JP2002038210A - Thickness measuring device for deposit on inner wall of blast furnace and operation method for the furnace - Google Patents
Thickness measuring device for deposit on inner wall of blast furnace and operation method for the furnaceInfo
- Publication number
- JP2002038210A JP2002038210A JP2000226292A JP2000226292A JP2002038210A JP 2002038210 A JP2002038210 A JP 2002038210A JP 2000226292 A JP2000226292 A JP 2000226292A JP 2000226292 A JP2000226292 A JP 2000226292A JP 2002038210 A JP2002038210 A JP 2002038210A
- Authority
- JP
- Japan
- Prior art keywords
- furnace
- blast furnace
- measuring device
- deposit
- thickness measuring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Blast Furnaces (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、高炉炉体の側壁、
特に高熱負荷部の炉壁部の付着物厚み測定装置及びその
測定装置を用いた高炉の操業方法に関する。TECHNICAL FIELD The present invention relates to a blast furnace furnace side wall,
In particular, the present invention relates to an apparatus for measuring the thickness of deposits on a furnace wall of a high heat load section and a method for operating a blast furnace using the apparatus.
【0002】[0002]
【従来の技術】高炉炉壁においては、鉄皮の内側に内部
冷却機構を備えたステーブクーラーを張設して炉壁が構
成されている。ステーブクーラーとしては鋳物製のもの
が採用されており、一般的にステーブクーラーは冷却媒
体を循環させる冷却管を内部に配置した鋳鉄製であり、
ステーブクーラーの炉内側表面には定型煉瓦が間隔をお
いて複数段埋め込まれている。2. Description of the Related Art A furnace wall of a blast furnace furnace is constructed by extending a stave cooler having an internal cooling mechanism inside a steel shell. As the stave cooler, a cast-made one is adopted, and generally, the stave cooler is made of cast iron in which a cooling pipe for circulating a cooling medium is disposed.
A plurality of fixed bricks are embedded in the furnace inner surface of the stave cooler at intervals.
【0003】また、特開平11−293312号公報に
開示されているように、ステーブクーラーの冷却能力を
向上させるため、鋳鉄に替わって銅や銅合金を用いたス
テーブクーラーも採用されている。従来、これらのステ
ーブクーラーは、高炉本体シャフト部の中上部や羽口部
のような比較的負荷の低い低熱負荷部11には鋳鉄製の
ステーブクーラーが採用され、高炉の炉腹部のような高
熱負荷部10には銅や銅合金製のステーブクーラーが採
用され、ステーブクーラーの冷却能力に応じた使い方が
行われている。Further, as disclosed in Japanese Patent Application Laid-Open No. H11-29312, a stave cooler using copper or a copper alloy instead of cast iron has been employed in order to improve the cooling capacity of the stave cooler. Conventionally, these stave coolers employ a cast iron stave cooler in a low heat load portion 11 having a relatively low load, such as a middle and upper portion of a blast furnace body shaft portion and a tuyere portion. A stave cooler made of copper or a copper alloy is used for the load unit 10, and usage is performed in accordance with the cooling capacity of the stave cooler.
【0004】低熱負荷部に採用される鋳鉄製のステーブ
クーラーは、銅及び銅合金製ステーブクーラーに比べて
冷却能力が低いため、その炉内に面した部分は比較的高
温の状態を保っている。このため、ステーブクーラー表
面への付着物の付着は少なく、炉況の変化を察知しやす
い状態にある。[0004] The cast iron stave cooler employed in the low heat load portion has a lower cooling capacity than the copper and copper alloy stave cooler, so that the portion facing the furnace maintains a relatively high temperature. . For this reason, there is little adhesion of deposits on the surface of the stave cooler, and it is in a state where a change in the furnace condition can be easily detected.
【0005】高熱負荷部に採用されている銅及び銅合金
製のステーブクーラーにおいては、冷却能力が高いこと
から、ステーブクーラーの温度は通常70℃程度であ
り、温度変動も少ないという特徴がある。A stove cooler made of copper or a copper alloy employed in a high heat load portion has a characteristic that the stove cooler usually has a temperature of about 70 ° C. and has little temperature fluctuation because of its high cooling ability.
【0006】このため、高熱負荷部に採用される銅及び
銅合金製のステーブクーラーの表面には炉内の溶融物の
凝着や鉄鉱石粉からなる付着物が付着し、この付着物が
成長してステーブクーラー本体を熱衝撃や磨耗から守る
セルフライニング現象が生じる。このセルフライニング
によりステーブクーラーの寿命は結果的に延長される。[0006] For this reason, on the surface of a copper or copper alloy stave cooler employed in a high heat load portion, adhesion of the melt in the furnace and deposits of iron ore powder adhere, and the deposits grow. A self-learning phenomenon occurs that protects the stave cooler body from thermal shock and wear. This self-fringing results in a longer life of the stave cooler.
