JPH0233085B2 - - Google Patents

Info

Publication number
JPH0233085B2
JPH0233085B2 JP58099096A JP9909683A JPH0233085B2 JP H0233085 B2 JPH0233085 B2 JP H0233085B2 JP 58099096 A JP58099096 A JP 58099096A JP 9909683 A JP9909683 A JP 9909683A JP H0233085 B2 JPH0233085 B2 JP H0233085B2
Authority
JP
Japan
Prior art keywords
heat flow
sensor
temperature
wall
temperature sensing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58099096A
Other languages
Japanese (ja)
Other versions
JPS59222737A (en
Inventor
Takefumi Horiuchi
Takeo Kawate
Nobuyuki Nagai
Isao Nishida
Takeshi Yabata
Shigeru Takano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP9909683A priority Critical patent/JPS59222737A/en
Publication of JPS59222737A publication Critical patent/JPS59222737A/en
Publication of JPH0233085B2 publication Critical patent/JPH0233085B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K17/00Measuring quantity of heat
    • G01K17/06Measuring quantity of heat conveyed by flowing media, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device
    • G01K17/08Measuring quantity of heat conveyed by flowing media, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device based upon measurement of temperature difference or of a temperature
    • G01K17/20Measuring quantity of heat conveyed by flowing media, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device based upon measurement of temperature difference or of a temperature across a radiating surface, combined with ascertainment of the heat transmission coefficient
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/02Means for indicating or recording specially adapted for thermometers
    • G01K1/026Means for indicating or recording specially adapted for thermometers arrangements for monitoring a plurality of temperatures, e.g. by multiplexing

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

【発明の詳細な説明】 本発明は耐火壁内の熱流束(以下単に熱流とい
う)測定方法に関し、例えば高炉々壁内における
特定方向の熱流分布を精度良く且つ連続的に測定
できるようにした熱流束測定方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring heat flux (hereinafter simply referred to as heat flow) within a refractory wall. This invention relates to a method for measuring bundles.

高炉の炉壁は、鉄皮の内面に厚い耐火材層を形
成してなるものであるが、長期間の連続使用によ
る損耗は避け得ないから、耐火壁の損耗位置、損
耗量あるいは損耗速度等の検出は高炉操業を安定
に維持し、更には耐火壁の補修を行なつて延命を
図る上で必要欠くべからざる管理項目となつてい
る。さらに、炉内の熱的変動を定常的に把握する
ことも炉体熱損失の推定や、炉内冷え込みの早期
検知、およびガスの周辺流化の推定など炉況診断
技術として高炉操業の安定化を図る上で重要な指
針となる。この様に内部を直視できない装置類に
おいて、内部の状況や壁面の損耗具合を推察する
ことが必要な場合には、壁内に何らかのセンサー
を埋め込んで、センサーからの熱的情報によつて
判断する方法が一般に採用される。
The furnace wall of a blast furnace is made of a thick layer of refractory material formed on the inner surface of the iron shell, but wear due to long-term continuous use is unavoidable. Detection is an essential management item in order to maintain stable blast furnace operation and to extend the life of the blast furnace by repairing the firewall. In addition, steady monitoring of thermal fluctuations within the furnace can be used to stabilize blast furnace operations as a furnace condition diagnosis technology, such as estimating furnace heat loss, early detection of cooling inside the furnace, and estimation of gas flow around the furnace. This will serve as an important guideline for achieving this goal. If it is necessary to estimate the internal condition or the extent of wear and tear on the wall surface of equipment such as this, where the interior cannot be viewed directly, it is necessary to embed some kind of sensor in the wall and make a judgment based on the thermal information from the sensor. The method is generally adopted.

しかしこれまで採用されている方法は、センサ
ーの構造面で種々の差異はあるものの、いずれも
複数本のセンサーをその測温点長さが段階的に異
なる様に埋め込んで壁内の温度分布を測定するも
のである。即ち壁厚方向に亘つて得られる複数の
温度値をそのまま生の熱的情報として活用してい
るに過ぎない為、炉内状況の推定は往々にして精
度を欠くものであつた。この為壁厚方向への熱の
移動状況を直接測定する技術開発が急務とされて
いた。
However, although there are various differences in the structure of the sensors, the methods that have been adopted so far all involve embedding multiple sensors so that the length of the temperature measurement point varies in stages to measure the temperature distribution inside the wall. It is something to be measured. That is, since a plurality of temperature values obtained across the wall thickness are simply used as raw thermal information, estimation of the furnace internal situation often lacks accuracy. For this reason, there was an urgent need to develop technology to directly measure the state of heat transfer in the wall thickness direction.

