JPS6011113A - Method for assuming position of thermal furnace core in shaft furnace - Google Patents

Method for assuming position of thermal furnace core in shaft furnace

Info

Publication number
JPS6011113A
JPS6011113A JP11982083A JP11982083A JPS6011113A JP S6011113 A JPS6011113 A JP S6011113A JP 11982083 A JP11982083 A JP 11982083A JP 11982083 A JP11982083 A JP 11982083A JP S6011113 A JPS6011113 A JP S6011113A
Authority
JP
Japan
Prior art keywords
thermal
furnace
horizontal
core
vertical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11982083A
Other languages
Japanese (ja)
Inventor
Takeo Kawate
川手 剛雄
Masami Konishi
正躬 小西
Nobuyuki Nagai
信幸 永井
Teruhisa Uehara
上原 輝久
Takeshi Yabata
矢場田 武
Shigeru Takano
高野 成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP11982083A priority Critical patent/JPS6011113A/en
Publication of JPS6011113A publication Critical patent/JPS6011113A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant

Abstract

PURPOSE:To administrate more precisely a furnace operation and to maintain a reaction in the furnace satisfactorily for a long time by assuming and grasping accurately a thermal furnace core from bosh part to shaft part in horizontal and vertical directions for a long time. CONSTITUTION:Suitable numbers of temp. measuring sensors B having >=2 temp. sensitive parts P1-P6 in a wall thickness direction and for detecting temperatures at different positions in said direction are embedded in a circumferential direction in refractory wall of shaft furnace, and the thermal center in the furnace is obtained by calculation from temp. information groups obtained by each temp. measuring sensor. Next, the thermal center or thermal center of gravity obtained by calculation at each level is made as the thermal furnace core in horizontal direction in each level. The vertical direction distribution of the horizontal direction thermal furnace core in each level is grasped. Furthermore a deviation of thermal furnace core at present time is assumed from true verticality and the horizontal furnace core. Thereby, the position of the thermal furnace core from above the tuyere to the throat can be assumed and grasped exactly in horizontal and vertical directions for a long time.

Description

【発明の詳細な説明】 本発明は竪型炉、例えば高炉の操業時における熱的炉心
位置の推定方法に関し、詳しくは高炉の羽口上部から炉
口部(特に朝顔部から炉胸部)に亘っての熱的炉心位置
を水平及び垂直方向において正確に推定把握する方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for estimating the thermal core position during operation of a vertical furnace, such as a blast furnace, and more specifically, the present invention relates to a method for estimating the thermal core position during operation of a vertical furnace, for example, a blast furnace. The present invention relates to a method for accurately estimating and grasping the thermal core position in the horizontal and vertical directions.

高炉は鉄鉱石等の酸化鉄原料とコークス等の固体還元剤
の高温冶金反応炉であり、高炉の最終目的はこの高温冶
金反応(以下炉内反応と称す)が長期に亘り効率良く且
つ安定して行なわれるように操条することによって、良
質の銑鉄を安定的に、能率良く、しかも低コストで大量
に生産することである。ところで炉内反応が効率よく行
なわれる為の理想的条件の1つとしては、任意の高さ位
置(以下レベルという)における炉内の熱的中心(炉内
で最も熱的にバランスが取れた点で、以下熱的炉心と称
す)が高炉の軸心(幾何学的な中心で、以下熱的炉心と
称す)にほぼ一致することが挙げられる。しかし操業中
の高炉の内部では、■いわゆる軟化融着帯頂層位置のず
れ現象、■特定方向への急激なガスの吹抜は現象、■耐
火壁及び付着物の脱落現象等の諸現象が間断なく生じて
いる為、熱的炉心は絶えず変動している。従って操炉管
理に当っては、この熱的炉心の変動を常時追跡把握し、
熱的炉心を構造的炉心へ近づけるように原−τ、燃料装
入や送風管の制御をその都度性なってやれば、炉内反応
を十分満足し得る程度に維持できると考えられる。
A blast furnace is a high-temperature metallurgical reaction furnace that uses iron oxide raw materials such as iron ore and solid reducing agents such as coke.The ultimate purpose of a blast furnace is to ensure that this high-temperature metallurgical reaction (hereinafter referred to as the furnace reaction) is efficient and stable over a long period of time. The goal is to produce large quantities of high-quality pig iron stably, efficiently, and at low cost by manipulating the steel in the same way. By the way, one of the ideal conditions for efficient reaction in the furnace is the thermal center of the furnace (the most thermally balanced point in the furnace) at any height position (hereinafter referred to as level). One example of this is that the axial center (geometric center, hereinafter referred to as the thermal core) of the blast furnace (hereinafter referred to as the thermal core) almost coincides with the blast furnace axis (geometric center, hereinafter referred to as the thermal core). However, inside an operating blast furnace, various phenomena such as ■ shift of the top layer of the so-called softened cohesive zone, ■ sudden blowing of gas in a specific direction, and ■ falling off of refractory walls and deposits occur constantly. As a result, the thermal core is constantly fluctuating. Therefore, during reactor operation management, we must constantly track and understand the fluctuations in this thermal core.
It is believed that if the reactor, fuel charging, and blast pipes are controlled on a case-by-case basis in order to bring the thermal core closer to the structural core, the reaction within the reactor can be maintained to a sufficiently satisfactory level.