【0007】鋳鉄製ステーブクーラーにおいては、ステ
ーブクーラー自体の温度変動を測定することによって高
炉炉内の熱負荷状況を推定することができる。しかし、
銅及び銅合金製ステーブクーラーはそれ自体の温度変化
が小さいため、上記鋳鉄製ステーブクーラーのようにそ
れ自体の温度変動を元に炉内の熱負荷状況を推定するこ
とができなかった。このため、炉内の状況変化を察知す
ることが遅れ、炉況不調に陥ったり、それを避けるため
ややもすると高燃料比操業となる傾向があった。[0007] In a cast iron stove cooler, the thermal load in the blast furnace can be estimated by measuring the temperature fluctuation of the stave cooler itself. But,
Since a copper or copper alloy stave cooler has a small temperature change itself, it was not possible to estimate the heat load condition in the furnace based on the temperature fluctuation of the stave cooler itself as in the case of the cast iron stave cooler. For this reason, it was late to detect a change in the condition inside the furnace, and there was a tendency for the reactor to be in an unsatisfactory condition or to operate at a high fuel ratio at least to avoid it.
【0008】また、炉壁に付着した付着物が鉱石粉等の
堆積等により急成長した場合には、炉内物流下降とガス
流上昇を阻害し、棚吊り、スリップを誘発し、高炉の生
産性を低下させるのみならず、大型付着物が脱落した場
合には、羽口を破損し、高炉休風に陥ることが懸念され
る。[0008] Further, when the deposits attached to the furnace wall grow rapidly due to the accumulation of ore powder or the like, the lowering of the in-furnace logistics and the rise of the gas flow are hindered, and shelves are suspended and slips are induced. If large deposits fall off as well as the property of dropping, it is feared that the tuyere may be damaged and the blast furnace may be shut down.
【0009】従って、銅及び銅合金製ステーブクーラー
を使用して、高炉の安定・低燃料比操業を追求するため
には、炉壁付着物の形成状況を常時監視し、層厚が増大
する傾向を察知したら直ちに対処することが必要であ
り、そのための付着物の厚み測定装置の開発が望まれて
いた。Therefore, in order to pursue a stable and low fuel ratio operation of a blast furnace using a copper and copper alloy stave cooler, the formation state of deposits on the furnace wall is constantly monitored and the layer thickness tends to increase. It is necessary to take immediate action upon detecting this, and it has been desired to develop an apparatus for measuring the thickness of attached matter.
【0010】この付着物測定装置として特開昭57−5
7809号公報が開示されている。特開昭57−578
09号公報には、高炉炉壁において、その炉内側まで貫
通した貫通孔から温度計を挿入して、その温度計の先端
を炉内側に一定長さ突出させ、この温度計によって温度
を測定し、この測定値が原料装入周期に対応して周期的
に変動する場合のその周期的変動の消滅を検出すること
により、炉壁の付着物の有無を検出する技術が提案され
ている。[0010] Japanese Patent Application Laid-Open No. 57-5 / 57 discloses this attached matter measuring device.
No. 7809 is disclosed. JP-A-57-578
No. 09 discloses that a thermometer is inserted into a blast furnace wall from a through hole penetrating to the inside of the furnace, a tip of the thermometer is protruded to a certain length inside the furnace, and the temperature is measured by the thermometer. There has been proposed a technique for detecting the presence or absence of a deposit on a furnace wall by detecting the disappearance of the periodic fluctuation when the measured value periodically fluctuates according to the raw material charging cycle.
【0011】また、特開平05−1313号公報には、
高炉の炉壁煉瓦を多数区画に分割し、各分割位置に煉瓦
層内に熱電対先端の埋め込み深さを異ならせて設けた2
個の熱電対温度計を設置し、こられの温度測定値から演
算により、付着物厚さを求める装置が提案されている。[0011] Japanese Patent Application Laid-Open No. 05-1313 discloses that
The furnace wall brick of the blast furnace was divided into a number of sections, and the depth of embedding of the thermocouple tip was varied in the brick layer at each division position.
An apparatus has been proposed in which a plurality of thermocouple thermometers are installed, and the thickness of the deposit is obtained by calculation from the measured temperature values.
【0012】また、特開平08−81707号公報に
は、高炉炉壁の耐火物厚さ方向に複数の温度測定部を有
し、そのうち少なくともひとつが高炉内に突出し、少な
くともひとつが耐火物内に位置するように配置して、各
温度測定値の時系列的データーを周波数解析し、その解
析結果について、所定値以上の周波数成分の変動強度を
抽出し、耐火物内に位置する測定部の変動強度に基づい
て、各測定部が付着物中にあるか否かを判定する検出方
法と装置が提案されている。Japanese Patent Application Laid-Open No. 08-81707 discloses a blast furnace having a plurality of temperature measuring sections in the thickness direction of the refractory wall, at least one of which is projected into the blast furnace and at least one is disposed in the refractory. Frequency analysis of the time-series data of each temperature measurement value, extract the fluctuation intensity of the frequency component equal to or higher than a predetermined value, and analyze the fluctuation of the measurement unit located in the refractory. There has been proposed a detection method and apparatus for determining whether or not each of the measurement units is in the deposit based on the intensity.