ところで熱の移動状況を直接測定する為には、
熱流そのもの即ち壁厚方向の熱流分布を把握する
ことが最も好ましいと言える。
By the way, in order to directly measure the state of heat transfer,
It can be said that it is most preferable to understand the heat flow itself, that is, the heat flow distribution in the wall thickness direction.

一方熱流測定の原理自体については、例えば第
1図に示す様に耐火壁W内に熱流計A(但しA1
は薄い熱抵抗体、A2は被覆材)を埋設し(又は
耐火壁Wの外面に貼着し)、検知された両面の温
度差ΔTを用いて次式(1)により熱流Qを算出する
という原理的方法が既によく知られており、数多
くの熱流計が開発されてきた。
On the other hand, regarding the principle of heat flow measurement itself, for example, as shown in Figure 1, a heat flow meter A (however A1
is a thin thermal resistor and A2 is a covering material) is buried (or attached to the outer surface of the fireproof wall W), and the heat flow Q is calculated using the following equation (1) using the detected temperature difference ΔT between both sides. The principle method is already well known and a number of heat flow meters have been developed.

Q=F・λ/DΔT ……(1) Q;熱流 λ;薄い熱抵抗体の熱伝導率 D; 〃 の厚さ ΔT; 〃 の両面の温度差 F;耐火壁の熱伝導率λWと熱抵抗体の熱伝導
率λとの比の関数で、熱じよう乱の大きさ
を表わす。
Q=F・λ/DΔT...(1) Q: Heat flow λ: Thermal conductivity of thin thermal resistor D: Thickness of ΔT; Temperature difference between both sides of F: Thermal conductivity of fireproof wall λ W and It is a function of the ratio to the thermal conductivity λ of the thermal resistor, and represents the magnitude of thermal disturbance.

しかしこの様な方法では、熱流計埋設位置での
短区間内を通過する熱流の経時変化を把握できる
に過ぎない。即ち壁厚方向のある短距離間の温度
差ΔTに基づく熱流算出値をもつて壁厚方向の熱
流分布を推定しているに過ぎない。即ち壁厚方向
の熱流分布そのものを測定するものではなく、又
F項に基づく熱じよう乱の影響を無視できないこ
ととも相まつて、壁厚方向への熱の移動状況を精
度良く直接測定することはできない。しかも、従
来の埋設型熱流計の場合には、形状が板状で炉改
修時とか築炉時のみしか施工できない。
However, with this method, it is only possible to grasp changes over time in the heat flow that passes within a short section at the location where the heat flow meter is buried. That is, the heat flow distribution in the wall thickness direction is simply estimated using a heat flow calculation value based on the temperature difference ΔT over a certain short distance in the wall thickness direction. In other words, it does not measure the heat flow distribution itself in the wall thickness direction, and since the influence of thermal turbulence based on the F term cannot be ignored, it is necessary to directly measure the state of heat transfer in the wall thickness direction with high accuracy. I can't. Moreover, conventional buried heat flow meters have a plate-like shape and can only be installed when refurbishing or constructing a furnace.

更に炉壁の損耗が進んで熱流計Aの埋設位置ま
で達すると、該熱流計Aの熱的情報センサーとし
ての機能が著しく損なわれ若しくは完全に消滅す
るので、熱流分布の測定は全く信頼のおけないも
のとなる。従つて連続的測定の保障という面から
も大きな問題点がある。又表面貼着法では外気温
や風等によつて測定値が変動するので信頼性は極
めて薄いものにならざるを得ない。
Furthermore, when the furnace wall wear progresses to the point where the heat flow meter A is buried, the function of the heat flow meter A as a thermal information sensor will be significantly impaired or completely eliminated, making the measurement of heat flow distribution completely unreliable. It becomes something that does not exist. Therefore, there is a big problem in terms of ensuring continuous measurement. Furthermore, in the surface adhesion method, the reliability is extremely low because the measured values vary depending on the outside temperature, wind, etc.

