JPS6361885A - Method of determining state of damage of high-temperature furnace refractory wall - Google Patents

Method of determining state of damage of high-temperature furnace refractory wall

Info

Publication number
JPS6361885A
JPS6361885A JP20549186A JP20549186A JPS6361885A JP S6361885 A JPS6361885 A JP S6361885A JP 20549186 A JP20549186 A JP 20549186A JP 20549186 A JP20549186 A JP 20549186A JP S6361885 A JPS6361885 A JP S6361885A
Authority
JP
Japan
Prior art keywords
temperature
furnace
wall
fireproof
refractory wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20549186A
Other languages
Japanese (ja)
Inventor
信幸 永井
正躬 小西
川手 剛雄
園井 英一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP20549186A priority Critical patent/JPS6361885A/en
Publication of JPS6361885A publication Critical patent/JPS6361885A/en
Pending legal-status Critical Current

Links

Landscapes

  • Blast Furnaces (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、高熱炉に内張すされた耐火壁の損耗状況を外
部から正確に推定把握する方法に関するものである。尚
以下の説明では代表的な高熱炉として高炉をとりあげる
が、転炉、電気炉、取鍋。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for accurately estimating and understanding the wear and tear condition of a fireproof wall lined in a high-temperature furnace from the outside. In the following explanation, a blast furnace will be used as a typical high-temperature furnace, but converters, electric furnaces, and ladles are also included.

溶解炉、溶銑予備処理炉、VOD炉、均熱炉、熱風炉等
を含む広範な炉体に対しても本発明を適用することがで
きる。
The present invention can also be applied to a wide range of furnace bodies including melting furnaces, hot metal pretreatment furnaces, VOD furnaces, soaking furnaces, hot blast furnaces, and the like.

[従来の技術] 高炉は鉄鉱石等の酸化鉄原料とコークス等の固体還元剤
との高温冶金反応炉であり、厚い耐火物層と、これを取
り囲む鉄皮とから構成されている。しかし高炉の内部は
極めて高温であり、又鉄鉱石やコークスの落下衝撃や摩
擦を間断なく受けているので、耐火壁は各所で侵食され
あるいは脱落し、その都度鉄皮を穿孔して耐火剤の注入
補修を行なっている。しかし耐火壁の損耗状況は正確に
検知し得ていないというのが実情で、従来は鉄皮が赤く
なるのを見て承知するという原始的手段を頼りにする様
な場合すらあった。その為耐火壁の現状厚さを理i的に
把握しようとする研究も広く行なわれ、熱流束を利用し
て耐火壁厚さを算出する方法として例えば以下に紹介す
る方法(特開昭51−29951号公報)も知られてい
る。
[Prior Art] A blast furnace is a high-temperature metallurgical reactor that uses an iron oxide raw material such as iron ore and a solid reducing agent such as coke, and is composed of a thick refractory layer and an iron shell surrounding the thick refractory layer. However, the inside of a blast furnace is extremely hot and is constantly subjected to falling impact and friction from iron ore and coke, so the fireproof wall erodes or falls off in various places, and the steel shell is perforated each time to remove the fireproofing agent. Performing injection repairs. However, the reality is that it is not possible to accurately detect the state of wear and tear on fireproof walls, and in the past there were even cases where people relied on primitive means of knowing when the steel skin turned red. For this reason, research has been widely conducted to try to understand the current thickness of fireproof walls logically.For example, the method introduced below (Japanese Unexamined Patent Application Publication No. 51-197) is a method for calculating the thickness of fireproof walls using heat flux. 29951) is also known.