【0013】[0013]
【発明が解決しようとする課題】特開昭57−5780
9号公報に記載されたような方法では、温度計の先端を
炉内に突出させているため、先端が炉内の高温度に曝さ
れ、また降下する鉱石やコークスの磨耗を受け、温度計
の寿命が短い。また、付着物の厚さは温度計の突出長さ
以上になったときわかるだけで付着物の厚さを連続的に
測定することができない。SUMMARY OF THE INVENTION Japanese Patent Laid-Open No. 57-5780
In the method described in Japanese Patent Application Laid-open No. 9, since the tip of the thermometer protrudes into the furnace, the tip is exposed to the high temperature in the furnace, and the ore or coke falling is worn away. Life is short. Further, the thickness of the attached matter is only known when the thickness exceeds the protruding length of the thermometer, and the thickness of the attached matter cannot be measured continuously.
【0014】特開平05−1313号公報に記載の装置
では炉壁を構成する耐火物内に複数の温度計を埋め込ん
で付着物厚みを測定するもので、銅及び銅合金製ステー
ブクーラー方式の場合は炉壁に耐火物を使用しないの
で、採用することができない。In the apparatus described in Japanese Patent Application Laid-Open No. 05-1313, a plurality of thermometers are buried in a refractory constituting a furnace wall to measure the thickness of a deposit, and a stove cooler system made of copper and a copper alloy is used. Can not be adopted because refractory is not used for the furnace wall.
【0015】特開平08−81707号公報では、高度
な信号処理を有する上、炉内に突出する測定部は大きな
温度変動するが付着物および耐火物内で急激に小さくな
る温度変動の特性を利用して炉壁の付着物厚みを測定す
るため、炉壁に耐火物を使用しない銅および銅合金製ス
テーブクーラー方式の炉壁には採用できない。Japanese Patent Application Laid-Open No. 08-81707 uses the characteristic of temperature fluctuation that has a high level of signal processing and has a large temperature fluctuation in the measuring part protruding into the furnace, but rapidly decreases in the deposits and refractories. Therefore, the method cannot be applied to a stove cooler type furnace wall made of copper or a copper alloy which does not use a refractory material for the furnace wall.
【0016】[0016]
【課題を解決するための手段】本発明は、以上に記載し
た課題を解決するためになされたものであり、その要旨
は以下のとおりである。 (1)高炉炉壁に付着した付着物厚みを測定する測定装
置において、耐熱・耐磨耗性材料よりなる円柱体の一方
側の先端を円柱体の軸と斜交する鉛直平面12で切断し
て斜切直円柱体1とし、斜切直円柱体1の他方側の面か
ら斜切直円柱体1の軸と平行に複数の細孔6を穿孔し、
細孔6に温度計5を挿嵌したことを特徴とする高炉炉壁
付着物厚み測定装置。 (2)前記複数の細孔中少なくとも1つは、斜切直円柱
体1を貫通した細孔であることを特徴とする上記(1)
に記載の高炉炉壁付着物測定装置。 (3)上記斜切直円柱体1に炉内ガス圧力を測定する圧
力計と温度を測定する温度計5を並設したことを特徴と
する上記(2)に記載の高炉炉壁付着物厚み測定装置。 (4)前記高炉炉壁付着物厚み測定装置7を銅又は銅合
金製ステーブで構成する炉壁に配設したことを特徴とす
る上記(1)乃至(3)のいずれかに記載の高炉炉壁付
着物厚み測定装置。 (5)上記(1)乃至(3)のいずれかに記載の高炉炉
壁付着物厚み測定装置7を高炉炉体の円周方向及び高さ
方向に複数配設し、該高炉炉壁付着物厚み測定装置7で
検出する炉内圧力及び炉内ガス温度により炉壁への付着
物厚みを測定するとともに高炉の炉内状況を推定するこ
とを特徴とする高炉の操業方法。SUMMARY OF THE INVENTION The present invention has been made to solve the problems described above, and the gist thereof is as follows. (1) In a measuring device for measuring the thickness of deposits adhered to a blast furnace wall, one end of a cylindrical body made of a heat-resistant and abrasion-resistant material is cut along a vertical plane 12 oblique to an axis of the cylindrical body. To form a plurality of small holes 6 in parallel with the axis of the slant-cut straight cylinder 1 from the other surface of the slant-cut straight cylinder 1,
A blast furnace furnace wall deposit thickness measuring device, wherein a thermometer 5 is inserted into the pores 6. (2) At least one of the plurality of pores is a pore that penetrates the obliquely cut straight cylindrical body 1 (1).
