JPS5959814A - Detection of nonuniformity in circumferential distribution in blast furnace - Google Patents

Detection of nonuniformity in circumferential distribution in blast furnace

Info

Publication number
JPS5959814A
JPS5959814A JP16983382A JP16983382A JPS5959814A JP S5959814 A JPS5959814 A JP S5959814A JP 16983382 A JP16983382 A JP 16983382A JP 16983382 A JP16983382 A JP 16983382A JP S5959814 A JPS5959814 A JP S5959814A
Authority
JP
Japan
Prior art keywords
blast furnace
furnace
circumferential
sensors
circumferential direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16983382A
Other languages
Japanese (ja)
Inventor
Hiroshi Saito
斎藤 汎
Takashi Sumikama
隆志 炭竃
Masaro Izumi
泉 正郎
Yoshihiro Horiuchi
堀内 好浩
Ryosuke Kimura
亮介 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP16983382A priority Critical patent/JPS5959814A/en
Publication of JPS5959814A publication Critical patent/JPS5959814A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/24Test rods or other checking devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Measuring Fluid Pressure (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Blast Furnaces (AREA)

Abstract

PURPOSE:To detect exactly the conditions in a blast furnace and to enable the adequate action for operation by providing plural sensors in the horizontal direction in the furnace, and detecting the nonuniformity in the circumferential distribution of a measuring object in accordance with the specific equation from the values measured with said sensors. CONSTITUTION:n-Pieces of sensors P1-P6 are installed in the optional bearing in the horizontal direction in a blast furnace as a furnace center as a basis. The temps. x1- xn in the circumferential direction in the blast furnace are measured with sensors P1- P6. The indices of deflection intensity in the x-, y-axis of the temp. distribution are determined by the equation I (i; the position where the sensors are mounted, alpha; the angle in the circumferential direction of the position where each sensor is mounted from the reference bearing in the horizontal direction). The index S of the deflection intensity of temp. is determined by synthesizing the indices by the equation II. The deflection bearing (d) of the measuring object in the circumferential direction of the blast furnace is determined by the equation III. The nonuniformity in the circumferential distribution is thus detected, whereby the furnace conditions are exactly detected and the adequate action for operation is made possible.

Description

【発明の詳細な説明】 本発明は高炉内における周方向の温度分布、圧力分布等
の分布状態の不均一性を検出する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for detecting non-uniformity in distribution states such as circumferential temperature distribution and pressure distribution within a blast furnace.

高炉操業において、高炉内の周方向の温度分布を均一化
することは炉況の安定を図る上極めて重要な昧題の1つ
であり、このため、温度分布を常に監視し、その不均一
が確認された場合には、これに対する的確な操業アクシ
ョンを取ることが必要と1よる。従来この上うな周方向
の温度分布の調査は、クーリングステープ温度、シャフ
ト温度、ベル下ゾンデ湛度等の温度情報を高炉水平方向
でくもの巣グラフ化することによって行うという手法が
採られている。しかし、このような手法による温度分布
の調査では、温度分布偏向の方向性や程度を明確に判断
することは困難であり、加えて炉体各上下位置における
温度分布の比較検討も全くの目視に頼らざるを得す、こ
のため得られる結論も極めて))いまいなものとなって
しまい、操業上の的確な指針とはなり難いという問題が
あった。またこのような分布状態把握の問題は単に炉内
温度に限らず、圧力、装入物降下速度等についても全く
同様に言えることでありこれらの分布状態を検出する方
法の提案が望まれてい定ものである。
In blast furnace operation, making the temperature distribution uniform in the circumferential direction inside the blast furnace is one of the extremely important issues in order to stabilize the furnace condition. If confirmed, it is necessary to take appropriate operational action. Conventionally, the method used to investigate the temperature distribution in the circumferential direction of the upper eel is to make a spider web graph of temperature information such as cooling tape temperature, shaft temperature, and sub-bell sonde density in the horizontal direction of the blast furnace. . However, when investigating temperature distribution using such a method, it is difficult to clearly judge the directionality and degree of temperature distribution deviation, and in addition, it is difficult to compare and examine the temperature distribution at each upper and lower position of the furnace body. As a result, the conclusions obtained are extremely poor, making it difficult to provide accurate guidelines for operations. In addition, the problem of understanding the distribution state is not limited to the temperature inside the furnace, but also applies to pressure, burden rate of descent, etc., and it is desirable to propose a method for detecting the distribution state of these things. It is something.