ところが熱的炉心の直接測定は極めて困難であることか
ら、炉内反応の制御に当っては、これまで熱的炉心をめ
る代わシに色々な炉内情報、例えば炉口部でのガス流分
布の実測データを用いて対症療法的に対策を欝している
に過ぎず、操炉管理としては非常に不十分であシ、該管
理の一層の強化が望まれる中で熱的炉心を正確に把握し
得る技術の開発が課題とされてきた。
However, since it is extremely difficult to directly measure the thermal core, in order to control the reactions inside the reactor, instead of measuring the thermal core, various information inside the reactor, such as the gas flow at the reactor mouth, has been used. Countermeasures are only taken symptomatically using measured distribution data, which is extremely insufficient for reactor operation management. The challenge has been to develop technology that can be used to understand

本発明はこうした状況下になされたもので1、特に朝顔
部から炉胸部に亘っての熱的炉心を水平及び垂直方向に
おいて長期間に亘って正確に推定把握することによシ、
操炉管理を一層的確に行なって炉内反応を長期に亘り十
分満足し得る程度に維持できる様な熱的炉心位置の推定
方法の提供を目自りとするものである。
The present invention was made under these circumstances.1 It is possible to accurately estimate and understand the thermal core from the morning glory section to the reactor chest over a long period of time in the horizontal and vertical directions.
The purpose of this study is to provide a method for estimating the thermal core position that will enable more accurate reactor operation management and maintain reactor reactions at a satisfactory level over a long period of time.

しかして本発明に係る熱的炉心位置の推定方法とは、壁
厚方向に2以上の感温部を有し、壁厚方向の異なる位置
での温度を検知する測温センサーを、竪型炉の耐火壁中
の周方向および高さ方向に適当数埋設し、各測温センサ
ーにより得られた温度情報群から炉内の熱的中心をめて
竪型炉の水平方向における熱的炉心を把握する一方、該
水平方向熱的炉心を竪型炉の垂直方向の異なる位置で夫
々求め、更にこれらの各水平方向熱的炉心の垂直分布を
把握し、前記水平方向熱的炉心とその垂直方向分布から
現時点での熱的炉心位置を推定する点に要旨を有するも
のである。
However, the method for estimating the thermal core position according to the present invention is to use a temperature sensor that has two or more temperature sensing parts in the wall thickness direction and detects temperatures at different positions in the wall thickness direction. A suitable number of sensors are embedded in the circumferential direction and height direction in the refractory wall of the furnace, and the thermal core in the horizontal direction of the vertical furnace can be determined by determining the thermal center of the furnace from the temperature information group obtained by each temperature sensor. At the same time, the horizontal thermal cores are obtained at different positions in the vertical direction of the vertical reactor, and the vertical distribution of each of these horizontal thermal cores is grasped, and the horizontal thermal core and its vertical distribution are determined. The gist of this is to estimate the current thermal core position from the above.