The blast furnace wall adhering matter measuring device according to item 1. (3) The thickness of the blast furnace furnace wall adhering material according to (2), wherein a pressure gauge for measuring the gas pressure in the furnace and a thermometer 5 for measuring the temperature are juxtaposed on the obliquely cut straight cylindrical body 1. measuring device. (4) The blast furnace furnace according to any one of the above (1) to (3), wherein the blast furnace wall adhering material thickness measuring device 7 is disposed on a furnace wall composed of a copper or copper alloy stave. Wall thickness measurement device. (5) A plurality of the blast furnace furnace wall thickness measuring devices 7 according to any one of the above (1) to (3) are provided in a circumferential direction and a height direction of the blast furnace furnace body, and the blast furnace furnace wall thickness is measured. A method for operating a blast furnace, comprising measuring a thickness of a substance attached to a furnace wall based on a furnace pressure and a furnace gas temperature detected by a thickness measuring device 7 and estimating a furnace state of the blast furnace.
【0017】[0017]
【発明の実施の形態】図1は本発明の付着物厚み測定装
置7を高炉高熱負荷部10に配置した実施例、図2は本
発明の実施例を示す付着物厚み測定装置を示す部分断面
図、図3は付着物厚み測定装置7の斜視外観図、図4は
細孔6の配置図であって(a)は図2のA−A矢視図、
(b)は別の実施例、図5は本発明の付着物厚み測定装
置による温度測定例で高炉炉内が通常状態の場合、図6
は本発明の付着物厚み測定装置による温度測定例で付着
物が成長しはじめるときの温度変化例である。FIG. 1 shows an embodiment in which a deposit thickness measuring device 7 of the present invention is arranged in a blast furnace high heat load section 10, and FIG. 2 shows a partial cross section of the deposit thickness measuring device showing an embodiment of the present invention. FIG. 3 is a perspective external view of the attached matter thickness measuring device 7, FIG. 4 is a layout diagram of the pores 6, and FIG.
(B) is another example, and FIG. 5 is an example of temperature measurement by the attached matter thickness measuring apparatus of the present invention.
Is an example of a temperature change when an attached substance starts to grow in a temperature measurement example by the attached substance thickness measuring apparatus of the present invention.
【0018】図1において、高炉炉体のうち高熱負荷部
10に採用された銅および銅合金製ステーブクーラー2
部に本発明の付着物厚み測定装置7を設置したものであ
り、高炉の高熱負荷部10に周囲方向に所定の間隔をあ
けて配置しており、かつ、炉高方向にも複数段(図1で
は3段)配置している。図1において、低熱負荷部11
には鋳鉄製のステーブクーラー2aが配置されている。In FIG. 1, a copper and copper alloy stave cooler 2 employed in a high heat load portion 10 of a blast furnace furnace body 2
The apparatus is provided with the attached matter thickness measuring device 7 of the present invention at a predetermined position in the high heat load unit 10 of the blast furnace at a predetermined interval in the circumferential direction. 3 in 1). In FIG. 1, the low heat load unit 11
Is provided with a stave cooler 2a made of cast iron.
【0019】図2に本発明の付着物厚み測定装置7を設
置した取り付け部の詳細を示す。図2において、銅およ
び銅合金製ステーブクーラー2の間に本発明の炉壁構造
を採用したものである。図2はその断面図を示し、図3
は本発明の付着物厚み測定装置7の斜視外観図を示す。
耐熱・耐磨耗性材料よりなる円柱体の一方側の先端を円
柱体の軸と斜交する鉛直平面12で切断して斜切直円柱
体1を形成する。この斜切直円柱体1の他方の側の面か
ら複数の細孔6を穿孔する。複数穿孔した細孔6のう
ち、1つの細孔6−5については斜切直円柱体1を貫通
している。この貫通した細孔6−5に圧力計を設置しこ
の圧力計により炉内圧力を検出するようにしている。残
りの細孔(6−1〜6−4)は鉛直平面12の近くまで
穿孔されているが貫通はしていない。斜切直円柱体1の
一方の面(鉛直平面12)が円柱体の軸に対して斜面と
なっているので、穿孔した細孔6はその穿孔長さが細孔
6−4から細孔6−1に向けて順次短くなっている。そ
してこの貫通していない細孔6に温度計5を挿嵌する。
図2においては細孔6−1及び細孔6−4に温度計5を
挿嵌した状況が示されている。このように構成した斜切
直円柱体1を炉外から炉内に向けて挿入する。挿入の
際、傾斜面(鉛直平面12)を側方に向けて挿入する。
また、細孔6は炉の円周方向に等間隔で穿孔する。この
ような構成で、付着物厚み測定装置となっている。FIG. 2 shows the details of the attachment portion where the attached matter thickness measuring device 7 of the present invention is installed. In FIG. 2, the furnace wall structure of the present invention is employed between a copper and copper alloy stave cooler 2. FIG. 2 shows a sectional view thereof, and FIG.