本発明はこのような従来の問題に鑑みhす案されたもの
で、高炉内における周方向の温度分布や圧力分布等の不
均一性を的確に検出することができる方法の提供をその
目的とする。
The present invention was devised in view of such conventional problems, and its purpose is to provide a method that can accurately detect non-uniformity in circumferential temperature distribution, pressure distribution, etc. in a blast furnace. do.

このため、本発明は基本的に炉内センサーVCよって得
られた高炉内周方向における温度等の任意の1111定
対象の分布状態を指数化すく)ことにより、その方向性
と定量化された不均一度を得さしめるよ5にしたもので
ル)す、その具体的構成は、炉心を基準として高炉水平
方向の任意の方位に設置されたn個のセンサーにより得
られろ尚炉周方向1c i6けろd11]定値XH、x
、・・・Xr、から以下の式に基′−5き高炉周方向に
おける測定対象の偏向方位dとその偏向強度指数Sを求
めるよう例したものである。
Therefore, the present invention basically indexes the distribution state of an arbitrary 1111 constant object such as temperature in the inner circumferential direction of the blast furnace obtained by the in-furnace sensor VC, thereby determining its directionality and quantified error. The uniformity is set to 5. The specific configuration can be obtained by n sensors installed in arbitrary directions in the horizontal direction of the blast furnace with the core as a reference. i6Kerod11] Constant value XH, x
, . . .

XT”−ΣX1CQq(Zi i=1 y1噸:======:Σx’s石α11=1 8””$旺 d=coII−i xffl’l ghl−17’r!
I11 又は、 8−凸〒+ FT 但し、l:センサー取付位置 a:水平方向における基準方向か らの各センサー取付位置円周 方向角度、 以下本発明を、図面を参照しつつ温度分布の検出を例に
とって説明する。高炉の周方向における温度分布はシャ
ツ)?M度計等の各種のセンサーによって測定されるが
、図面はこのようなセンサーが周方向で1lji所1(
p+)〜(Pa))、つまり6つσ)方向に西C1設さ
1゜ている。こTLらのセンサーレま2個づつ力l炉ノ
Bを中心に180°反対側に配設され゛で(・る。
XT" - Σ
I11 or 8-convex〒+FT However, l: Sensor mounting position a: Each sensor mounting position circumferential direction angle from the reference direction in the horizontal direction The present invention will be described below with reference to the drawings and temperature distribution detection as an example. I will explain it to you. What is the temperature distribution in the circumferential direction of the blast furnace? It is measured by various sensors such as M degree meters, but the drawing shows that such sensors are located at 1 lji place 1 (
p+) to (Pa)), that is, 6 σ), and the west C1 is located 1°. Two sensor arrays of these TLs are arranged 180 degrees opposite each other from the furnace no.B.

そしてこれらのセンサーの基準方位(L)カ1もの円周
方向角度はそれぞ扛aI〜α6となっている。ここで上
記各センサー(P、)〜(P、)によ、す6111定さ
れr、−i度7!II; X T  〜* 6(好まし
くは温度の時間平均値)である場合、xT=ΣXi囲α
1 i=1 yT=Σxislnα1 1=1 により、−上記xl −xs のl!1l11定湿度の
X成分、X成分を取り出して、これらを加算することに
より温度分布のx、y軸上に−i6ける偏向強度指数が
求めら71.る。そしてさらに、これな下記の(])式
により合成することにより塩度の偏向強度指数8が求め
られる。次−・で、力・カ・る温度偏向の方向性につ(
・て、以下の(2)式により基準方向(I7)からの円
周方1向角度d/l″−求められる。
The circumferential angles of the reference orientations (L) of these sensors are aI to α6, respectively. Here, 6111 is determined by each of the above-mentioned sensors (P,) to (P,), r, -i degree 7! II; If X T ~*6 (preferably the time average value of temperature), then xT=ΣXi
1 i=1 yT=Σxislnα1 1=1, -l of xl -xs above! 1l11 By taking out the X component and the Ru. Furthermore, the salinity deflection strength index 8 can be obtained by synthesizing using the following equation ( ]). Next, we will discuss the directionality of the temperature deflection by the force (
- Then, the angle d/l'' in one direction in the circumferential direction from the reference direction (I7) is determined by the following equation (2).

