは、縦軸に温度、横軸に
時間をとつたもので、曲線T1は測温点P1にお
ける検知温度の時間的変化、曲線T2は測温点
P2における検知温度の時間的変化(以下同様
…)を表わす。そして図示した温度変化は、縦
軸の右外側に示したT0点での温度変化(瞬間
的上昇)に対応する変化で、T0点での温度変
化はトリガー信号として検知される。
That is, Fig. 4 is an explanatory diagram of the trigger response analysis method, where P 0 , P 1 , P 3 , ... indicate the temperature measurement points of sensor B, and T 0 , T 1 , T 2 , T 3 , ... indicate each temperature measurement point. Although it shows the temperature detected at the temperature measurement point, in this method, the absolute value of the detected temperature at each temperature measurement point is not used, but the analysis is performed as follows. That is, the fourth
The graph shown at the bottom of the figure shows temperature on the vertical axis and time on the horizontal axis. Curve T 1 is the temporal change in detected temperature at temperature measurement point P 1 , and curve T 2 is the temperature measurement point P 1.
It represents the temporal change in the detected temperature at P 2 (the same applies hereafter). The illustrated temperature change corresponds to the temperature change (instantaneous rise) at the T 0 point shown on the outer right side of the vertical axis, and the temperature change at the T 0 point is detected as a trigger signal.

従つてトリガー信号として検知された時を横
軸の零点とし、各測温点における刻々の温度変
化を追跡していくと、各点での検知温度がピー
クを示す時刻は、鉄皮C側ほど遅く表われる。
この遅れを遅れ時間と称する。
Therefore, if we set the time when the trigger signal is detected as the zero point on the horizontal axis and track the momentary temperature changes at each temperature measurement point, the time when the detected temperature at each point peaks will be closer to the side of the steel shell C. Appears late.
This delay is called a delay time.

そして各測温点の間隔は、センサー埋め込み
時に設計される通りであるから、l2,l3,l4
びl5は既知であり、又高炉操業の最初はl1も承
知できている。T0の変化は直接センサーによ
つて検知することもできるし、該温度変化の発
生時刻とトリガー信号として検知される他の検
出端との時刻の差を予じめ承知しておけば、以
下に説明する解析における零点補正を行なつて
おくことができる。さて第5図中のカーブ
〔X〕は、上記の如く零点補正を行なつた結果
得られたもので、P0,P1,P2,…は夫々の測
温点を示し、各測温点で実測された遅れ時間を
プロツトして得たものである。そしてカーブ
〔X〕の横軸との交点Pxは、この場合零点であ
つて、P0点は耐火壁の内面位置に相当するこ
とが分かる。
Since the spacing between each temperature measurement point is as designed when the sensor is embedded, l 2 , l 3 , l 4 and l 5 are known, and l 1 is also known at the beginning of blast furnace operation. Changes in T 0 can be detected directly by a sensor, and if you know in advance the time difference between the time when the temperature change occurs and the other detection end detected as a trigger signal, you can do the following: It is possible to perform zero point correction in the analysis described in . Now, the curve [X] in Figure 5 is obtained as a result of the zero point correction as described above, and P 0 , P 1 , P 2 , ... indicate the respective temperature measurement points, and each temperature measurement point is This is obtained by plotting the delay time actually measured at the point. It can be seen that the intersection point P x of the curve [X] with the horizontal axis is a zero point in this case, and the P 0 point corresponds to the inner surface position of the fireproof wall.