1 shows a perspective external view of the attached matter thickness measuring device 7 of the present invention.
One end of a cylindrical body made of a heat-resistant and abrasion-resistant material is cut at a vertical plane 12 oblique to the axis of the cylindrical body to form the obliquely cut straight cylindrical body 1. A plurality of pores 6 are drilled from the surface on the other side of the obliquely cut straight cylindrical body 1. Of the plurality of perforated pores 6, one of the pores 6-5 passes through the obliquely cut straight cylindrical body 1. A pressure gauge is installed in the penetrated pore 6-5, and the pressure inside the furnace is detected by the pressure gauge. The remaining pores (6-1 to 6-4) are perforated to near the vertical plane 12, but do not penetrate. Since one surface (vertical plane 12) of the obliquely cut straight cylindrical body 1 is inclined with respect to the axis of the cylindrical body, the perforated pore 6 has a perforated length of from the pore 6-4 to the pore 6-6. It gradually decreases toward -1. Then, the thermometer 5 is inserted into the small holes 6 not penetrated.
FIG. 2 shows a situation where the thermometer 5 is inserted into the fine holes 6-1 and 6-4. The obliquely-cut straight cylindrical body 1 thus configured is inserted from outside the furnace toward the inside of the furnace. During insertion, the inclined surface (vertical plane 12) is inserted to the side.
Further, the pores 6 are pierced at equal intervals in the circumferential direction of the furnace. With such a configuration, an attached matter thickness measuring device is obtained.
【0020】斜切直円柱体1に用いる耐熱・耐磨耗性材
料としては、セラミックスあるいは耐熱鋳鋼(SCH2
2等)等を用いることができる。斜切直円柱体1の斜切
面を鉛直平面としたのは、鉛直にすることによって付着
物厚み測定装置7の上面に炉内容物が堆積しないように
することができるからである。The heat-resistant and wear-resistant material used for the obliquely cut straight cylindrical body 1 is ceramic or heat-resistant cast steel (SCH2).
2 etc.) can be used. The reason why the oblique cut surface of the obliquely cut straight cylindrical body 1 is a vertical plane is that by making it vertical, it is possible to prevent the furnace contents from being deposited on the upper surface of the attached matter thickness measuring device 7.
【0021】図2において付着物4として記載している
ように、銅および銅合金製ステーブクーラー2の表面に
は通常時には付着物4が付着し、付着物厚み測定装置7
の先端部は付着物に覆われず炉内容物に接近している。
細孔先端部が付着物4に覆われた部位に位置する細孔
(図2においては細孔6−1)に配設された温度計5の
指示値は低く、温度変動も少ない。一方、細孔先端部が
付着物4に覆われず炉内容物に接近している部位の細孔
(図2においては細孔6−2〜6−4)に配置された温
度計5では炉内の温度変化を敏感に検知する。As shown in FIG. 2 as the deposit 4, the deposit 4 usually adheres to the surface of the copper and copper alloy stave cooler 2, and the deposit thickness measuring device 7.
Is not covered with the deposit and is close to the furnace contents.
The indicated value of the thermometer 5 provided in the pore (the pore 6-1 in FIG. 2) located at the site where the tip of the pore is covered with the deposit 4 is low, and the temperature fluctuation is small. On the other hand, the thermometer 5 disposed at the pores (pores 6-1 to 6-4 in FIG. 2) at the site where the tip of the pores is not covered with the deposit 4 and is close to the contents of the furnace does not include the furnace. Sensitively detects temperature changes in the interior.
【0022】図4に細孔6の配置の例を示す。図4
(a)は図2のA−A矢視図であり、細孔6を一列横方
向に等間隔で配置したものである。図4(b)は細孔6
を斜切直円柱1の円周に配置したものである。複数の付
着物厚み測定装置7を炉の円周方向、高さ方向に等間隔
で配置できればいずれの方法を用いてもよい。FIG. 4 shows an example of the arrangement of the pores 6. FIG.
(A) is a view on arrow AA in FIG. 2, in which fine holes 6 are arranged at equal intervals in one row in the horizontal direction. FIG.
Are arranged on the circumference of the obliquely cut straight cylinder 1. Any method may be used as long as a plurality of the deposit thickness measuring devices 7 can be arranged at equal intervals in the circumferential direction and the height direction of the furnace.