以下図面を参照しながら本発明方法の構成及び作用効果
を説明するが、理解の便を考慮して構成要件毎に順を追
って説明する。即ち本発明方法では、まず、 (1)壁厚方向に2以上の感温部を有し、壁厚方向の異
なる位置での温度を検知する測温センサーを、竪型炉の
耐火壁中の周方向忙適当数理設し、各測温センサーによ
)得られた温度情報群から炉内の熱的中心を計算でめる
:即ち第1図(a)は本発明方法を高炉に適用した場合
の概略説明図、同図(b)は同図(a)のb部拡大図を
示す。Bは高炉Aの羽口上部から炉胸部に亘って複数の
レベル(図では4レベル)毎に周方向から適当数設けら
れた、測温センサー(以下単にセンサーとい5)を示し
、該センサーBは鉄皮C及びスクング層りを貫いて耐火
壁Wのほぼ内面又は炉内に貫通する位置まで直交するよ
うに埋設されている。又センサーとしては壁厚方向に少
なくとも2以上の感温部を有するものであれば型式や措
造を特に問わないが、仁の様なセンサーBの好ましい一
例としてまず実開昭55−105140号によシ提案し
たものについて原理的に説明する。即ち第2図は該セン
サーBの一部破断斜視図を示し、又第3図は第2図の展
開断面相当図を示している。これらの図において1は外
套シース管でセンサーB全体の保護部材としての役割を
果す。2aはシース型熱電対で、更に該熱電対2aKは
熱電効果を示す1対の金R&94.4′が挿設され、そ
の先端はシース内において測温接点則ち感温部P1 +
 P2 H・・・PIl(以下代表的に言うときはPと
表記する)を構成する。そしてこれらの感温部Pは長さ
方向の異なる位置を占める様に構成され、図では炉内側
(I側)から鉄皮側(0側)へかけてklは等ピッチで
長さ方向の位置を変更してp、t P2 1・・・P6
を設けている。更に感温部Pの先端には、シース型熱電
対2aと全く同一素材からなるシース型熱電対2bをダ
ミーとして接続する(図中の6は接続部を示す)。
The configuration and effects of the method of the present invention will be explained below with reference to the drawings, and each component will be explained in order for ease of understanding. That is, in the method of the present invention, first, (1) a temperature sensor having two or more temperature sensing parts in the wall thickness direction and detecting temperatures at different positions in the wall thickness direction is installed in the refractory wall of the vertical furnace; The thermal center in the furnace can be calculated from the temperature information group obtained by each temperature sensor by setting appropriate mathematics in the circumferential direction: In other words, Fig. 1 (a) shows the case where the method of the present invention is applied to a blast furnace. A schematic explanatory diagram of the case, FIG. 3(b) shows an enlarged view of part b of FIG. 10(a). B indicates a suitable number of temperature sensors (hereinafter simply referred to as sensors 5) installed from the circumferential direction at multiple levels (4 levels in the figure) from the upper part of the tuyere to the furnace chest of blast furnace A; are buried perpendicularly to a position that penetrates through the steel shell C and the skung layer and penetrates almost the inner surface of the refractory wall W or into the furnace. The type and structure of the sensor is not particularly limited as long as it has at least two temperature-sensing parts in the wall thickness direction, but as a preferable example of a sensor B such as the one described in Japanese Utility Model Application No. 55-105140, I will explain the principle of what I proposed. That is, FIG. 2 shows a partially cutaway perspective view of the sensor B, and FIG. 3 shows a developed cross-sectional view corresponding to FIG. 2. In these figures, reference numeral 1 denotes a jacket sheath tube that serves as a protective member for the entire sensor B. 2a is a sheathed thermocouple, and the thermocouple 2aK is inserted with a pair of gold R&94.4' exhibiting a thermoelectric effect, the tip of which is a temperature-measuring junction in the sheath, that is, a temperature-sensing part P1 +
P2H...PIl (hereinafter referred to as P when speaking representatively) is constituted. These temperature-sensing parts P are configured to occupy different positions in the length direction, and in the figure, from the inside of the furnace (I side) to the shell side (0 side), kl is arranged at equal pitches in the length direction. Change p, t P2 1...P6
has been established. Further, a sheathed thermocouple 2b made of the same material as the sheathed thermocouple 2a is connected as a dummy to the tip of the temperature sensitive part P (6 in the figure indicates a connection part).