さて操炉を続行して耐火壁の損耗が進み、
P0点のみならずP1点を越えて損耗してきたと
するとP2〜P5の各点の横軸位置をカーブ〔X〕
の場合と同じにとりつつ遅れ時間をプロツトし
たのがカーブ〔Y〕の実線部分であつて、P2
点から先を鎖線にて外挿し、横軸との交点Py
を得る。このPy点は遅れ時間が零の点に相当
し、耐火壁の最内面がどの位置にあるかを推知
することができる。そして損耗が更に進み、損
耗が進んだ分、P3〜P5点と耐火壁最内面との
距離が短かくなつているので、それら各点にお
ける遅れ時間が短くなつてカーブ〔Z〕は更に
右下方向へシフトしてくる。そしてこの場合も
鎖線で示す如く外挿すれば、現在時点での零点
(即ち最内面位置)を推知することが可能にな
る。
Now, as the furnace continues to operate, the fireproof walls are worn out.
If the wear has exceeded not only the P 0 point but also the P 1 point, curve the horizontal axis position of each point from P 2 to P 5 [X]
The solid line part of the curve [Y] is the delay time plotted in the same manner as in the case of P 2
Extrapolate from the point to the chain line and find the intersection Py with the horizontal axis
get. This Py point corresponds to the point where the delay time is zero, and it is possible to infer where the innermost surface of the fireproof wall is located. Then, the wear progresses further, and as the wear progresses, the distance between points P 3 to P 5 and the innermost surface of the fireproof wall becomes shorter, so the delay time at each point becomes shorter, and the curve [Z] becomes even more It will shift towards the lower right. In this case as well, by extrapolating as shown by the chain line, it is possible to estimate the current zero point (ie, the innermost position).

(3) (2)により推定された壁内面位置lwに相当する
壁温Twを求める:即ち第6図において横軸
(壁厚を表わす)のlw点に相当する点(温度
Tw)としてT2〜T6測温点を用いたn次式曲線
を外挿して求めるか、もしくは、P1点の測温
情報でも良い。さらには、壁内面位置の状態に
よつては次の様にしてもよい。即ち第7図に示
す様に壁内面位置lw′に相当するn次式外挿曲
線上の点を読むことにより壁温Tw′は一応推定
できるが、近似曲線は実測点P2に近づくほど
その近似率は高くなるので、図示の如く、僅か
にP2点寄りのTw″値を採用することも可能であ
る。
(3) Find the wall temperature T w corresponding to the wall inner surface position l w estimated by (2): In other words, in Fig. 6, the point (temperature
T w ) may be obtained by extrapolating an n-dimensional curve using temperature measurement points T 2 to T 6 , or temperature measurement information at point P 1 may be used. Furthermore, depending on the state of the wall inner surface position, the following method may be used. That is, as shown in Fig. 7, the wall temperature T w ' can be estimated by reading the point on the n-dimensional extrapolated curve corresponding to the wall inner surface position l w ', but the approximated curve approaches the actual measurement point P2 . As the approximation rate increases, it is also possible to adopt a T w ″ value that is slightly closer to the P2 point, as shown in the figure.

(4) 上記壁内面位置lwに比較的近い感温部位置ls
に相当する壁温Tsを決定する:即ち第6,7
図においてlsとしては例えばP2又はP3とし、
夫々対応する壁温Tsがn次式曲線上の実測点
T2又はT3として決まる。但しP2又はP3から離
れた任意の点P′2又はP′3についてn次式を内挿
することにより推定温度T′2又はT′3を求めても
よい。
(4) Temperature sensing part position l s relatively close to the above wall inner surface position l w
Determine the wall temperature T s corresponding to: 6th and 7th
In the figure, l s is, for example, P 2 or P 3 ,
The corresponding wall temperature T s is the actual measurement point on the n-dimensional curve.
Determined as T 2 or T 3 . However, the estimated temperature T ' 2 or T' 3 may be obtained by interpolating the n-th order equation for any point P' 2 or P' 3 that is distant from P 2 or P 3 .

(5) 壁温TwとTsの間を流れる熱流Qwsを次式
式より計算する: Qws=λ/lw−ls(Tw−Ts) …… 〔但し、λはセンサーBの熱伝導率(kcal/
m・hr・℃)尚TwとしてT″w値を採用すると
きは次式′によればよい Qws=λ/lw−ls(T′w−Ts) ……′〕 (6) 上記(1)〜(5)の計算操作を周方向に取付けられ
たセンサーの全てについて行ない、(Qws1
(Qws2,……を求める。
(5) Calculate the heat flow Q ws flowing between the wall temperature T w and T s using the following formula: Q ws = λ/l w −l s (T w − T s ) ... [However, λ is the sensor Thermal conductivity of B (kcal/
m・hr・℃) When using the T″ w value as Tw , use the following formula: Q ws = λ/l w −l s (T′ w −T s ) ……′〕 (6 ) Perform the calculation operations (1) to (5) above for all sensors installed in the circumferential direction, and calculate (Q ws ) 1 ,
Find (Q ws ) 2 ,...