、=6「「圧      ・・・・・・・・・(1)以
上の不均一性検出4−1.複数のセンーーの取付方位が
炉心に対12で対称である場・合や、複数のセンサーの
うち2個づつカー炉ノーを中/ひに180°反対g!l
lに取付けIq itてし・ろ場合には有効であるが、
それ以外の場合、艮すち、第2図に示すようにセンサー
(Ql )〜(Q6)の取付方位が非対称でし力・も1
800の関係にない場合にはそのままでしま妥当しなし
・。こ′のような場合には、次式によりXT 及びyT
が与えられるO XT == X X1″′“it、足″″”“1)1=
1 −1 これは、第2図中破線で示すように、各センサー取付方
位と18(10反対方向に測定値の平均の大きさをもつ
ダミーデータ2 を入オl、ろことにより、センサー取
付は位置の片寄りを補うようにしたものであり、このよ
うにする1:とによりセンサー取付は位置が対称である
場合と変らない検出精度が得られろ。このようにして得
られたXT 、)’Tかも上記し7た(1)及び(2ン
式により偏向の強度及び方位(8゜d)が得られろ。
, = 6 "Pressure...... (1) Detection of non-uniformity 4-1. If the mounting orientation of multiple sensors is symmetrical with respect to the core, or if multiple Two of the sensors are 180 degrees opposite to the inside/outside of the car furnace.
It is effective if it is installed on the Iq it.
In other cases, the mounting directions of the sensors (Ql) to (Q6) are asymmetrical, as shown in Figure 2, and the force is 1.
If there is no 800 relationship, leave it as is, it is not valid. In such a case, XT and yT
is given O XT == X
1-1 As shown by the broken line in Fig. 2, dummy data 2 having the average size of the measured values in the direction opposite to each sensor mounting direction is input. is designed to compensate for the unevenness of the position, and by doing this 1: the detection accuracy that is the same as when the sensor is installed is symmetrical.The XT obtained in this way, )'T The intensity and direction (8°d) of the deflection can be obtained using equations (1) and (2) described above.

以上により温度の不均一分布に基づく偏向の強さとその
方位が(s、d)という2つの指数で求めろ肚るが、さ
らに好ましくは、偏向強度指数Sを下記に示すように無
次元化し、偏向強度指数6.を求める。
As described above, the strength and direction of the deflection based on the non-uniform distribution of temperature can be determined using two indices (s, d), but more preferably, the deflection strength index S is made dimensionless as shown below, Deflection strength index6. seek.

このようにして求められた(it、a)は、その測定レ
ベルに蒔ける温度分布の片寄りを定量的に示すものであ
り、これを換言すれkf、、、高炉の当該レベル周方向
における塩度分布をま基準方向(L)から周方向で角度
dの方イ立に対して上記指数で示される強度で偏向17
て(・るということになる。このような温度分布グ)偏
向は高炉上下方向の何箇所かで測定され且つ定量化され
ることが好ましいことば筈うまでも1.(い。一般に高
炉ではクーリングステープ温度計、シャフト温度計、ベ
ル丁ゾンデ淵度計等士数段のレベルに引11′が配設さ
itており、これら各局方向の温度計Vこよっテ得らi
tた湿度情報を上記した方法で処理することにより、高
炉全体の塩度分布の把握が可能となり、さらにこれに基
づいてガス流の方向分布を測定することによって例えば
原料分布の片寄りや壁伺きの発生を知り、こrに対して
ノ・−バブルアーマ−制御等の適切な操業アクションを
的確且つ迅速に取ることができる。
(it, a) obtained in this way quantitatively indicates the deviation of the temperature distribution at that measurement level, and in other words, kf... Deflection 17 with the intensity indicated by the above index from the reference direction (L) to the mullion at an angle d in the circumferential direction.
It goes without saying that it is preferable that such temperature distribution deflection be measured and quantified at several locations in the vertical direction of the blast furnace. (In general, in a blast furnace, a cooling tape thermometer, a shaft thermometer, a bell probe thermometer, etc. are installed at the level of several stages, and a thermometer V is installed in the direction of each of these stations. Rai
By processing the obtained humidity information using the method described above, it is possible to understand the salinity distribution throughout the blast furnace.Furthermore, by measuring the directional distribution of gas flow based on this, it is possible to detect, for example, uneven distribution of raw materials and wall roughness. It is possible to know the occurrence of a fire and take appropriate operational action such as no-bubble armor control against the fire accurately and quickly.