本発明はこうした従来技術の欠点を解消すべく
なされたもので、具体的には耐火壁、特に高炉々
壁内における特定方向の熱流分布を精度良く且つ
連続的に測定できる方法の提供を目的とする。
The present invention has been made in order to eliminate these drawbacks of the prior art, and specifically aims to provide a method that can accurately and continuously measure the heat flow distribution in a specific direction in a refractory wall, especially in a blast furnace wall. do.

しかして本発明に係る耐火壁内の熱流束測定方
法とは、耐火壁に対して特定方向から少なくとも
3以上の感温部を有し、且つ前記耐火壁材料と略
同等の熱伝導率を有する温度検知センサーを埋設
し、各感温部で検知された測温結果に基づいて隣
接する感温部間の熱流を算出することにより、該
耐火壁内における特定方向の熱流分布即ち熱の移
動状況を直接把握する様にした点に要旨を有する
ものである。
However, the method for measuring heat flux in a fireproof wall according to the present invention includes a fireproof wall that has at least three or more temperature-sensing parts from a specific direction, and has approximately the same thermal conductivity as the firewall material. By embedding temperature detection sensors and calculating the heat flow between adjacent temperature sensing parts based on the temperature measurement results detected by each temperature sensing part, it is possible to determine the heat flow distribution in a specific direction within the fireproof wall, that is, the state of heat movement. The main point lies in the fact that it allows for direct understanding of the situation.

以下実施例図面を参照しつつ本発明の構成及び
作用効果を説明するが、下記実施例は単に一代表
例に過ぎず、前・後記の趣旨に沿つて適宜変更し
て実施することも本発明の技術的範囲に含まれ
る。第2図は本発明方法を高炉々壁に適用した場
合の概略説明図で、Bは本発明に使用する温度検
知センサー(以下単にセンサーという)を示し、
該センサーBは鉄皮C及びスタンプ層Dを貫いて
耐火壁Wの内面位置まで埋設されている。又セン
サーBについてその一例を示せば第3図(一部破
断斜視図)及び第4図(第3図の展開断面相当
図)の通りである。即ち図中1は外套シース管で
センサーB全体の保護管としての役割りを果す。
2aはシース型熱電対で、勿論シース型抵抗温度
計に置き換えることも可能である。該熱電対2a
に挿通されているのは、熱電効果を示す1対の金
属線4,4′で、その先端はシース内において測
定接点即ち感温部P1,P2,…P5,P6(以
下代表的に言うときはPと表記する)を構成す
る。そしてこれらの感温部Pは長さ方向において
異なる位置を占める様に構成され、図では炉内側
から鉄皮側へかけてほぼ等ピツチで長さ方向の位
置を変更してP1,P2,…P6を設けている。
尚このピツチは任意であり、勿論無作為であつて
もよいが、耐火壁Wの損耗具合の推定精度の向上
を期して炉内側の感温部間ピツチを小さ目にする
こと等は好ましい設計例といえる。そして感温部
Pの先端には、シース型熱電対2aと全く同一素
材からなるシース型熱電対2bをダミーとして接
続する(図中の6は接続部を示す)。従つてセン
サーBの幾何学断面構成が全く同一であるから、
各感温部Pにおける熱的条件即ち測温条件が一定
となる。
The configuration and effects of the present invention will be described below with reference to the drawings of the embodiments, but the embodiments below are merely representative examples, and the present invention may be implemented with appropriate changes in accordance with the spirit of the preceding and following. included in the technical scope of FIG. 2 is a schematic explanatory diagram when the method of the present invention is applied to the walls of blast furnaces, and B indicates a temperature detection sensor (hereinafter simply referred to as a sensor) used in the present invention.
The sensor B is embedded through the iron shell C and the stamp layer D to the inner surface of the fireproof wall W. An example of sensor B is shown in FIG. 3 (a partially cutaway perspective view) and FIG. 4 (a developed cross-sectional view equivalent to FIG. 3). That is, numeral 1 in the figure is a jacket sheath tube that serves as a protective tube for the entire sensor B.
2a is a sheath type thermocouple, which can of course be replaced with a sheath type resistance thermometer. The thermocouple 2a
A pair of metal wires 4, 4' exhibiting a thermoelectric effect are inserted through the sheath, and their tips are connected to measurement contacts, that is, temperature sensing parts P1, P2,...P5, P6 (hereinafter typically referred to as is written as P). These temperature-sensing parts P are configured to occupy different positions in the length direction, and in the figure, the positions in the length direction are changed at approximately equal pitches from the inside of the furnace to the side of the shell, and the positions P1, P2,... P6 is provided.
Note that this pitch is arbitrary and may of course be random, but a preferred design example is to reduce the pitch between the temperature sensing parts inside the furnace in order to improve the accuracy of estimating the degree of wear and tear on the refractory wall W. It can be said. A sheathed thermocouple 2b made of the same material as the sheathed thermocouple 2a is connected as a dummy to the tip of the temperature sensitive part P (6 in the figure indicates a connection part). Therefore, since the geometric cross-sectional configuration of sensor B is exactly the same,
The thermal conditions, that is, the temperature measurement conditions in each temperature sensing portion P become constant.