この様にして得られた熱流(Qws1,(Qws2
…の変化と実際の炉内ガス挙動との対応性を検討
した所、下記する様に定性的に一致することが分
かり、上記(1)〜(6)の計算操作を骨子とする本発明
が周辺ガス流の推定方法としてすぐれたものであ
ることが確認された。即ち炉内ガス挙動の実測に
当つては、これまで炉口部にいわゆるスキンフロ
ー温度計を周方向に適当数取付けてこれらの温度
計により検知された各スキンフロー温度の単独値
又は平均値の経時的変化を把握することにより、
その推定を行なつている。そこで本発明者等も熱
流(Qws1,(Qws2,…についての平均値、即ち
1/non=1 (Qwsoの経時的変化を捉えて前述のスキ ンフロー温度の経時的変化との対応性を調べた。
第8図はスキンフロー温度の経時的変化を示すグ
ラフ、第9図は熱流平均値の経時的変化を示すグ
ラフであり、両者の経時的変化の挙動は定性的に
一致していることが分かる。従つて前述の熱流平
均値1/non=1 (Qwsoの経時的変化を捉えることに より、炉胸部上位から下方位の周辺ガス流を長期
間正確に推定することができるという確信を得
た。
The heat flow obtained in this way (Q ws ) 1 , (Q ws ) 2 ,
After examining the correspondence between the changes in ... and the actual gas behavior in the reactor, it was found that they qualitatively match as shown below. It was confirmed that this method is an excellent method for estimating ambient gas flow. In other words, in actual measurement of gas behavior in the furnace, an appropriate number of so-called skin flow thermometers were installed in the circumferential direction at the furnace mouth, and the individual value or average value of each skin flow temperature detected by these thermometers was measured. By understanding changes over time,
We are making that estimate. Therefore, the present inventors also captured the average value of heat flow (Q ws ) 1 , (Q ws ) 2 , ..., that is, 1/n on=1 (Q ws ) o , and calculated the above-mentioned skin flow. We investigated the correspondence with changes in temperature over time.
Figure 8 is a graph showing the change in skin flow temperature over time, and Figure 9 is a graph showing the change in heat flow average value over time, and it can be seen that the behavior of both changes over time is qualitatively consistent. . Therefore, by capturing the changes in the heat flow average value 1/n on=1 (Q ws ) o mentioned above over time, it is possible to accurately estimate the surrounding gas flow from the upper part of the reactor chest to the lower part over a long period of time. I was convinced.

又第10図は、前述の(3)の計算操作の段階で各
センサーについて求められた、壁内面位置(lw
,(lw2,…に相当する壁温(Tw1,(Tw2,…
の平均値、即ち1/non=1 (Twoの経時的変化を示す グラフであるが、この経時的変化も第8図に示す
スキンフロー温度の経時的変化と定性的に一致す
ることが確認された。ただこの場合は耐火壁の炉
内側における直接的な熱の動き即ち熱流の変化が
考慮されていないので、その分精度上の問題があ
るが、操炉状況によつては上記内壁温度平均値の
経時的変化をもつて周辺ガス流を推定し、その推
定値を炉内ガス制御に役立たせることも可能であ
る。
Also, Figure 10 shows the wall inner surface position (l w ) obtained for each sensor in the calculation step (3) above.
The wall temperature (T w ) 1 , (T w ) 2 , … corresponding to 1 , (l w ) 2 , …
This is a graph showing the change over time of the average value of 1/n on=1 (T w ) o , but this change over time is also qualitatively similar to the change over time of the skin flow temperature shown in Figure 8. It was confirmed that they matched. However, in this case, the direct movement of heat inside the furnace inside the refractory wall, that is, the change in heat flow, is not taken into account, so there is a problem with accuracy, but depending on the furnace operating conditions, the average value of the inner wall temperature mentioned above may be It is also possible to estimate the surrounding gas flow based on changes over time and use the estimated value for controlling the gas in the reactor.

上記では平均値による制御を述べたが、平均値
がスキンフロー温度とよく対応しているというこ
とから、周方向の各測定値を個々に捉えて制御す
れば周方向における偏流の解消にも資することが
可能であり、操炉管理の精度向上に資するところ
は極めて大きい。
In the above, control using the average value was described, but since the average value corresponds well to the skin flow temperature, if each measured value in the circumferential direction is captured and controlled individually, it will also help eliminate uneven flow in the circumferential direction. This greatly contributes to improving the accuracy of reactor operation management.