さらに本発明は、;メ上説明したような温度分布だけで
なく、センサーにより炉体周方向で測定され得る対象、
即ち、シャフト圧力、装入物降下速度、風緻、輝度、出
銑口毎の溶銑・温度・塩基度・St量等、各種のもσ)
をその測定対象とすることができ、これらの分布と上記
温度分布とを全体的に評価することにより、より的確1
よ炉況把握を行えることは言うまでも1よい。
Furthermore, the present invention provides not only the temperature distribution as described above, but also objects that can be measured in the circumferential direction of the furnace body by a sensor.
In other words, shaft pressure, charge descending speed, wind density, brightness, hot metal, temperature, basicity, St amount, etc. for each taphole, etc.
can be the measurement target, and by evaluating these distributions and the above temperature distribution as a whole, it is possible to more accurately measure
Needless to say, it is good to be able to understand the status of the reactor.

第3図は、実操業において炉頂かも炉下部までの各セン
サーによって得られた5日分のデータから本発明法によ
って不均一性を検出し、その方向を円グラフに表わした
ものであり、実操業においては例えばこのような表示方
法が採も1し、炉況の全体的な把握が行わJする。図中
A−Pは下記の各測定対象を示している。
Figure 3 shows the direction of non-uniformity detected using the method of the present invention from five days' worth of data obtained by each sensor from the top of the furnace to the bottom of the furnace during actual operation, and the direction of the non-uniformity is expressed in a pie chart. In actual operation, for example, such a display method is often used, and the overall status of the furnace can be grasped. A to P in the figure indicate the following measurement targets.

A:炉頂ガス温度 B:ベル下ゾンデ温度 Cニスドックラインレベル D:シャフト温度5段 E:    #   4段 F:     1   3.段 G:     2段 H:        I g9゜ 工:クーリングステープ温度3段 に         2段 に:         1段 L:羽口先送風流量 M:羽口本体温度 N:羽口輝度 〇二浴銑中、S1濃度 P:沼銑温度 〔実施例〕 第4図は本発明法により検出さ才tた装入線及び炉頂ガ
ス温度不均一性(強度及び方位)の長期推移を、炉況・
炉熱を表わす指数である送風圧力変動指数、スリップ点
数、浴銑中St濃度変動指数とともに示す。各因子は1
点15日平均の推移を示している。図によれば、測定開
始から35日目頃から基準方位(5outh方向)から
約180’方向に装入線不均一強度、炉頂ガス温度不均
一強度の強い偏向が認められ、それに伴い炉況・炉熱が
不安定にン1つてきていることが判る。このような炉況
の悪化は炉内ガス流分布の偏流が原因であることが補足
さrrこため、図中Aの時点で上記偏向方向のムーバブ
ルアーマのコークスに対する使用強度を高めた。この結
果、その後はガス流の偏向がおさまI)、炉況・炉熱も
安定した。
A: Furnace top gas temperature B: Bell bottom sonde temperature C Varnish dock line level D: Shaft temperature 5th stage E: # 4th stage F: 1 3. Stage G: 2nd stage H: I g9゜Work: Cooling tape temperature in 3rd stage 2nd stage: 1st stage L: Tuyere tip air flow rate M: Tuyere body temperature N: Tuyere brightness 〇2-bath pig iron, S1 concentration P : Bog pig temperature [Example] Figure 4 shows the long-term trends in charging line and furnace top gas temperature non-uniformity (intensity and orientation) detected by the method of the present invention.
It is shown together with the blowing pressure fluctuation index, the number of slip points, and the St concentration fluctuation index in the bath iron, which are indices representing furnace heat. Each factor is 1
It shows the trend of the 15-day average. According to the figure, from around 35 days after the start of measurement, strong deviations in the charging line unevenness intensity and the furnace top gas temperature unevenness intensity were observed in the direction of about 180' from the reference direction (5out direction), and along with this, the furnace condition・It can be seen that the furnace heat is increasing unstablely. This deterioration of the furnace condition is believed to be caused by the unevenness of the gas flow distribution in the furnace.Therefore, at point A in the figure, the use strength of the movable armor against coke in the deflection direction was increased. As a result, the deflection of the gas flow subsided after that, and the furnace conditions and furnace heat became stable.