又3は外套シース管1内に充填されてなる耐火
性の絶縁材であり、これによつてシース型熱電対
2aの耐久性が確保されると共に、センサーB内
における長さ方向への熱伝達が少なくなり、長さ
方向についての測温精度が高まる。尚この長さ方
向への熱伝達をより小さなものにする為、外套シ
ース管1の材質を低熱伝導率の素材からなる薄肉
管にすることも推奨され、更に耐食性も考慮すれ
ば、ステンレス鋼やインコネル等が望まれる。か
くして2重シース管という特徴的な構造に基づく
強度的効果と相まつて、熱流算出に当つての前提
ともなるべき各感温部Pでの測温を長期に亘つて
確実且つ高精度に行なうことができる。
Further, 3 is a fire-resistant insulating material filled in the outer sheath tube 1, which ensures the durability of the sheathed thermocouple 2a and improves heat transfer in the length direction within the sensor B. The temperature measurement accuracy in the length direction is improved. In order to reduce heat transfer in the longitudinal direction, it is recommended that the outer sheath tube 1 be made of a thin-walled tube made of a material with low thermal conductivity.If corrosion resistance is also taken into consideration, stainless steel or Inconel etc. is preferred. In this way, together with the strength effect based on the characteristic structure of the double-sheathed pipe, temperature measurement at each temperature sensing part P, which is a prerequisite for heat flow calculation, can be carried out reliably and with high precision over a long period of time. Can be done.

又センサーBの他の例(センサーB′)を示せ
ば第5面(一部破断見取図)及び第6図(第5図
の−線断面図)の通りである。即ちセンサー
B′は上述の如きセンサーBの各感温部P1,P
2,…に対応して円盤状フイン8a,8b,…を
設けると共に、各円盤状フイン8a,8b,…を
相互に絶縁材10で遮断しており、更に断熱高強
度材の保護外管11及びめくら板12で外装され
ている。従つてこの様なセンサーB′を使用すれ
ば耐火壁内面に付着物が発生・成長する場合でも
確実且つ高精度の測温が可能となり、好都合であ
る。
Another example of sensor B (sensor B') is shown in the fifth surface (partially cutaway diagram) and FIG. 6 (cross-sectional view taken along the line -- in FIG. 5). i.e. sensor
B′ is each temperature sensing part P1, P of sensor B as described above.
Disk-shaped fins 8a, 8b,... are provided corresponding to the fins 2, . and is covered with a blinding board 12. Therefore, if such a sensor B' is used, it is possible to measure the temperature reliably and with high precision even when deposits are generated or grow on the inner surface of the fireproof wall, which is convenient.

従つて上記のセンサーB又はセンサーB′の感
温部P1,P2,…P5,P6で検知された測温
結果を図に表われない熱流演算指示器に送ること
により、隣接する感温部間の熱流Q1,Q2,
…,Q5を同時に精度良く測定することができ
る。従つて第2図の例では耐火壁Wの厚み方向へ
の熱の移動状況を直接把握できるので、耐火壁W
内面の損耗具合を長期に亘り一層正確且つ迅速に
推察することができる。同時に、炉体熱損失の推
定、炉内状況の把握などが高精度に行なえる。
Therefore, by sending the temperature measurement results detected by the temperature sensing parts P1, P2,...P5, P6 of the sensor B or sensor B' to a heat flow calculation indicator not shown in the figure, it is possible to control the temperature between adjacent temperature sensing parts. The heat flow Q1, Q2,
..., Q5 can be simultaneously measured with high accuracy. Therefore, in the example shown in Fig. 2, it is possible to directly grasp the state of heat transfer in the thickness direction of the fireproof wall W.
The degree of wear and tear on the inner surface can be estimated more accurately and quickly over a long period of time. At the same time, it is possible to estimate the heat loss of the furnace body and understand the situation inside the furnace with high accuracy.