この方法は第2図に示す如く高炉耐火壁チ内に、厚さ方
向の異なる2点の温度を計測する温度計へ、トを挿設し
、鉄皮ハからaの深さ位置の温度j+、並びに鉄皮ハか
らbの深さ位置の温度t2を測定し、下記計算式に基づ
き耐火壁厚さXを求めるものである。尚耐火壁チのうち
二はシャモット煉瓦ホはクッション材によって形成され
ている。ところで耐火壁温度をTとすれば、温度計へ、
トの測温点間の熱流量Qは 但しλ:熱伝導率 で表わされる。
As shown in Fig. 2, this method involves inserting a thermometer into the blast furnace refractory wall to measure the temperature at two different points in the thickness direction, and measuring the temperature j+ at a depth of a from the shell. , and the temperature t2 at a depth position b from the iron skin C to determine the fireproof wall thickness X based on the following calculation formula. Two of the fireproof walls are made of chamotte bricks and are made of cushioning material. By the way, if the fireproof wall temperature is T, then to the thermometer,
The heat flow rate Q between the temperature measurement points is expressed by λ: thermal conductivity.

従って耐火壁内面温度Tを推定すれは耐火壁厚さXを求
めることができるという訳である。
Therefore, by estimating the fireproof wall inner surface temperature T, the fireproof wall thickness X can be determined.

[発明が解決しようとする問題点] しかるに上記方法では耐火壁内面温度Tを推定し、炉内
状況にかかわらず一定の値であるとしているが、実際の
高炉操業では上昇ガス流の変動や荷下り変動に伴って炉
内反応に変化が見られ、反応状況がしばしば変動してい
る上に、耐火壁内面の挙動も複雑で装入物の降下による
影響やガス流れの変動による影響を受けて耐火壁内面温
度は大きく変動し、これを一定値として推定することに
は問題がある。又上記2点測温型の温度計で耐火壁内面
温度Tを測定することは勿論できない。
[Problems to be Solved by the Invention] However, in the above method, the inner surface temperature T of the refractory wall is estimated and is assumed to be a constant value regardless of the situation inside the furnace. However, in actual blast furnace operation, fluctuations in the rising gas flow and load Changes can be seen in the reaction inside the furnace due to downward fluctuations, and not only the reaction situation often fluctuates, but also the behavior of the inner surface of the refractory wall is complicated and is affected by the falling charge and fluctuations in the gas flow. The internal temperature of fireproof walls fluctuates widely, and there is a problem in estimating it as a constant value. Furthermore, it is of course impossible to measure the inner surface temperature T of the fireproof wall with the two-point thermometer described above.

従って(2)式におけるTの推定が不正確となり、tl
及びt2のデータから算出される耐火壁厚さXの推定に
してもはなはだ信頼性に乏しいものとなっている。
Therefore, the estimation of T in equation (2) becomes inaccurate, and tl
Even the estimation of the fireproof wall thickness X calculated from the data of t2 and t2 is extremely unreliable.

本発明はこの様な状況に着目してなされたものであって
、操業状態の変動にかかわらず耐火壁厚さを正確に把握
することのできる様な方法の確立を目的とするものであ
る。
The present invention has been made with attention to such a situation, and an object of the present invention is to establish a method by which the thickness of a fireproof wall can be accurately determined regardless of fluctuations in operating conditions.

[問題点を解決するための手段] しかして本発明方法とは、高熱炉耐火壁に、3以上の感
温部を長手方向に有する温度検知センサーを、壁厚方向
へ向けて且つ最先端の感温部が炉内に露出する様に埋設
して炉内温度及び耐火壁内部温度を測定する一方、耐火
壁内の2以上の感温部で検知された測温結果に基づいて
隣接する感温部間の壁厚方向熱流束Qijを算出し、該
算出熱流束Qtjに反比例し炉内温度に比例する関数と
して耐火壁厚さXを求める点に要旨を有するものである
[Means for Solving the Problems] However, the method of the present invention is to install a temperature detection sensor having three or more temperature sensing parts in the longitudinal direction on the refractory wall of a high-temperature furnace, facing the thickness direction of the wall, and using a state-of-the-art method. The temperature sensing part is buried in the furnace so that it is exposed and measures the temperature inside the furnace and the temperature inside the fireproof wall. The gist is that the heat flux Qij in the wall thickness direction between the hot sections is calculated, and the refractory wall thickness X is determined as a function that is inversely proportional to the calculated heat flux Qtj and proportional to the furnace temperature.