以上述べた本発明によitば、高炉内の温度、圧力等の
測定対象から得られた炉内周方向のデータか6周方向に
46ける?1111定対象の偏向方位とその強度指数を
求めることによって炉内周方向分布の不均一性を検出す
ることができ、これによって炉況の的確な把握とこれに
対する的確且迅速な操業アクションを可能ならしめると
いう優れた効果がある。
According to the present invention described above, the data in the direction of the inner circumference of the blast furnace obtained from the measurement target such as temperature and pressure inside the blast furnace can be calculated by multiplying by 46 in the direction of the circumference of the blast furnace. By determining the deflection direction of the 1111 target and its intensity index, it is possible to detect non-uniformity in the distribution in the circumferential direction of the furnace, and this makes it possible to accurately grasp the furnace condition and take accurate and prompt operational action in response. It has an excellent cooling effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図はそれぞれ本発明の検出方法を模式的
な示す説明図である。第3図は本発明によって検出され
た炉況因子不均一性の表示方法の一例を示すものである
。第4四1は本発明によって検出された装入線及び炉頂
ガス温度不均一性の長期的推移を他の炉況因子指数のそ
jとともに示すものである。 図において、(P、)〜(P6 )、(Q+)〜(Q6
 )はセンサー、(L)は基準方向を示す。 特許出願人 日本鋼管株式会社
FIG. 1 and FIG. 2 are explanatory diagrams each schematically showing the detection method of the present invention. FIG. 3 shows an example of a method of displaying the non-uniformity of furnace condition factors detected by the present invention. No. 441 shows the long-term trends in charging line and top gas temperature non-uniformity detected by the present invention together with other furnace condition factor indexes. In the figure, (P,) to (P6), (Q+) to (Q6
) indicates the sensor, and (L) indicates the reference direction. Patent applicant Nippon Kokan Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)炉心を基準として、高炉内水平方向の任意の方位
に設置されたn個のセンサーにより得られる高炉周方向
における測定+ii x + *X、・・・xnから、
以下の式に基づき高炉周方向における測定対象の偏向方
位dとその偏向強度指数Sを求め、測定対象の周方向分
布不均一性を検出することを特徴とする高炉内における
周方向分布不均一性の検出方法。 S=凸〒了57 d=−・″”ni□−・ユ 但し 1:センザー取付位置 α:水平方向における基準方位 からの各センザー取付位置 円周方向角度
(1) Measurements in the circumferential direction of the blast furnace obtained by n sensors installed at arbitrary horizontal directions within the blast furnace with the core as a reference +ii x + *X, ...xn,
Circumferential distribution non-uniformity in a blast furnace characterized by determining the deflection direction d of the measurement target in the circumferential direction of the blast furnace and its deflection strength index S based on the following formula, and detecting the circumferential distribution non-uniformity of the measurement target. Detection method. S = Convex 〒 57 d = -・″”ni□-・U However, 1: Sensor mounting position α: Circumferential direction angle of each sensor mounting position from the reference direction in the horizontal direction
(2)炉心を基準として、高炉内水平方向の任意の方位
に設置されたn個のセンサーにより得られる高炉周方向
における測定値Xl。 X、・・・Xnから、以下の式に基づき高炉周方向にお
ける測定対象の偏向方位aとその偏向強度指数Sを求め
測定対象の周方向分布不均一性を検出することを特徴と
する高炉内圧おける周方向分布不均一性の検出方法。 i=i               トーiB=凸q
11丁 1=1 量:センサー取付位置 a:水平方向における基準方位 からの各センサー取付位置 円周方向角度
(2) Measured value Xl in the circumferential direction of the blast furnace obtained by n sensors installed in arbitrary directions in the horizontal direction inside the blast furnace with the core as a reference. The blast furnace internal pressure is characterized in that the deflection direction a of the object to be measured in the circumferential direction of the blast furnace and its deflection strength index S are determined from X, ... A method for detecting circumferential distribution non-uniformity in i=i to iB=convex q
11 pieces 1 = 1 Quantity: Sensor mounting position a: Circumferential direction angle of each sensor mounting position from the reference direction in the horizontal direction
JP16983382A 1982-09-30 1982-09-30 Detection of nonuniformity in circumferential distribution in blast furnace Pending JPS5959814A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16983382A JPS5959814A (en) 1982-09-30 1982-09-30 Detection of nonuniformity in circumferential distribution in blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16983382A JPS5959814A (en) 1982-09-30 1982-09-30 Detection of nonuniformity in circumferential distribution in blast furnace