更に本発明の価値(熱流測定精度上の価値)を
高め得る一手段について以下説明する。即ち上記
の熱流演算指示器内では下記(2)式の設定演算式に
従つて各熱流Q1,Q2,…Q5が夫々(3)〜(7)式
に示す様に算出される。
A means for further increasing the value of the present invention (value in terms of heat flow measurement accuracy) will be described below. That is, in the heat flow calculation indicator described above, each heat flow Q1, Q2, .

Qi=FλB/Di(Ti−Tj) ……(2) 但し添字i,jは炉内側から数えて夫々i番目
及びj番目であることを意味し、又 Qi;i番目感温部とj番目感温部間の熱流
(kcal/m2・h) Ti;i番目感温部での測温値(℃) Tj;j番目感温部での測温値(℃) Di;i番目感温部とj番目感温部間の距離(m) λB;センサーBの熱伝導率(kcal/m・hr・℃) F;耐火壁Wの熱伝導率λWとセンサーBの熱伝
導率λBとの比の関数で、熱じよう乱の大きさ
を表わす。
Qi = Fλ B /Di (Ti - Tj) ... (2) However, the subscripts i and j mean the i-th and j-th parts, respectively, counting from the inside of the furnace, and Qi; the i-th temperature sensing part and j Heat flow between the th temperature sensing parts (kcal/m 2 h) Ti: Temperature measurement value at the i th temperature sensing part (°C) Tj: Temperature measurement value at the j th temperature sensing part (°C) Di: i th temperature sensing part Distance between hot part and jth temperature sensing part (m) λ B ; Thermal conductivity of sensor B (kcal/m・hr・℃) F; Thermal conductivity of firewall W λ W and the thermal conductivity of sensor B It is a function of the ratio to λ B and represents the magnitude of thermal disturbance.

Q1=FλB/D1・(T1−T2) ……(3) Q2=FλB/D2・(T2−T3) ……(4) Q3=FλB/D3・(T3−T4) ……(5) Q4=FλB/D4・(T4−T5) ……(6) Q5=FλB/D5・(T5−T6) ……(7) そしてQ1〜Q5を比較検討すれば熱流が埋設
方向に沿つて定常的に流れているか否か等の判定
を行なうことができるが、この場合上記(2)〜(7)式
において精度に関係する項はF項であるから、F
項の影響をいかに小さく抑えることができるかと
いうことがより一層の精度向上を図る上で重要な
鍵となる。ところでこのF=f(λW/λB)で表わ
される熱じよう乱については次の様に理解され
る。即ち(イ)λW>λBのとき、(ロ)λW<λBのとき、(
ハ)
λW≒λBの各場合における熱じよう乱の様子を第
7図イ〜ハに基づいて説明すれば、まず(イ)の場合
にはセンサーBの周辺の熱流は耐火壁W内に散逸
し易く、特にλW≫λBの場合ではその傾向が一層
顕著となるので、センサーBによる熱流測定精度
の向上は期待できない。次に(ロ)の場合には逆にセ
ンサーB周辺の耐火壁W内に存在する熱流はセン
サーB内に集束され易く、特にλW≪λBの場合で
はその傾向が一層顕著となるので、この場合もや
はり精度向上は期待できない。しかし(ハ)の場合に
はセンサーB周辺の熱流が該センサーBとほぼ平
行となるので、熱じよう乱の影響をほとんど無視
することができる。従つて精度向上を図る為には
λB≒λWを満足し得るようにセンサーBの設計、
特に材質の設計を行う必要がある。更に具体的に
説明すれば、λBはセンサーBの各構成要素の占有
割合及び熱伝導率に応じ、下記(8)式により決定さ
れる。
Q1=Fλ B /D1・(T1−T2) ……(3) Q2=Fλ B /D2・(T2−T3) ……(4) Q3=Fλ B /D3・(T3−T4) ……(5 ) Q4=Fλ B /D4・(T4−T5) ……(6) Q5=Fλ B /D5・(T5−T6) ……(7) And comparing Q1 to Q5, we find that the heat flow is However, in this case, the term related to accuracy in equations (2) to (7) above is the F term.
The key to further improving accuracy is how small the influence of the term can be suppressed. By the way, the thermal disturbance expressed by F=f(λ WB ) can be understood as follows. That is, (a) when λ W > λ B , (b) when λ W < λ B , (
c)
To explain the state of thermal disturbance in each case of λ W ≒ λ B based on Figure 7 A to C, first, in case (A), the heat flow around sensor B is dissipated within the fireproof wall W. This tendency is particularly noticeable in the case of λ W ≫ λ B , so that it cannot be expected that the accuracy of heat flow measurement by sensor B will be improved. Next, in case (b), conversely, the heat flow existing within the fireproof wall W around sensor B is likely to be focused within sensor B, and this tendency is particularly noticeable when λ W ≪ λ B. In this case as well, no improvement in accuracy can be expected. However, in case (c), the heat flow around sensor B is almost parallel to sensor B, so the influence of thermal turbulence can be almost ignored. Therefore, in order to improve accuracy, sensor B should be designed to satisfy λ B ≒ λ W.
In particular, it is necessary to design the material. More specifically, λ B is determined by the following equation (8) according to the occupancy ratio and thermal conductivity of each component of sensor B.