[作用並びに実施例] 第3図は本発明に適用される温度検知センサーであって
、長手方向に6つの感温部を有する温度検知センサーの
一例(本出願人の提案に係る実公昭59−16816号
に記載のセンサー)を示す一部破断斜視図、第4図は第
3図の展開断面相当図である。図中1は外套シース管で
センサーB全体の保護管としての投割りを果す。2aは
シース型熱電対で、勿論シース型抵抗温度計に置き換え
ることも可能である。該熱電対2aに挿通されているの
は、熱電効果を示す一対の金属線4.4′で、その先端
はシース内において測定接点即ち感温部T、、T2.・
・・Ts 、 T6  (以下代表的に言うときはTと
表記する)を構成する。そしてこれらの感温部Tは長さ
方向において異なる位置を占める様に構成され、図では
炉内側から鉄皮側へかけてほぼ等ピッチで長さ方向の位
置を変更してTI。
[Operations and Examples] FIG. 3 shows an example of a temperature detection sensor that is applied to the present invention and has six temperature sensing sections in the longitudinal direction (a temperature detection sensor proposed by the present applicant in 1983). 16816), and FIG. 4 is a developed cross-sectional view corresponding to FIG. 3. In the figure, 1 is the outer sheath tube, which serves as a protective tube for the entire sensor B. 2a is a sheath type thermocouple, which can of course be replaced with a sheath type resistance thermometer. Passed through the thermocouple 2a are a pair of metal wires 4, 4' exhibiting a thermoelectric effect, the tips of which are located within the sheath as measurement contacts, ie, temperature sensing portions T, T2.・
...Ts, T6 (hereinafter referred to as T when speaking representatively) constitutes. These temperature sensing parts T are configured to occupy different positions in the length direction, and in the figure, the positions in the length direction are changed at approximately equal pitches from the inside of the furnace to the side of the shell.

T2.・・・T6を設けている。尚このピッチは任意で
あり、勿論無作為であってもよいが、耐火型損耗具合の
推定精度の向上を期して炉内側の感温部間ピッチを小さ
目にすること等は好ましい設計例といえる。そして感温
部Tの先端には、シース型熱電対2aと全く同一素材か
らなるシース型熱電対2bをダミーとして接続する(図
中の6は接続部を示す)。従ってセンサーBの幾何学断
面構成が全く同一であるから、各感温部Tにおける熱的
条件即ち測温条件が一定となる。
T2. ...T6 is provided. This pitch is arbitrary, and of course may be random, but a preferred design example would be to reduce the pitch between the temperature-sensitive parts inside the furnace in order to improve the accuracy of estimating the degree of wear on the refractory type. . A sheathed thermocouple 2b made of the same material as the sheathed thermocouple 2a is connected as a dummy to the tip of the temperature sensitive part T (6 in the figure indicates a connection part). Therefore, since the geometric cross-sectional configurations of the sensors B are exactly the same, the thermal conditions, that is, the temperature measurement conditions at each temperature sensing portion T are constant.

又3は外套シース管1内に充填されている耐火性の絶縁
材であり、これによってシース型熱電対2aの耐久性が
確保されると共に、センサーB内における長さ方向への
熱伝達が少なくなり、長さ方向についての測温精度が高
まる。尚この長さ方向への熱伝達をより小さなものにす
る為、外套シース管1の材質を低熱伝導率の素材からな
る薄肉管にすることも推奨され、更に耐食性も考慮すれ
ば、ステンレス鋼やインコネル等が望まれる。
Further, 3 is a fire-resistant insulating material filled in the outer sheath tube 1, which ensures the durability of the sheathed thermocouple 2a and reduces heat transfer in the length direction within the sensor B. This increases the accuracy of temperature measurement in the length direction. In order to reduce heat transfer in the longitudinal direction, it is recommended that the outer sheath tube 1 be made of a thin-walled tube made of a material with low thermal conductivity.If corrosion resistance is also taken into consideration, stainless steel or Inconel etc. is desired.