Publications (1)

Publication Number Publication Date
JPS5959814A true JPS5959814A (en) 1984-04-05

Family

ID=15893759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16983382A Pending JPS5959814A (en) 1982-09-30 1982-09-30 Detection of nonuniformity in circumferential distribution in blast furnace

Country Status (1)

Country Link
JP (1) JPS5959814A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62170826A (en) * 1986-01-23 1987-07-27 Toshiba Corp Temperature measuring instrument
JPH0452778U (en) * 1990-09-12 1992-05-06

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62170826A (en) * 1986-01-23 1987-07-27 Toshiba Corp Temperature measuring instrument
JPH0830666B2 (en) * 1986-01-23 1996-03-27 株式会社東芝 Temperature measuring device
JPH0452778U (en) * 1990-09-12 1992-05-06

Similar Documents

Publication Publication Date Title
CN107299170B (en) A kind of blast-melted quality robust flexible measurement method
US3181343A (en) Method and arrangement for measuring continuously the change of the carbon content of a bath of molten metal
JPS5959814A (en) Detection of nonuniformity in circumferential distribution in blast furnace
US3702694A (en) Method and apparatus for judging the conditions of blast furnace
ES8103179A1 (en) Process and apparatus for measuring the slag level in a metallurgical vessel and for assessing its physical condition.
US4248625A (en) Method of operating a blast furnace
RU2299910C2 (en) Method for controlling condition of blast-furnace hearth lining
JP7207118B2 (en) Charging method determination method, charging method determination device, and charging method determination program
CA1049258A (en) Method of detecting abnormal conditions of blast furnaces
WO1997012064A9 (en) A method for the determination of the gas flux distribution in a blast furnace
CN113699291A (en) Method for calculating blast furnace material distribution drop point based on laser measurement data
JPS6129674A (en) Method of detecting extraneous matter on inner wall of vertical type furnace
JPS62257004A (en) Method for detecting eroded state of furnace floor wall of shaft furnace
JPS6011113A (en) Method for assuming position of thermal furnace core in shaft furnace
SU821495A1 (en) Device for measuring blasting material amount in tuyere apparatus rf blast furnace
JPS63203708A (en) Blast furnace operation method
JPS6112806A (en) Operating method of blast furnace
JPS5852411A (en) Measuring method for distribution of charging materials in blast furnace
JPS61166907A (en) Method for predicting position of top end of vertical sonde
SU836139A1 (en) Method of determining articles strain
JPS60204813A (en) Operating method of blast furnace
RU2354708C1 (en) Method of determining of optimal assignment of gas stream by radius of blast furnace
JPS6122234B2 (en)
JPS56137106A (en) Detection for thickness of stuck material in rotary kiln
JPS5825406A (en) Operating method for blast furnace