λB=aiosλios+asheλshe+aTλT
+aTλT/100……(8) 但し、aは各構成要素の断面積占有割合(%)、
λは各構成要素の熱伝導率(kcal/m・hr・℃)
を表わし、又添字の意味は次の通りである。
λ B =a ios λ ios +a she λ she +aTλT
+aTλT/100...(8) However, a is the cross-sectional area occupation ratio (%) of each component,
λ is the thermal conductivity of each component (kcal/m・hr・℃)
, and the meanings of the subscripts are as follows.

ins;絶縁材(シース型熱電対内の絶縁材を含
む) she;シース管(外套シース管とシース型熱電
対外殻) T;シース型熱電対の側金属線 T; 〃 側金属線 従つて λW≒aiosλios+asheλshe+aTλT
+aTλT/100……(9) この(9)式を満足する様にλios,λshe,λT,
λTを選定すればよい。ただ実際上はλT,
λTについては熱電対性能の面から、又λshe
ついても前述した様に耐食性の点から夫々使用材
質がほぼ決定されてしまう。従つてλiosを種々変
えてみて(9)式を満足できるものを、センサーBを
構成する絶縁材として選択すればよい。これによ
つてF項に基づく熱じよう乱の影響をほぼ完全に
無視できるので、隣接する感温部間の熱流Q1,
Q2,…Q5の算出精度は更に改善され、壁厚方
向への熱の移動状況を更に正確に把握することが
できる。
ins; Insulating material (including the insulating material inside the sheathed thermocouple) she; Sheath tube (sheath tube and outer shell of the sheathed thermocouple) T; Side metal wire of the sheathed thermocouple T; 〃 Side metal wire Therefore, λ W ≒a ios λ ios +a she λ she +aTλT
+aTλT/100……(9) λ ios , λ she , λT,
It is sufficient to select λT. However, in practice, λT,
The materials used for λT are determined based on thermocouple performance, and the materials used for λ she are determined based on corrosion resistance as described above. Therefore, the insulating material constituting the sensor B can be selected by varying λ ios and selecting one that satisfies equation (9). As a result, the influence of thermal disturbance based on the F term can be almost completely ignored, so the heat flow Q1 between adjacent temperature sensing parts,
The calculation accuracy of Q2,...Q5 is further improved, and the state of heat transfer in the wall thickness direction can be grasped more accurately.