かくして2重シース管という特徴的な構造に基づく強度
的効果と相まって、熱流算出に当たっての前提ともなる
べき各感温部Pでの測温を長期に亘って確実且つ高精度
に行なうことができる。
In this way, in combination with the strength effect based on the characteristic structure of the double-sheathed tube, the temperature measurement at each temperature sensing part P, which is a prerequisite for heat flow calculation, can be carried out reliably and with high precision over a long period of time.

又上記センサーBの他の例(センサーB′本出願人の提
案に係る実開昭57−81531号のセンサー)を示せ
ば第5図(一部破断見取図)及び第6図(第5図のVl
−Vl線断面図)の通りである。即ちセンサーB′は上
述の如きセンサーBの各感温部TI 、 T2 、・・
・に対応して円盤状フィン8a。
Other examples of the above-mentioned sensor B (sensor B' of Utility Model Application Publication No. 57-81531 proposed by the present applicant) are shown in Fig. 5 (partially cutaway sketch) and Fig. 6 (Fig. 5). Vl
-Vl line sectional view). That is, sensor B' has each temperature sensing part TI, T2, . . . of sensor B as described above.
- A disc-shaped fin 8a corresponding to.

8b、・・・を設けると共に、各円盤状フィンBa。8b, . . . and each disc-shaped fin Ba.

8b、・・・を相互に絶縁材10で遮断しており、更に
断熱高強度材の保護外管11及びめくら板12で外装さ
れている。従ってこの様なセンサーB′を使用すれば耐
火壁内面に付着物が発生・成長する場合でも確実且つ高
精度の測温が可能となり、好都合である。
8b, . . . are isolated from each other by an insulating material 10, and further covered with a protective outer tube 11 and a blind plate 12 made of a heat-insulating high-strength material. Therefore, if such a sensor B' is used, it is possible to measure the temperature reliably and with high precision even when deposits are generated or grown on the inner surface of the fireproof wall, which is convenient.

・第1図は、上記温度検知センサーのうち温度検知セン
サーB′を高炉耐火壁へ埋設した状況を示す縦方向断面
説明図で、センサー先端の感温部TI、T2は炉内に露
出し、感温部T、〜T6は耐火壁内に埋設され、炉内温
度及び耐火壁内部温度を測定している。
・Figure 1 is a longitudinal cross-sectional explanatory diagram showing a situation where temperature detection sensor B' of the temperature detection sensors mentioned above is buried in the blast furnace refractory wall, and the temperature sensing parts TI and T2 at the tip of the sensor are exposed inside the furnace. The temperature sensing parts T, -T6 are embedded in the fireproof wall and measure the temperature inside the furnace and the temperature inside the fireproof wall.

以下第1図に基づいて本発明方法を説明するが、同図は
一実施例を示すものであって本発明がこれに限定される
ものではないことは言う迄もない。
The method of the present invention will be explained below based on FIG. 1, but it goes without saying that this figure shows one embodiment and the present invention is not limited thereto.