又3は外套シース管1内に充填される耐火性の絶縁材で
あって、熱しよう乱の影響をできるだけ抑えるために耐
火g特性に合った熱伝導率を有するものを使用する。従
ってこの様なセンサーBにおける各感温部Pでの測温性
能は鞘度的にも耐久度的にも十分信頼のおけるものとい
える。尚本出願人の提案に係る実開昭57−81531
号のセンサーを使用すれば、耐火壁の損耗にかかわらず
長期間安全に使用することができる。又第1図(b)に
おいて8は高炉の外部に設けられた熱流演算指示器で、
該指示器8内では下記(■)式の設定演算式に従って炉
内側熱流Qijが(2)式に示す様に算出される。
Further, 3 is a fire-resistant insulating material filled in the outer sheath tube 1, and in order to suppress the influence of thermal disturbance as much as possible, a material having a thermal conductivity matching the fire-resistant g characteristic is used. Therefore, it can be said that the temperature measurement performance of each temperature sensing part P in such a sensor B is sufficiently reliable in terms of sheath strength and durability. Furthermore, Utility Model Application No. 57-81531 proposed by the present applicant
By using the No. 2 sensor, it can be used safely for a long period of time regardless of wear and tear on the fireproof wall. Also, in Fig. 1(b), 8 is a heat flow calculation indicator installed outside the blast furnace.
In the indicator 8, the furnace inside heat flow Qij is calculated as shown in equation (2) according to the set calculation equation of equation (■) below.

尚何番目の測温値を採用するかは全て任意に決定できる
ことは言うまでもないが、精度上の観点からすれば、で
きるだけ炉内側近傍の熱流を算出することが好ましいの
で、操粟の初期には1番目と2番目の測温値(熱流とし
てはQ、2)を採用し、耐火壁の損耗状況に応じて現在
最内面近傍の熱流を算出できる様に感温部を炉外側へ変
更していけばよい。
It goes without saying that the number of temperature measurements to be adopted can be determined arbitrarily, but from the viewpoint of accuracy, it is preferable to calculate the heat flow as close to the inside of the furnace as possible. The first and second temperature measurement values (Q and 2 for heat flow) were adopted, and the temperature sensing part was moved to the outside of the furnace so that the current heat flow near the innermost surface could be calculated depending on the wear status of the refractory wall. Just go.

尚測温センサーから得られる温度情報群としては、上記
の様々熱流に限られず、各感温部での測温値そのものや
、本発明者等の開発に係るトリガーレスポンス解析法(
特公昭57−51444号)を用いて推定される炉壁表
面温度及び炉壁表面熱流等も含まれるが、以下の説明で
は温度情報群として熱流を採用した場合を一例としてと
り挙げる。
The temperature information group obtained from the temperature sensor is not limited to the various heat flows mentioned above, but also includes the temperature measurement value itself at each temperature sensing part, and the trigger response analysis method developed by the present inventors.
Although the furnace wall surface temperature and furnace wall surface heat flow estimated using Japanese Patent Publication No. 57-51444 are also included, the following explanation will take as an example a case where heat flow is adopted as the temperature information group.

即ち上述の様にしてルベルについて各測温センサーによ
シ得られた各熱流QI2 (以下Qsと表記する)から
炉内の熱的中心をめるに当っては下記する2方法のうち
のいずれかに基づいて行なえばよい。
That is, when determining the thermal center in the furnace from each heat flow QI2 (hereinafter referred to as Qs) obtained by each temperature sensor for Lebel as described above, one of the following two methods is used. You can do it based on this.