尚上記実施例ではセンサーとして感温部を6つ
有するものを使用したが、感温部としては少なく
とも3以上あればよい。これは感温部が2つで
は、壁厚方向のある短距離間又は炉内側と鉄皮側
の離れた2点間の温度差ΔTに基づく1つの熱流
算出値をもつて壁厚方向の熱流分布を推定するこ
とになり、従来の原理的な熱流計と同様の欠点が
現われるからであり、一方感温部が3以上であれ
ば、少なくとも2以上の熱流算出値が得られ、壁
厚方向の熱流分布直線又は曲線として実測され、
十分な精度的効果を享受できるからである。この
感温部を3以上の何個に設定すべきかという点に
ついては、耐火壁の厚みや炉内熱負荷等を考慮し
て適当に決めればよい。
In the above embodiment, a sensor having six temperature-sensing parts was used, but it is sufficient to have at least three or more temperature-sensing parts. This means that when there are two temperature sensing parts, the heat flow in the wall thickness direction has one heat flow calculation value based on the temperature difference ΔT between a certain short distance in the wall thickness direction or between two distant points on the inside of the furnace and the shell side. This is because the distribution has to be estimated, which has the same drawbacks as conventional heat flow meters.On the other hand, if the number of temperature sensing parts is 3 or more, a heat flow calculation value of at least 2 or more can be obtained, and the heat flow in the wall thickness direction The heat flow distribution is actually measured as a straight line or curve,
This is because sufficient accuracy effects can be enjoyed. The number of temperature-sensing parts (3 or more) to be set can be appropriately determined by considering the thickness of the fireproof wall, the heat load in the furnace, etc.

又上記実施例ではセンサーBを耐火壁Wに対し
てほぼ直交する方向に埋設する場合を示したが、
その埋設方向に制限がないことは勿論であり、更
に外套シース管についても絶対に必要とされるも
のではない。
Further, in the above embodiment, the sensor B is buried in a direction substantially perpendicular to the fireproof wall W, but
Of course, there is no limit to the direction in which it is buried, and furthermore, the outer sheath tube is not absolutely required.

又上述の説明では高炉の耐火壁に主眼をおいた
が、これに限定されないことは言うまでもなく、
要するに内部を直視できず且つ内部の熱的負荷を
知る必要のある炉、装置等すべてに良好に適用さ
れ得るものである。
In addition, although the above explanation focused on the fireproof wall of the blast furnace, it goes without saying that it is not limited to this.
In short, the present invention can be effectively applied to all furnaces, devices, etc. where the inside cannot be seen directly and the internal thermal load needs to be known.

本発明は以上の様に構成されるので、耐火壁、
特に高炉々壁内における特定方向の熱流分布即ち
熱の移動状況を直接精度良く且つ連続的に測定で
きることとなつた。従つてその測定結果を基に耐
火壁内面の損耗状態および炉内状況を高炉火入れ
以後長期に亘り一層正確且つ迅速に把握すること
ができ、高炉操業の安定化を図る上で、大きく貢
献できることとなつた。
Since the present invention is configured as described above, the fireproof wall,
In particular, it has become possible to directly, accurately and continuously measure the heat flow distribution in a specific direction within the walls of blast furnaces, that is, the state of heat transfer. Therefore, based on the measurement results, it is possible to more accurately and quickly understand the state of wear on the inner surface of the refractory wall and the situation inside the furnace over a long period of time after blast furnace firing, and this will greatly contribute to stabilizing blast furnace operations. Summer.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は埋設型熱流測定方法の原理説明図、第
2図は本発明方法を高炉耐火壁に適用した場合の
概略説明図、第3図は本発明方法を実施するため
に使用した温度検知センサーの一部破断斜視図、
第4図は第3図の展開断面相当図、第5図は他の
温度検知センサーの一部破断見取図、第6図は第
5図の−線断面図、第7図は熱じよう乱の状
態説明図である。 A…熱流計、B,B′…温度検知センサー、W
…耐火壁、1…外套シース管、2a…シース型熱
電対、3,10…絶縁材、P1〜P6…感温部。
Fig. 1 is an explanatory diagram of the principle of the buried heat flow measurement method, Fig. 2 is a schematic explanatory diagram when the method of the present invention is applied to a blast furnace refractory wall, and Fig. 3 is a temperature detection diagram used to implement the method of the present invention. Partially cutaway perspective view of the sensor,
Figure 4 is a developed cross-sectional view equivalent to Figure 3, Figure 5 is a partially cutaway diagram of another temperature detection sensor, Figure 6 is a cross-sectional view taken along the - line in Figure 5, and Figure 7 is a diagram of heat disturbance. It is a state explanatory diagram. A...Heat flow meter, B, B'...Temperature detection sensor, W
...Fireproof wall, 1... Mantle sheath tube, 2a... Sheath type thermocouple, 3, 10... Insulating material, P1 to P6... Temperature sensing part.