本発明においては、耐火壁内の隣接する感温部間の熱流
束Qijを上記センサーによって算出するが、Qijは
耐火壁内感温部のうち炉内に近い2点を選択することが
望ましく、図例ではQ34を求めた。
In the present invention, the heat flux Qij between adjacent temperature-sensing parts in the fireproof wall is calculated by the above-mentioned sensor, and it is desirable to select two points near the inside of the furnace from among the temperature-sensing parts in the fireproof wall for Qij. In the illustrated example, Q34 was calculated.

t、、:Ts  における測温値 t4:T4  における測温値 J134:T3とT4の間の距離 λ34:T3と14間の熱伝導率 一方耐火壁を貫通する熱流束Qは下記(4)式で表わさ
れる。
t, , : Temperature measurement value at Ts t4: Temperature measurement value at T4 J134: Distance between T3 and T4 λ34: Thermal conductivity between T3 and 14 On the other hand, the heat flux Q penetrating the fireproof wall is expressed by the following equation (4) It is expressed as

八 t :耐火壁内面の温度(t=tl=t2)to :鉄
皮外面の温度 X :耐火壁厚さ λ8 :耐火壁の熱伝導率 ココでQ=Q34が成立すると仮定すると、(3)。
8t: Temperature of the inner surface of the fireproof wall (t=tl=t2) to: Temperature of the outer surface of the steel shell .

(4)よりXを求めることができる。From (4), X can be found.

即ち鉄皮外面の温度t。は外気温に近い値でそれほど大
きな変動はなく、熱伝導率λBは既知の値であるので、
耐火壁内面温度を並びにT3とT4の間の熱流束Q34
が判かれば耐火壁厚さXを求めることができる。即ち耐
火壁厚さXは熱流束Q34に反比例し、耐火壁内面温度
(炉内温度)tに比例する関数として求めることができ
る。
That is, the temperature t of the outer surface of the iron skin. is close to the outside temperature and does not vary greatly, and the thermal conductivity λB is a known value, so
The internal temperature of the fireproof wall and the heat flux Q34 between T3 and T4
If this is known, the fireproof wall thickness X can be determined. That is, the refractory wall thickness X can be determined as a function that is inversely proportional to the heat flux Q34 and proportional to the refractory wall inner surface temperature (furnace temperature) t.

ところで上記温度検知センサーによって得たt3及びt
4の測温データから熱流束Q34を算出し、その推穆を
調べてみたところ第7図に示す結果が得られた。熱流束
Q34のこの様な変動は炉内状況即ち炉内温度tの変動
に伴なうものであるが、従来法では炉内温度tを一定と
しているので(5)式から理解される様に熱流束Q34
の変動によって耐火壁厚さXが大幅に変動することにな
り耐火壁厚さを正確に把握することができない。これに
対し本発明では炉内温度即ち耐火壁内面温度が正確に把
握されるので耐火壁厚さの把握も正確なものとなる。
By the way, t3 and t obtained by the above temperature detection sensor
The heat flux Q34 was calculated from the temperature measurement data of No. 4, and the results shown in FIG. 7 were obtained when the estimation was investigated. Such fluctuations in the heat flux Q34 are due to fluctuations in the furnace condition, that is, the furnace temperature t, but in the conventional method, the furnace temperature t is kept constant, so as can be understood from equation (5). Heat flux Q34
The fireproof wall thickness X varies significantly due to the variation in the fireproof wall thickness, making it impossible to accurately grasp the fireproof wall thickness. In contrast, in the present invention, since the temperature inside the furnace, that is, the internal temperature of the refractory wall, can be accurately determined, the thickness of the refractory wall can also be accurately determined.

一方(5)式を変形すると下記の通りとなる。On the other hand, when formula (5) is transformed, it becomes as follows.

ここでt−to :tと考えることができるのでX となり、Q 34/ tとXの間に反比例の関係が成立
する。そこでこの関係を検証する為、長期に亘ってQ3
4の結果から求めたXとQ34/lの相関をグラフにプ
ロットすると第8図が得られた。第8図に示される様に
XとQ34/lの間には相関々係が成立することが立証
され、Q34をtで補正した値により耐火壁厚さXを推
定することができる。
Here, since t-to :t can be considered, it becomes X, and an inversely proportional relationship is established between Q34/t and X. Therefore, in order to verify this relationship, we conducted Q3 over a long period of time.
When the correlation between X and Q34/l obtained from the results of 4 was plotted on a graph, Figure 8 was obtained. As shown in FIG. 8, it has been proven that a correlation exists between X and Q34/l, and the fireproof wall thickness X can be estimated from the value obtained by correcting Q34 by t.