尚上記実施はあくまで代表例であつて本発明を
限定する性質のものではなく、前述の趣旨に沿う
範囲内で適当に変更して実施することも本発明の
技術的範囲に含まれることは言うまでもない。例
えば測温センサーの型式、種数、取付位置、取付
個数等を適当に変更することは全て自由である。
更に上述の説明では竪型炉として高炉に主眼をお
いたが、これに限定されないことは言うまでもな
く、要するに操業に行なうに当つて炉内ガス流の
状況を把握する必要のあらゆる竪型炉、特に高温
竪型炉に対して良好に適用され得るものである。
It should be noted that the above implementation is merely a representative example and does not limit the present invention, and it goes without saying that implementation with appropriate modifications within the scope of the above-mentioned spirit is also included in the technical scope of the present invention. stomach. For example, the model, number of types, mounting position, number of temperature sensors, etc. can be changed as appropriate.
Furthermore, in the above explanation, the main focus was on blast furnaces as vertical furnaces, but it goes without saying that this is not limited to this. It can be well applied to high-temperature vertical furnaces.

本発明は以上の様に構成されるので、羽口上部
特に朝顔部から炉胸部に亘ての周辺ガス流強さを
長期間正確に推定できることとなり、炉内ガス制
御の精度を高めて炉内反応性を向上せしめると共
に、炉壁熱負荷等の炉況を一層効率良く管理しつ
つ竪型炉の操業を行なえる様になつた。
Since the present invention is configured as described above, it is possible to accurately estimate the strength of the surrounding gas flow from the upper part of the tuyere, especially from the morning glory part to the furnace chest, for a long period of time. In addition to improving reactivity, it has become possible to operate a vertical furnace while managing furnace conditions such as furnace wall heat load more efficiently.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を高炉の炉胸部中位に適用
した場合の概略説明図、第2図は本発明方法を実
施するために使用した測温センサーの一部破断斜
視図、第3図は第2図の展開断面相当図、第4図
は耐火壁内面の温度変化を示す説明図、第5図は
耐火物内壁側からの距離と遅れ時間の関係を示す
グラフ、第6,7図は損耗しつつある壁内面位置
に相当する壁温の推定図、第8図はスキンフロー
温度平均値の経時的変化を示すグラフ、第9図は
熱流平均値の経時的変化を示すグラフ、第10図
は壁内面位置に相当する各壁温の平均値の経時的
変化を示すグラフである。 B……測温センサー、W……耐火壁、P1〜P6
……感温部。
Fig. 1 is a schematic explanatory diagram when the method of the present invention is applied to the middle part of the chest of a blast furnace, Fig. 2 is a partially cutaway perspective view of a temperature sensor used to carry out the method of the present invention, and Fig. 3 is a diagram corresponding to the developed cross section of Figure 2, Figure 4 is an explanatory diagram showing temperature changes on the inner surface of the refractory wall, Figure 5 is a graph showing the relationship between distance from the inner wall of the refractory and delay time, and Figures 6 and 7. 8 is a graph showing the change in the average skin flow temperature over time. FIG. 9 is a graph showing the change in the average heat flow value over time. FIG. 10 is a graph showing changes over time in the average value of each wall temperature corresponding to the wall inner surface position. B... Temperature sensor, W... Fireproof wall, P 1 to P 6
...Temperature sensing part.

Claims (1)