(イ、Qsの周方向測定結果を円で近似し、核内の中心
をめる方法)即ちQsの周方向測定結果を第4図に示す
様に高炉の構造的炉心0 (o + o )からベクト
ルで表示し各方向での座標(’Xl、Yt)、(X4Y
2八・・・・・・(x i + yl )をめる。更に
これら各座標(xi、yi)に最も近接する円(図中、
破線で示す)の方程式をいわゆる最小自乗法により下記
(3)式の如くめ、円の中心を座標(a、b)と定める
(B. A method of approximating the circumferential measurement result of Qs with a circle and finding the center in the core) In other words, the circumferential measurement result of Qs is shown in Fig. 4 as the structural core of the blast furnace 0 (o + o) The coordinates ('Xl, Yt), (X4Y
28...Find (x i + yl). Furthermore, the circle closest to each of these coordinates (xi, yi) (in the figure,
The equation (indicated by the broken line) is written as the following equation (3) using the so-called least squares method, and the center of the circle is determined as the coordinates (a, b).

x” + 72−2ax −2by−C=O・・・・・
”(3)(口、Qsの周方向測定結果をn多角形で表示
し、該多角形の重心をめる方法)例えばQsの周方向測
定結果が高炉の構造的炉心0(0*0)からベクトルで
表示して第5図に示す様に6角形で表示される場合であ
ればその重心の座8 (x a * y a )は、該
6角形を三角形に分割し、任意の三角形の面頂をaft
その3頂点の座標を夫々(X1i+3’11)t(xi
z+)’121L(XisiYis)とすれば、モーメ
ントの式よシ下記(4)式でめられる。
x" + 72-2ax -2by-C=O...
(3) (Method of displaying the circumferential direction measurement result of Qs as an n polygon and finding the center of gravity of the polygon) For example, if the circumferential direction measurement result of Qs is the structural core of the blast furnace 0 (0*0) If the vector is expressed as a hexagon as shown in Figure 5, the center of gravity 8 (x a * y a ) can be found by dividing the hexagon into triangles and dividing the hexagon into triangles. aft the top of the face
The coordinates of the three vertices are (X1i+3'11)t(xi
z+)'121L(XisiYis), it can be determined by the equation (4) below as well as the moment equation.

(2)上記(1)の計算でめられた各レベルについての
熱的中心又は熱的重心を各レベルにおける水平方向のm
熱的炉心とする:即ち上述の(イ)の方法によ請求めら
れた各レベルについての円の中心(ai、bi)又は(
ロ)の方法によ請求められた各レベルについてのn多角
形の重心[(xo)t+(yo)i)を、第6図に示す
様に一例として、高炉の構造的炉心0を極とする極座標
(ri、(lJi)で表示する。
(2) The thermal center or thermal center of gravity for each level determined by the calculation in (1) above is m in the horizontal direction at each level.
Thermal core: i.e. the center of the circle (ai, bi) or (
As an example, the center of gravity [(xo)t+(yo)i) of the n polygon for each level determined by the method of b) is taken as an example, with the structural core 0 of the blast furnace as a pole, as shown in Figure 6. It is expressed in polar coordinates (ri, (lJi)).

(3)上記(2)でめられた各レベルにおける水平方向
熱的炉心の垂直方向分布を把握する:即ち(2)でめら
れた極座標(ri、(7i)による水平方向熱的炉心(
以下単に水平炉心という)は2変数(r方向及びθ方向
)において異なるので、これらの水平炉心を結ぶ線は垂
直方向に複雑なプロフィールとなる。従って垂直方向の
熱的炉心の真直度を把握するためには、以下のようにす
ればよいことが理解できる。
(3) Understand the vertical distribution of the horizontal thermal core at each level determined in (2) above: In other words, the horizontal thermal core (
Since the horizontal cores (hereinafter simply referred to as horizontal cores) differ in two variables (r direction and θ direction), a line connecting these horizontal cores has a complicated profile in the vertical direction. Therefore, in order to understand the straightness of the thermal core in the vertical direction, it can be understood that the following procedure can be used.