さらに(3) 、 (4)式においてえ、4=λ8と仮
定すると 34X となりこれを変形すると、 が得られる。
Furthermore, in equations (3) and (4), assuming 4=λ8, 34X is obtained, and by transforming this, the following is obtained.

即ち前記温度検知センサーにおけるT1又はT2におけ
る測温データとT、、T4における測温データから耐火
壁厚さXの推定が可能となる。
That is, it is possible to estimate the fireproof wall thickness X from the temperature measurement data at T1 or T2 and the temperature measurement data at T, T4 in the temperature detection sensor.

尚上記では温度検知センサーB’  (第5,6図例)
を使用したが、温度検知センサーB (第3゜4図例)
であっても同様に実施することができ、要は3以上の感
温部を長手方向に有する温度検知センサーであって、先
端が炉内に突出して測温可能なものであれば全て本発明
に適用することができる。
In the above example, temperature detection sensor B' (example in Figures 5 and 6)
Temperature detection sensor B (Example in Figure 3-4)
The present invention can be applied to any temperature detection sensor that has three or more temperature-sensing parts in the longitudinal direction and whose tip protrudes into the furnace and is capable of measuring temperature. It can be applied to

[発明の効果] 本発明は以上の様に構成されており、耐火壁内面温度T
及び耐火壁内熱流を精度よく連続して測定することがで
きるので、耐火壁内面温度に比例し熱流に反比例する関
数として耐火壁厚さを外部から正確に把握することがで
きる。かくして高炉操業を安定に維持し、必要により耐
火壁の補修を行なって延命を図ることができる。
[Effects of the Invention] The present invention is configured as described above, and the fireproof wall inner surface temperature T
Since the heat flow inside the refractory wall can be measured continuously and accurately, the thickness of the refractory wall can be accurately determined from the outside as a function that is proportional to the internal temperature of the refractory wall and inversely proportional to the heat flow. In this way, blast furnace operation can be maintained stably, and if necessary, the firewall can be repaired to extend its life.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を説明する為の断面説明図、第2図
は従来の耐火壁厚さ測定方法を説明する為の断面図、第
3図は本発明に適用される温度検知センサーBの一部破
断斜視図、第4図は同センサーの展開断面相当図、第5
図は他の温度検知センサーB′の一部破断斜視図、第6
図は同センサーの断面説明図、第7図は熱流束Qijの
変化を示すグラフ、第8図は耐火壁厚さXとQ 34/
 tの関係を示すグラフである。 1・・・外套シース管  2・・・シース型熱電対3・
・・絶縁材     4・・・金属線8・・・円盤状フ
ィン  11・・・保護外管12・・・めくら板
Fig. 1 is a cross-sectional explanatory diagram for explaining the method of the present invention, Fig. 2 is a cross-sectional diagram for explaining the conventional fireproof wall thickness measuring method, and Fig. 3 is a temperature detection sensor B applied to the present invention. Fig. 4 is a partially cutaway perspective view of the same sensor;
The figure is a partially cutaway perspective view of another temperature detection sensor B'.
The figure is an explanatory cross-sectional diagram of the same sensor, Figure 7 is a graph showing changes in heat flux Qij, and Figure 8 is a graph showing the fireproof wall thickness X and Q34/
It is a graph showing the relationship between t. 1... Mantle sheath tube 2... Sheathed thermocouple 3.
... Insulating material 4 ... Metal wire 8 ... Disc-shaped fin 11 ... Protective outer tube 12 ... Blind plate

Claims (1)