【特許請求の範囲】[Claims] 1 壁厚方向に3以上の感温部を有し、壁厚方向
の異なる位置での温度を検知する測温センサー
を、竪型炉の耐火壁中の周方向に適当数埋設し、
測温センサーにより得られた炉壁内の温度変動信
号と炉内の温度変動信号の相関々係から耐火壁の
現在内面位置を推定し、該推定内面位置に相当す
る炉内側壁温及び該推定内面位置から比較的近い
測温センサー上の一点に相当する炉外側壁温を求
め、前記推定内面位置と前記比較的近い測温セン
サー上の一点の間を流れる熱流を各測温センサー
について算出し、その経時的変化をもつて炉壁表
面ガス流の経時的変化を推定することを特徴とす
る竪型炉における炉壁表面ガス流の強さ推定方
法。
1. An appropriate number of temperature sensors having three or more temperature-sensing parts in the wall thickness direction and detecting temperatures at different positions in the wall thickness direction are buried in the circumferential direction in the refractory wall of the vertical furnace,
The current inner surface position of the refractory wall is estimated from the correlation between the temperature fluctuation signal inside the furnace wall obtained by the temperature sensor and the temperature fluctuation signal inside the furnace, and the furnace inner wall temperature corresponding to the estimated inner surface position and the estimated inner wall temperature are estimated. The furnace outer wall temperature corresponding to a point on the temperature sensor relatively close to the inner surface position is determined, and the heat flow flowing between the estimated inner surface position and the relatively nearby point on the temperature sensor is calculated for each temperature sensor. , a method for estimating the strength of a gas flow on the surface of a furnace wall in a vertical furnace, characterized by estimating the change over time of the gas flow on the surface of the furnace wall based on the change over time.
JP11981983A 1983-06-30 1983-06-30 TATEGATARONIOKERUROHEKIHYOMENGASURYUNOTSUYOSASUITEIHOHO Expired - Lifetime JPH0227625B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11981983A JPH0227625B2 (en) 1983-06-30 1983-06-30 TATEGATARONIOKERUROHEKIHYOMENGASURYUNOTSUYOSASUITEIHOHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11981983A JPH0227625B2 (en) 1983-06-30 1983-06-30 TATEGATARONIOKERUROHEKIHYOMENGASURYUNOTSUYOSASUITEIHOHO

Publications (2)

Publication Number Publication Date
JPS6011169A JPS6011169A (en) 1985-01-21
JPH0227625B2 true JPH0227625B2 (en) 1990-06-19

Family

ID=14771027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11981983A Expired - Lifetime JPH0227625B2 (en) 1983-06-30 1983-06-30 TATEGATARONIOKERUROHEKIHYOMENGASURYUNOTSUYOSASUITEIHOHO

Country Status (1)

Country Link
JP (1) JPH0227625B2 (en)

Also Published As

Publication number Publication date
JPS6011169A (en) 1985-01-21

Similar Documents

Publication Publication Date Title
US4442706A (en) Probe and a system for detecting wear of refractory wall
CN108220513A (en) Energy Conservation of Blast Furnace furnace retaining method
JPH0227625B2 (en) TATEGATARONIOKERUROHEKIHYOMENGASURYUNOTSUYOSASUITEIHOHO
JP4119620B2 (en) In-furnace situation estimation method for blast furnace
JP4081248B2 (en) Control method of the lower part of the blast furnace
CN101798609A (en) Method for measuring lining temperature by adopting thermo-couple to diagnose lining conditions of blast-furnace bottom and lower hearth
KR102511007B1 (en) Apparatus for measuring molten iron temperature of blast furnace
JP2867918B2 (en) Method for estimating effective thickness of slag coating in smelting vessel
RU2044058C1 (en) Method for control of erosion of blast-furnace well
JP2530059Y2 (en) Wall electrode of DC arc furnace
JP3990560B2 (en) Blast furnace bottom potential difference measuring apparatus and soot level evaluation method in blast furnace
JP2000192123A (en) Method for measuring molten material level in furnace hearth part of blast furnace and instrument therefor
JP2718305B2 (en) Estimation method of erosion line at blast furnace bottom
JPH04365807A (en) Method for predicting lowering of furnace heat accompanying wall falling in high temperature furnace
JP2003155507A (en) Method for estimating pig iron slag height in blast furnace and its estimating instrument
JPS6011113A (en) Method for assuming position of thermal furnace core in shaft furnace
JPS6223235B2 (en)
JPS62238308A (en) Temperature measuring method for bottom part of blast furnace
JP2002013881A (en) Slag level detecting method and method for controlling lance based on it
JPS62257004A (en) Method for detecting eroded state of furnace floor wall of shaft furnace
JPH01198412A (en) Method for presuming remaining slag quantity in blast furnace
JPS6361367B2 (en)
JPS63210219A (en) Prediction of furnace heat in blast furnace
JPS6361885A (en) Method of determining state of damage of high-temperature furnace refractory wall
JPS63210216A (en) Method for prediction of furnace heat in blast furnace