ところでこの様に2変数から成るプロフィールの真直度
の把握の仕方としては種々考えられるが、−例として近
似法について以下説明する。考え方としては上記プロフ
ィールをr−Z平面、0−2平面に投影して各々直線で
近似し、この近似曲線と各レベルの水平炉心(ri、a
i)との距離の総和を平均化し、該平均値の程度をもっ
て上記プロフィールの真直度を評価すればよい。即ち垂
直方向(以下Z方向という)に複数個(n個)ある水平
炉心(ri、(7i)から第6図の破ので示す近似直線
の方程式を表わす方法として、r−z平面、θ−2平面
に投影したn個のriおよびθiのデータを夫々最小自
乗法により下記(5)式の如くめる。
By the way, there are various ways to understand the straightness of a profile made up of two variables, but as an example, an approximation method will be explained below. The idea is to project the above profile onto the r-Z plane and the 0-2 plane and approximate each with a straight line, and then combine this approximated curve with the horizontal reactor core (ri, a) at each level.
i), and evaluate the straightness of the profile based on the degree of the average value. That is, as a method of expressing the equation of the approximate straight line shown by the broken line in FIG. The n pieces of ri and θi data projected onto a plane are each calculated by the least squares method as shown in equation (5) below.

そして(5)式で力えられる近似直線と各レベルの水平
炉心(ri、θi)との間の距隠は第7図において三角
形OMNの一辺MNの長さに和尚し、次式で与えられる
The distance between the approximate straight line given by equation (5) and the horizontal core (ri, θi) at each level is expressed as the length of one side MN of the triangle OMN in Figure 7, and is given by the following equation. .

られる数値を基準として垂直方向の熱的炉心の真直度を
把握すればよい。
The straightness of the thermal core in the vertical direction can be determined based on the numerical value given.

(4)上記(3)でめた真直度と上記(2)でめた水平
炉心から現時点での熱的炉心の偏移を推定する:但し水
平炉心については高炉の構造的炉心0(o + o )
からの偏移についても考慮する必要があるので下記(力
式によって各レベルについてめられた水平炉心r1+r
2+・・・ri、・・・rnの平均値を構造的炉心との
偏移(Δbia)として採用する。
(4) Estimate the current thermal core deviation from the straightness determined in (3) above and the horizontal core determined in (2) above: However, for the horizontal core, the structural core of the blast furnace 0 (o + o)
It is also necessary to consider the deviation from the horizontal core r1+r determined for each level by the force formula
The average value of 2+...ri,...rn is adopted as the deviation from the structural core (Δbia).

こうして上記(6)式及び(7)式からめられだΔ4i
n及びΔbiaの数値関係から下記する様な判断を行な
えば、全体的な熱的炉心位置を推定できるということを
確信し得だものである。即ちAkinとΔbiaの数値
関係は第8図の破線内領域(■〜■)で示す4群におお
よそ分類できる。従ってΔ7inとΔbiaの数値関係
が0群に属する場合には、水平炉心rの値が小さいこと
から構造的炉心からの水平方向の偏位量が小さいという
ことが分かり、且つ垂直方向の真直度が良い(Δ7in
が小さくなるからである)ということが理解でき、現時
点での高炉全体の熱的炉心位置が座9図の実線方向の偏
位量が大きく且つ垂直方向の真直度が良いということが
理解でき、このときの熱的炉心位置が同図の実線■で示
す様な状態にあることを推定できる。又ΔlinとΔb
iaの数値関係が0群に属する場合には、水平方向の偏
位量が小さく且つ垂直方向の真直度が良くないというこ
とが理解でき、このときの熱的炉心位置が同図の破線■
で示す様な状態にあることを推定できる。更にΔlin
とΔbiaの数値関係が0群に属する場合には水平方向
の偏位量が大きく且つ垂直方向の真直度が良くないとい
うことが理解でき、このときの熱的炉心位置が同図の破
線■で示す様な状態にあることを推定できる。またこの
第8図および第9図をCRT画面表示すれば、熱的炉心
状況を時々刻々モニタすることも可能となる。
Thus, from the above equations (6) and (7), Δ4i
If we make the following judgments from the numerical relationships between n and Δbia, we can be confident that the overall thermal core position can be estimated. That is, the numerical relationship between Akin and Δbia can be roughly classified into four groups indicated by the regions (■ to ■) within the broken lines in FIG. Therefore, if the numerical relationship between Δ7in and Δbia belongs to group 0, it can be seen that the horizontal deviation from the structural core is small because the value of horizontal core r is small, and the vertical straightness is small. Good (Δ7in
It is possible to understand that the current thermal core position of the entire blast furnace has a large deviation in the direction of the solid line in Figure 9 and good vertical straightness. It can be estimated that the thermal core position at this time is in the state shown by the solid line ■ in the figure. Also Δlin and Δb
If the numerical relationship of ia belongs to the 0 group, it can be understood that the amount of horizontal deviation is small and the vertical straightness is not good, and the thermal core position at this time is indicated by the broken line ■ in the figure.
It can be estimated that the situation is as shown in . Furthermore, Δlin
If the numerical relationship between It can be estimated that the situation is as shown. Furthermore, by displaying FIGS. 8 and 9 on a CRT screen, it becomes possible to monitor the thermal core status from time to time.