【0023】図5は細孔6−1から細孔6−4に挿嵌し
た温度計5により測定した温度変化例を示したものであ
る。横軸は時間、縦軸は温度を示す。T1〜T4はそれ
ぞれ細孔6−1〜細孔6−4に挿嵌した温度計で測定し
た測定値である。温度測定値T1においては温度の時間
変動が少なく、T2では温度変動が大きい。このことか
ら、炉壁に付着した付着物4の炉内側表面位置が細孔6
−1の先端部(図2のL1)と細孔6−2の先端部(図
2のL2)の間にあることが推定できる。このように細
孔の穿孔長さを予め図2のように設定しておけば、前記
した測定値から付着物4の炉内側表面位置はL1とL2
の間にあり、付着物厚みが推定される。FIG. 5 shows an example of a temperature change measured by the thermometer 5 inserted into the fine holes 6-1 to 6-4. The horizontal axis indicates time, and the vertical axis indicates temperature. T1 to T4 are measured values measured by a thermometer inserted into the pores 6-1 to 6-4, respectively. The temperature fluctuation is small at the temperature measurement value T1, and the temperature fluctuation is large at T2. From this, the position of the inside of the furnace of the deposit 4 attached to the furnace wall is
-1 (L1 in FIG. 2) and the tip of the pore 6-2 (L2 in FIG. 2). If the perforation lengths of the pores are set in advance as shown in FIG.
And the thickness of the deposit is estimated.
【0024】図6は図5と同様に各温度計の温度変化を
記録したものであり、炉内付着物が急に成長し始めると
きの温度状態を示す。細孔6−3の温度計5および細孔
6−4の温度計5の先端位置付近まで炉内付着物が成長
すると、図6に示すT3およびT4の温度が急激に下降
し、同時に温度変動が小さくなる。これより、炉内付着
物が鉱石粉の付着、堆積により急に成長したことを推定
でき、このまま放置すれば、やがて炉内の物流降下を阻
害し、ガス流れを阻害し炉況不調を招くことになる。こ
のような大きな付着物4が剥離すると、羽口の破損を誘
発して、休風を余儀なくされるだけでなく、対処が遅れ
ると冷え込みの原因となる可能性が懸念される。本発明
の付着物厚み測定装置7によって付着物4の成長が検出
された際には、迅速に対応を行うことによって休風や冷
え込みを未然に防止することができる。FIG. 6 is a graph showing the temperature change of each thermometer as in FIG. 5, and shows the temperature state when the deposits in the furnace start to grow rapidly. When the in-furnace deposits grow to near the tip positions of the thermometer 5 of the pore 6-3 and the thermometer 5 of the pore 6-4, the temperatures of T3 and T4 shown in FIG. Becomes smaller. From this, it can be inferred that the deposits in the furnace grew rapidly due to the deposition and deposition of ore powder, and if left untouched, it would eventually impede the flow down in the furnace, hinder the gas flow, and cause a furnace condition malfunction. become. If such a large deposit 4 is peeled off, the tuyere may be damaged, and not only the wind must be stopped, but also if the countermeasure is delayed, there is a possibility that the tuyere may become cold. When the growth of the attached matter 4 is detected by the attached matter thickness measuring device 7 of the present invention, by taking quick action, it is possible to prevent a calm or a cold from occurring.
【0025】さらに、本発明の付着物厚み測定装置7を
高炉炉体の円周方向と高さ方向に複数箇所設置すること
で、高熱負荷部10全体の付着物の厚みを監視すると同
時に炉内ガス温度と炉内ガス圧力を測定して、炉内ガス
温度の異常変化や高さ方向のガス圧力差の異常変動を遅
滞なく検知し、迅速に改善することで、高炉の安定操業
を維持でき、また、低燃料比を追及して溶銑の製造コス
トも低減できる。Furthermore, by installing the attached matter thickness measuring device 7 of the present invention at a plurality of locations in the circumferential direction and the height direction of the blast furnace body, the thickness of the attached matter on the entire high heat load section 10 is monitored and at the same time, the inside of the furnace is monitored. By measuring the gas temperature and the gas pressure in the furnace, abnormal changes in the gas temperature in the furnace and abnormal changes in the gas pressure difference in the height direction can be detected without delay, and rapid improvements can be made to maintain stable operation of the blast furnace. Further, the production cost of the hot metal can be reduced by pursuing a low fuel ratio.
【0026】[0026]
【発明の効果】以上のように、本発明の付着物厚み測定
装置によって銅または銅合金製ステーブクーラーの表面
に成長した付着物の成長の状況を常時監視し、異常成長
を敏感に検知できるので、炉内の変動をいち早く推定す
ることができる。また、炉況の変化を遅滞なく検知して
迅速に対応できるので、高炉の安定操業を維持でき、さ
らに、低燃料比を追及して溶銑の製造コストを低減でき
る。As described above, the condition of the growth of the deposits grown on the surface of the copper or copper alloy stave cooler can be constantly monitored and the abnormal growth can be detected sensitively by the deposit thickness measuring device of the present invention. In addition, fluctuations in the furnace can be quickly estimated. Further, since a change in the furnace condition can be detected promptly without delay, stable operation of the blast furnace can be maintained, and further, a low fuel ratio can be pursued to reduce the production cost of hot metal.