【特許請求の範囲】[Claims] 高熱炉耐火壁に、3以上の感温部を長手方向に有する温
度検知センサーを、壁厚方向へ向けて且つ最先端の感温
部が炉内に露出する様に埋設して炉内温度及び耐火壁内
部温度を測定する一方、耐火壁内の2以上の感温部で検
知された測温結果に基づいて隣接する感温部間の壁厚方
向熱流束Qijを算出し、該算出熱流束Qijに反比例
し炉内温度に比例する関数として耐火壁厚さXを求める
ことを特徴とする高熱炉耐火壁の損耗状況把握方法。
A temperature detection sensor having three or more temperature-sensing parts in the longitudinal direction is buried in the refractory wall of a high-temperature furnace, facing in the wall thickness direction and with the most advanced temperature-sensing part exposed inside the furnace. While measuring the internal temperature of the fireproof wall, the wall thickness direction heat flux Qij between adjacent temperature sensing parts is calculated based on the temperature measurement results detected by two or more temperature sensing parts in the fireproof wall, and the calculated heat flux is calculated. A method for determining the wear status of a high-temperature furnace refractory wall, characterized by determining the refractory wall thickness X as a function that is inversely proportional to Qij and proportional to the furnace temperature.
JP20549186A 1986-09-01 1986-09-01 Method of determining state of damage of high-temperature furnace refractory wall Pending JPS6361885A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20549186A JPS6361885A (en) 1986-09-01 1986-09-01 Method of determining state of damage of high-temperature furnace refractory wall

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20549186A JPS6361885A (en) 1986-09-01 1986-09-01 Method of determining state of damage of high-temperature furnace refractory wall

Publications (1)

Publication Number Publication Date
JPS6361885A true JPS6361885A (en) 1988-03-18

Family

ID=16507734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20549186A Pending JPS6361885A (en) 1986-09-01 1986-09-01 Method of determining state of damage of high-temperature furnace refractory wall

Country Status (1)

Country Link
JP (1) JPS6361885A (en)

Similar Documents

Publication Publication Date Title
US4358953A (en) Method of monitoring the wear of refractory walls of a blast furnace and temperature probe used for the method
JPH0244186Y2 (en)
US4871263A (en) Protective tube for a temperature sensor
US4442706A (en) Probe and a system for detecting wear of refractory wall
JP4391195B2 (en) Temperature measuring device
JPS6361885A (en) Method of determining state of damage of high-temperature furnace refractory wall
RU2044058C1 (en) Method for control of erosion of blast-furnace well
JPS62217129A (en) Temperature measuring device for non-ferrous metal molten metal
JPH0233085B2 (en)
JP4664784B2 (en) Estimation method of hot metal temperature in blast furnace
JPS62257004A (en) Blast furnace hearth wall erosion detection method
JP4081248B2 (en) Control method of the lower part of the blast furnace
JP2867918B2 (en) Method for estimating effective thickness of slag coating in smelting vessel
JPS5916816Y2 (en) Temperature distribution detection sensor
JPH0726134B2 (en) Temperature measurement method for the bottom of the blast furnace
JPS6354588A (en) Method of determining state of damage of high-heating furnace fireproofing wall
JPS5930399Y2 (en) Refractory wall erosion detection sensor
JPH0227625B2 (en) TATEGATARONIOKERUROHEKIHYOMENGASURYUNOTSUYOSASUITEIHOHO
JPH0257665B2 (en)
RU2020036C1 (en) Device for determining level of melt in heat apparatus
JP2002038210A (en) Blast furnace wall thickness measurement device and blast furnace operation method
KR20000043425A (en) Method and apparatus for measuring thickness of brick in bottom part of shaft furnace by measuring thermal flux
JP2718305B2 (en) Estimation method of erosion line at blast furnace bottom
JPS61254840A (en) Detection of erosion of blast furnace wall
CN114292973A (en) Method for estimating and monitoring temperature of refractory material in blast furnace lining