尚上記実施例はあくまでも代表例であって本発明を限定
する性質のものではなく、前述の趣旨に?aう範囲内で
適当に変更して実施することも本発明の技術的範囲に含
まれることは言うまでもない。
It should be noted that the above embodiments are merely representative examples and do not limit the present invention. It goes without saying that it is within the technical scope of the present invention to carry out the invention with appropriate changes within the scope of the present invention.

例えば測温センサーの壓式、1ITt類、数句個数等を
適当に変更することは全て自由である。更に上述の説明
では竪型炉として高炉に主眼をおいたが、これに限定さ
れないことは言うまでもなく、要するに操業を行なうに
商って熱的炉心位置の状態を把握する必要のあるあらゆ
る竪型炉、特に高温竪型炉に対して良好に適用され得る
ものである。
For example, you are free to change the temperature sensor's size, type 1ITt, number of sensors, etc. as appropriate. Furthermore, in the above explanation, the main focus was placed on blast furnaces as vertical furnaces, but it goes without saying that this is not the only option. , and can be particularly well applied to high-temperature vertical furnaces.

本発明は以上の様に構成されるので、羽口上部から炉口
部に亘っての熱的炉心位置を水平及び垂直方向において
長期間正確に推定把握できることとなり、操炉管理を一
層的確に行なって炉況の長期安定化の確保に一層寄与で
きる様になった。
Since the present invention is configured as described above, the thermal core position from the upper part of the tuyere to the reactor mouth can be estimated and grasped accurately over a long period of time in the horizontal and vertical directions, and reactor operation management can be performed more accurately. This makes it possible to further contribute to ensuring long-term stability of reactor conditions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は本発明方法を高炉に適用した場合の概略
説明図、第1図(b)は第1図(a)のb部拡大図、第
2図は本発明方法を実施するために使用した測温センサ
ーの一部破断斜視図、第3図は第2図の展開断面相当図
、第4図〜第7図は本発明方法で行な9計釘の解析説明
図、第8,9図は解析結果と熱的炉心位置の推定関係説
明図である。 B・・・測温センサー W・・・耐火壁P、〜P6・・
・感温部 出願人 株式会社神戸製州所 N く氾 く
Figure 1 (a) is a schematic explanatory diagram when the method of the present invention is applied to a blast furnace, Figure 1 (b) is an enlarged view of part b of Figure 1 (a), and Figure 2 is a diagram showing the method of the present invention applied to a blast furnace. FIG. 3 is a partially cutaway perspective view of the temperature sensor used for this purpose, FIG. 3 is a developed cross-sectional view equivalent to FIG. 2, FIGS. Figures 8 and 9 are explanatory diagrams of the estimated relationship between the analysis results and the thermal core position. B...Temperature sensor W...Fireproof wall P, ~P6...
・Temperature Sensing Part Applicant: Kobe Seishusho Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 壁厚方向に2以上の感温部を有し、壁厚方向の異なる位
置での温度を検知する測温センサーを、竪型炉の耐火壁
中の周方向および高さ方向に適当数埋設し、各測温セン
サーによシ得られた温度情報群から炉内の熱的中心をめ
て竪型炉の水平方向における熱的炉心を把握する一方、
該水平方向熱的炉心を竪型炉の垂直方向の異なる位置で
夫々求め、更にこれらの各水平方向熱的炉心の垂直方向
分布を把握し、前記水平方向熱的炉心とその垂直方向分
布から現時点での熱的炉心位置を推定することを特徴と
する竪型炉の熱的炉心位置推定方法。
An appropriate number of temperature sensors that have two or more temperature sensing parts in the wall thickness direction and detect temperatures at different positions in the wall thickness direction are embedded in the circumferential direction and height direction in the refractory wall of the vertical furnace. , while determining the thermal core in the horizontal direction of the vertical furnace by determining the thermal center inside the furnace from the temperature information group obtained by each temperature sensor,
The horizontal thermal cores are determined at different vertical positions of the vertical reactor, and the vertical distribution of each of these horizontal thermal cores is determined, and from the horizontal thermal core and its vertical distribution, the current position is determined. A method for estimating the thermal core position of a vertical reactor, characterized by estimating the thermal core position at .
JP11982083A 1983-06-30 1983-06-30 Method for assuming position of thermal furnace core in shaft furnace Pending JPS6011113A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11982083A JPS6011113A (en) 1983-06-30 1983-06-30 Method for assuming position of thermal furnace core in shaft furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11982083A JPS6011113A (en) 1983-06-30 1983-06-30 Method for assuming position of thermal furnace core in shaft furnace

Publications (1)

Publication Number Publication Date
JPS6011113A true JPS6011113A (en) 1985-01-21

Family

ID=14771053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11982083A Pending JPS6011113A (en) 1983-06-30 1983-06-30 Method for assuming position of thermal furnace core in shaft furnace

Country Status (1)

Country Link
JP (1) JPS6011113A (en)

Similar Documents

Publication Publication Date Title
US5961214A (en) Determining protective layer thickness of blast furnaces
US4442706A (en) Probe and a system for detecting wear of refractory wall
CN210711615U (en) Device for monitoring erosion state of converter lining in real time on line
JPS6011113A (en) Method for assuming position of thermal furnace core in shaft furnace
CN114184033A (en) Method for detecting falling position, thickness and size of refractory material of rotary kiln
CN101798609A (en) Method for measuring lining temperature by adopting thermo-couple to diagnose lining conditions of blast-furnace bottom and lower hearth
JP4081248B2 (en) Control method of the lower part of the blast furnace
JP2867918B2 (en) Method for estimating effective thickness of slag coating in smelting vessel
JPS62293112A (en) Measuring instrument for width of coke furnace carbonizing chamber
JPH0227625B2 (en) TATEGATARONIOKERUROHEKIHYOMENGASURYUNOTSUYOSASUITEIHOHO
JPS62257004A (en) Method for detecting eroded state of furnace floor wall of shaft furnace
RU2044058C1 (en) Method for control of erosion of blast-furnace well
US4378993A (en) Method and apparatus for measuring height level of melting zone in blast furnace
JPH0257665B2 (en)
KR102511007B1 (en) Apparatus for measuring molten iron temperature of blast furnace
KR101032531B1 (en) System and method for visualizing temperature distribution in blast furnace
JPH04285105A (en) Method for grasping wall dropping condition in high temperature heating furnace
JPS5959814A (en) Detection of nonuniformity in circumferential distribution in blast furnace
JP2530059Y2 (en) Wall electrode of DC arc furnace
JPS6121284B2 (en)
JPS6361367B2 (en)
JPH0978113A (en) Method for designing structure of furnace bottom in blast furnace
JPS62238308A (en) Temperature measuring method for bottom part of blast furnace
JPS60141813A (en) Method for controlling refractory wall of refining furnace for molten steel
JPH0233085B2 (en)