【図1】本発明の付着物厚み測定装置を高炉高熱負荷部
に配置した状況を示す高炉の部分断面図である。FIG. 1 is a partial cross-sectional view of a blast furnace, showing a state in which an attached matter thickness measuring device of the present invention is arranged in a blast furnace high heat load section.
【図2】本発明の付着物厚み測定装置を示す部分平面断
面図である。FIG. 2 is a partial plan sectional view showing an attached matter thickness measuring device of the present invention.
【図3】本発明の付着物厚み測定装置の斜視外観図であ
る。FIG. 3 is a perspective external view of the attached matter thickness measuring apparatus of the present invention.
【図4】本発明の付着物厚み測定装置における細孔の配
置図であって(a)は図2のA−A矢視図、(b)は別
の実施例である。4A and 4B are arrangement diagrams of pores in the attached matter thickness measuring apparatus of the present invention, wherein FIG. 4A is a view taken along the line AA in FIG. 2 and FIG. 4B is another embodiment.
【図5】本発明の付着物厚み測定装置による温度測定例
であり、高炉炉内が通常状態の場合である。FIG. 5 is an example of temperature measurement by the attached matter thickness measuring device of the present invention, in which the inside of the blast furnace is in a normal state.
【図6】本発明の付着物厚み測定装置による温度測定例
であり、付着物が成長しはじめるときの温度変化例であ
る。FIG. 6 is an example of temperature measurement by the attached matter thickness measuring device of the present invention, and is an example of a temperature change when the attached matter starts to grow.
1 斜切直円柱体 2 銅または銅合金製ステーブクーラー 2a 鋳鉄製ステーブクーラー 3 鉄皮 4 付着物 5 温度計 6 細孔 7 付着物厚み測定装置 8 断熱材 10 高熱負荷部 11 低熱負荷部 12 鉛直平面 T 温度測定値 DESCRIPTION OF SYMBOLS 1 Oblique straight cylinder 2 Copper or copper alloy stave cooler 2a Cast iron stave cooler 3 Iron shell 4 Deposit 5 Thermometer 6 Pores 7 Deposit thickness measuring device 8 Insulation material 10 High heat load part 11 Low heat load part 12 Vertical Plane T Temperature measured value
Claims (5)
る測定装置において、耐熱・耐磨耗性材料よりなる円柱
体の一方側の先端を円柱体の軸と斜交する鉛直平面で切
断して斜切直円柱体とし、該斜切直円柱体の他方側の面
から該斜切直円柱体の軸と平行に複数の細孔を穿孔し、
該細孔に温度計を挿嵌したことを特徴とする高炉炉壁付
着物厚み測定装置。1. A measuring apparatus for measuring the thickness of a substance adhering to a blast furnace wall, wherein one end of a cylindrical body made of a heat-resistant and abrasion-resistant material is cut at a vertical plane oblique to an axis of the cylindrical body. And obliquely cut straight cylindrical body, from the other surface of the obliquely cut straight cylindrical body perforated a plurality of pores in parallel with the axis of the obliquely cut straight cylindrical body,
A blast furnace wall adhering matter thickness measuring device, wherein a thermometer is inserted into the pores.
切直円柱体を貫通した細孔であることを特徴とする請求
項1に記載の高炉炉壁付着物測定装置。2. The apparatus according to claim 1, wherein at least one of the plurality of fine holes is a fine hole penetrating a straight obliquely cut cylindrical body.
する圧力計と温度を測定する温度計を並設したことを特
徴とする請求項2に記載の高炉炉壁付着物厚み測定装
置。3. The blast furnace wall thickness measurement according to claim 2, wherein a pressure gauge for measuring the gas pressure in the furnace and a thermometer for measuring the temperature are juxtaposed on the obliquely cut straight cylindrical body. apparatus.
は銅合金製ステーブで構成する炉壁に配設したことを特
徴とする請求項1乃至3のいずれかに記載の高炉炉壁付
着物厚み測定装置。4. A blast furnace furnace wall according to claim 1, wherein said blast furnace furnace wall deposit thickness measuring device is disposed on a furnace wall composed of a copper or copper alloy stave. Kimono thickness measuring device.