Claims (1)

【特許請求の範囲】[Claims] 1 耐火壁の特定方向に3以上の感温部を有し、
且つ前記耐火壁材料と略同等の熱伝導率を有する
温度検知センサーを埋設し、各感温部で検知され
た測温結果に基づいて隣接する感温部間の熱流束
を算出し、壁厚方向への熱の移動状況を測定する
ことを特徴とする耐火壁内の熱流束測定方法。
1 Having three or more temperature sensing parts in a specific direction of the fireproof wall,
In addition, a temperature detection sensor having approximately the same thermal conductivity as the fireproof wall material is embedded, and the heat flux between adjacent temperature sensing parts is calculated based on the temperature measurement results detected at each temperature sensing part, and the wall thickness is calculated. A method for measuring heat flux within a fireproof wall, characterized by measuring the state of heat transfer in a direction.
JP9909683A 1983-06-02 1983-06-02 Method for measuring heat flux in fireproofing wall Granted JPS59222737A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9909683A JPS59222737A (en) 1983-06-02 1983-06-02 Method for measuring heat flux in fireproofing wall

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9909683A JPS59222737A (en) 1983-06-02 1983-06-02 Method for measuring heat flux in fireproofing wall

Publications (2)

Publication Number Publication Date
JPS59222737A JPS59222737A (en) 1984-12-14
JPH0233085B2 true JPH0233085B2 (en) 1990-07-25

Family

ID=14238337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9909683A Granted JPS59222737A (en) 1983-06-02 1983-06-02 Method for measuring heat flux in fireproofing wall

Country Status (1)

Country Link
JP (1) JPS59222737A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100456093B1 (en) * 2002-04-19 2004-11-08 국방과학연구소 Heat-flux gage and manufacturong method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5916816Y2 (en) * 1979-01-17 1984-05-17 株式会社神戸製鋼所 Temperature distribution detection sensor

Also Published As

Publication number Publication date
JPS59222737A (en) 1984-12-14

Similar Documents

Publication Publication Date Title
US4358953A (en) Method of monitoring the wear of refractory walls of a blast furnace and temperature probe used for the method
JPH0244186Y2 (en)
DE102005040277A1 (en) Specific heat flow sensor for membrane wall of e.g. steam generator, comprises at least two thermocouple junctions formed by Constantan wires connected to dissimilar metal of pipes and spacing bars for measuring temperature difference
US4103539A (en) Non-destructive refractory erosion indicator
CN111982046B (en) Method for judging heat transfer state of wall structure
JPH0233085B2 (en)
JPH0696726B2 (en) Blast furnace wall thickness measuring method and equipment
CN114184033A (en) Method for detecting falling position, thickness and size of refractory material of rotary kiln
JP2006257458A (en) Method for predicting wear of molten iron trough
JPS5916816Y2 (en) Temperature distribution detection sensor
US20240085175A1 (en) System and method for measuring the thickness of refractories
JPS6361885A (en) Method of determining state of damage of high-temperature furnace refractory wall
JPH0726134B2 (en) Temperature measurement method for the bottom of the blast furnace
RU2098756C1 (en) Method determining thickness of wall and conductivity pickup of heat flow for implementation of it
JPS62257004A (en) Method for detecting eroded state of furnace floor wall of shaft furnace
JPH0257665B2 (en)
JPS6252302A (en) Method of monitoring reduction of thickness of heat rransfertube
RU2003021C1 (en) Method for detecting width of heat unit lining
Dudley Jr The thermal conductivity of refractories
JPS6354588A (en) Method of determining state of damage of high-heating furnace fireproofing wall
JPS62120415A (en) Method for measuring thermal load of blast furnace wall
JPS6126612B2 (en)
Piotr et al. Systematic temperature measurement errors, caused by heat dissipation along the shield of industrial thermometer
CN113237447A (en) Method for estimating thickness of carbon brick on side wall of blast furnace hearth
US3301061A (en) Pyrometer