炉壁付着物厚み測定装置を高炉炉体の円周方向及び高さ
方向に複数配設し、該高炉炉壁付着物厚み測定装置で検
出する炉内圧力及び炉内ガス温度により炉壁への付着物
厚みを測定するとともに高炉の炉内状況を推定すること
を特徴とする高炉の操業方法。5. A blast furnace wall deposit thickness measuring device according to claim 1, wherein a plurality of the blast furnace wall deposit thickness measuring devices are arranged in a circumferential direction and a height direction of the blast furnace furnace body. A method for operating a blast furnace, comprising measuring a thickness of a substance attached to a furnace wall based on a furnace pressure and a furnace gas temperature detected by an apparatus and estimating a furnace state of the blast furnace.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000226292A JP3910347B2 (en) | 2000-07-27 | 2000-07-27 | Blast furnace furnace wall deposit thickness measuring apparatus and blast furnace operating method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000226292A JP3910347B2 (en) | 2000-07-27 | 2000-07-27 | Blast furnace furnace wall deposit thickness measuring apparatus and blast furnace operating method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002038210A true JP2002038210A (en) | 2002-02-06 |
JP3910347B2 JP3910347B2 (en) | 2007-04-25 |
Family
ID=18719933
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000226292A Expired - Fee Related JP3910347B2 (en) | 2000-07-27 | 2000-07-27 | Blast furnace furnace wall deposit thickness measuring apparatus and blast furnace operating method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3910347B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100812167B1 (en) | 2006-12-21 | 2008-03-12 | 주식회사 포스코 | Thickness measuring device of refractory |
JP2012219352A (en) * | 2011-04-12 | 2012-11-12 | Nippon Steel Corp | Method for evaluating deposit on furnace wall and method for operating blast furnace |
KR101733156B1 (en) | 2016-04-27 | 2017-05-24 | 주식회사 포스코 | Apparatus for detecting inner wall of blast furnace |
CN113026833A (en) * | 2021-04-13 | 2021-06-25 | 浙江海辰建设管理有限公司 | Accurate detection device for sediment thickness of cast-in-situ bored pile |
-
2000
- 2000-07-27 JP JP2000226292A patent/JP3910347B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100812167B1 (en) | 2006-12-21 | 2008-03-12 | 주식회사 포스코 | Thickness measuring device of refractory |
JP2012219352A (en) * | 2011-04-12 | 2012-11-12 | Nippon Steel Corp | Method for evaluating deposit on furnace wall and method for operating blast furnace |
KR101733156B1 (en) | 2016-04-27 | 2017-05-24 | 주식회사 포스코 | Apparatus for detecting inner wall of blast furnace |
CN113026833A (en) * | 2021-04-13 | 2021-06-25 | 浙江海辰建设管理有限公司 | Accurate detection device for sediment thickness of cast-in-situ bored pile |
Also Published As
Publication number | Publication date |
---|---|
JP3910347B2 (en) | 2007-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
SE445258B (en) | VIEW TO MONITOR THE DRAINAGE OF ELFABLE WALLS IN A MASTER OVEN | |
JP2002038210A (en) | Thickness measuring device for deposit on inner wall of blast furnace and operation method for the furnace | |
JPS58148061A (en) | Method for predicting breakout in continuous casting | |
CN106687606B (en) | Blast furnace cooling fin with integrated wear detecting system | |
EA038898B1 (en) | Shaft furnace condition monitoring | |
CN214300223U (en) | Blast furnace hearth erosion monitoring device | |
JP4294206B2 (en) | Blast furnace wall structure and blast furnace operation method | |
CN1938433A (en) | Method for protecting a tuyere assembly and a refractory lining of a furnace | |
Ghorbani et al. | Thermal assessment and identification of wear zones in a blast furnace hearth and tap-holes | |
RU2243265C2 (en) | Method of detection of burn-out in cooled thermal unit | |
TWI612303B (en) | Status monitoring system for fire-resistant material in furnace and monitoring method thereof | |
JPH10273708A (en) | Method for estimating furnace bottom condition in blast furnace | |
JPS5946702B2 (en) | Continuous casting mold | |
Sakaran et al. | Analysis and interpretation of fibre optic temperature data at the Polokwane Smelter | |
JP6904202B2 (en) | Kilnbeco occurrence detection system and kilnbeco occurrence detection method | |
JP2004091887A (en) | Tuyere for blast furnace and its exchanging method | |
JP2008223121A (en) | Method for repairing furnace wall surface at upper part of blast furnace shaft | |
JPS60141813A (en) | Method for controlling refractory wall of refining furnace for molten steel | |
JP4291764B2 (en) | Blast furnace operation method | |
JPH055117A (en) | Method for detecting molten material level in refining vessel for metallurgy | |
JP2008223120A (en) | Method for evaluating furnace wall surface state at upper part of blast furnace shaft | |
CN116336824A (en) | Double-hearth kiln wall temperature measurement early warning device | |
JPS6354588A (en) | Method of determining state of damage of high-heating furnace fireproofing wall | |
CN115752327A (en) | System and method for detecting thickness of accretion of iron ore oxidized pellet rotary kiln | |
JP2010222656A (en) | Method for measuring thickness of stuck-material layer of stave in blast furnace |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040325 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060221 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060329 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20061106 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061108 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070123 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070124 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110202 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120202 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |