JP2001335818A - Method for cooling furnace bottom in blast furnace - Google Patents

Method for cooling furnace bottom in blast furnace

Info

Publication number
JP2001335818A
JP2001335818A JP2000152420A JP2000152420A JP2001335818A JP 2001335818 A JP2001335818 A JP 2001335818A JP 2000152420 A JP2000152420 A JP 2000152420A JP 2000152420 A JP2000152420 A JP 2000152420A JP 2001335818 A JP2001335818 A JP 2001335818A
Authority
JP
Japan
Prior art keywords
cooling
blast furnace
temperature
furnace
furnace bottom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000152420A
Other languages
Japanese (ja)
Inventor
Takushi Kawamura
拓史 川村
Tsukasa Tamura
司 田村
Koichi Sannomiya
公一 三宮
Susumu Yamamoto
進 山本
Kazuhiro Io
和宏 井尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000152420A priority Critical patent/JP2001335818A/en
Publication of JP2001335818A publication Critical patent/JP2001335818A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Blast Furnaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cooling method of the furnace bottom in a blast furnace with which the wear of a furnace bottom refractory is restrained by suitably setting the cooling condition in the furnace bottom in the blast furnace to control the produced thickness of the stuck material on the furnace bottom. SOLUTION: In the cooling method of the furnace bottom in the blast furnace, with which plural cooling pipes are parallel disposed over the whole surface of the furnace bottom in the blast furnace, and these cooling pipes are divided into a peripheral zone mainly containing a range of the part just under an iron tapping hole and a center zone mainly containing a range in the center part of the furnace, and the peripheral zone is performed in intense cooling and the center zone is performed in soft cooling having smaller cooling performance than that in the peripheral zone, the temperature of cooling water for cooling the center zone is adjusted with various kinds of temperature information. Thus, the left thickness of the stuck material at the center part of the furnace bottom can be controlled without depending on the iron tapping ratio and molten iron and slag quantities in the blast furnace, and the service life in the blast furnace is extended by restraining the damage of the wall refractory on the furnace hearth due to the circulating flow. Further, labor saving is achieved and the driving cost of a cooling water pump for cooling the furnace bottom are drastically reduced by automatizing the control for self-circuited water quantity on the furnace bottom.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は高炉炉底における冷
却条件を適切に設定し、炉底付着物の生成厚を管理して
炉底耐火物の損耗を抑制する高炉炉底の冷却方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for cooling a blast furnace bottom, in which the cooling conditions in the blast furnace bottom are properly set, the thickness of the deposits on the bottom of the blast furnace is controlled, and the wear of the refractory of the furnace bottom is suppressed.

【0002】[0002]

【従来の技術】近年、高炉炉体の補修技術が進歩し、羽
口より上の部分については定期的にあるいは休風時に必
要に応じて補修を行うことで炉体維持が可能となってき
た。しかしながら、羽口より下部に位置する高炉炉底部
については、湯溜まり部分に溶銑・溶滓が存在すること
や、この部位の内容物を取り除くことが困難であること
から、同部位(特に内面側)の損耗に対する稼働中の抜
本的補修は現在に至るも不可能であった。
2. Description of the Related Art In recent years, the technology for repairing a blast furnace furnace body has been advanced, and it has become possible to maintain the furnace body by repairing the portion above the tuyere periodically or as required when the wind is shut off. . However, at the bottom of the blast furnace located below the tuyere, the presence of hot metal and slag in the sump and the difficulty in removing the contents of this part make it difficult to remove the same part (particularly the inner surface). At the present time, a radical repair during operation for the wear-out was not possible.

【0003】このような状況において、この高炉炉底部
における損耗の程度が高炉の寿命を決定する大きな要因
になっており、該部位の損耗抑止は高炉寿命延長におい
て最も重要視される事項であった。したがって、溶銑・
滓による高炉炉底部の炉内面に接する耐火物の損耗を如
何にして抑制するかについては、従来から多くの対策が
採られていた。
[0003] Under such circumstances, the degree of wear at the bottom of the blast furnace is a major factor in determining the life of the blast furnace, and the prevention of the wear of the blast furnace is the most important item in extending the life of the blast furnace. . Therefore, hot metal
Many measures have been taken in the past to reduce the wear of refractories in contact with the furnace inner surface at the bottom of the blast furnace due to the slag.

【0004】ところで、高炉の炉底部および炉底側壁部
の耐火物損耗機構は複雑であるが、その主たる原因は耐
火物面に溶銑・滓が接触して流動することにより起きる
溶損にあるとされており、溶銑・滓流動の活発な部位で
耐火物損耗が進行していることが明らかになってきてい
る。
[0004] The refractory wear mechanism of the furnace bottom and the bottom wall of the blast furnace is complicated, but the main cause is that the molten metal is brought into contact with and flows into the refractory surface due to molten metal. It has been clarified that refractory wear is progressing in areas where hot metal and slag flow are active.

【0005】すなわち、高炉炉底部の内部は、通常、コ
ークス充填層とその空隙を満たす溶銑・滓で大部分が構
成されているが、時として炉下部の一部において殆どコ
ークスが存在せずに溶銑・滓だけで満たされた領域が偏
在することが知られている。そのため、この領域の通液
性はコークス充填層部と比較して大幅に増加するので、
溶銑・滓はこの領域を選択的に通過することとなり、ま
たこの領域では溶銑・滓流速も増加することになる。し
たがって、該領域で耐火物損耗がより進行する。それ
故、高炉底部,炉底側壁部の耐火物損耗抑制のために
は、この部位の溶銑・滓流動を早期に推定し、溶銑・滓
流動が活発な部分には、直ちに耐火物損耗抑制対策を実
施する必要があった。
[0005] That is, the inside of the blast furnace bottom is usually mostly composed of a coke packed bed and hot metal and slag filling the voids, but sometimes there is almost no coke in the lower part of the furnace. It is known that regions filled only with hot metal and slag are unevenly distributed. Therefore, the liquid permeability in this area is greatly increased compared to the coke packed bed,
Hot metal and slag will selectively pass through this region, and in this region the flow rate of hot metal and slag will also increase. Therefore, the wear of the refractory further proceeds in the region. Therefore, in order to suppress refractory wear at the blast furnace bottom and the bottom wall of the furnace, the hot metal and slag flow in this area is estimated at an early stage, and the refractory wear control measures are immediately performed in areas where hot metal and slag flow are active. Had to be implemented.

【0006】従来、高炉底部や炉底側壁部の耐火物損耗
抑制対策を実施するか否かの判断に当たっては、高炉底
部の耐火物内に設置された温度計による測温値が基準と
されていた。このような耐火物損耗抑制対策技術につい
ては、従来より種々の提案がなされ発明として数多く開
示されている。
[0006] Conventionally, in determining whether or not to take measures to prevent refractory wear at the blast furnace bottom and the furnace bottom side wall, a temperature measurement value obtained by a thermometer installed in the refractory at the blast furnace bottom is used as a reference. Was. Various proposals have heretofore been made for such refractory wear suppression countermeasures and many have been disclosed as inventions.

【0007】例えば特開平9−227910に記載され
ている技術は、送風羽口や出銑孔からのチタンを装入す
る方法である。装入されたチタンを高炉内で窒化チタン
に変化せしめ、炉底部の耐火物表面に強固な保護膜を形
成させるものである。また、特開平6−145738に
記載されている技術は、冷凍機による低温冷却水を用い
て炉床壁を強冷する方法である。その他特開昭62−8
0207や特開平10−245608に記載されている
技術としては、炉底部の冷却系統を同心円状に分割して
炉床壁が損傷しやすい外周部を強冷却し、炉中央部を外
周部より冷却能力を小さくして緩冷却する方法である。
[0007] For example, the technique described in Japanese Patent Application Laid-Open No. 9-227910 is a method of charging titanium from a tuyere or a taphole. The charged titanium is changed into titanium nitride in the blast furnace, and a strong protective film is formed on the surface of the refractory at the bottom of the furnace. The technique described in Japanese Patent Application Laid-Open No. 6-145738 is a method of strongly cooling a hearth wall using low-temperature cooling water from a refrigerator. Other Japanese Patent Application Laid-Open No. 62-8
No. 0207 and Japanese Patent Application Laid-Open No. 10-245608, the cooling system at the bottom of the furnace is divided into concentric circles to strongly cool the outer periphery where the hearth wall is easily damaged, and cool the center of the furnace from the outer periphery. This is a method of slow cooling with reduced capacity.

【0008】[0008]

【発明が解決しようとする課題】高炉の寿命は、主に炉
床壁耐火物の損耗によって律速され、炉床壁耐火物の残
存厚400mmを下限値とすれば、現在の炉命は概ね1
5年程度である。出銑比が2t/d/m3 以下という比
較的低生産の高炉の場合、その寿命は15年程度または
それ以上であるのに対し、出銑比が2t/d/m3 以上
である比較的高生産の高炉の場合、その寿命は15年を
下回る場合が多い。これは、出銑比が高くなればなるほ
ど炉底にかかる熱負荷が大きくなることに起因する。
The life of the blast furnace is mainly determined by the wear of the refractory of the hearth wall. If the remaining thickness of the refractory of the hearth wall is set to a lower limit of 400 mm, the life of the current blast furnace is generally 1 unit.
About five years. In the case of a relatively low-production blast furnace with a tapping ratio of 2 t / d / m 3 or less, the service life is about 15 years or more, whereas the tapping ratio is 2 t / d / m 3 or more. In the case of blast furnaces with high production, the life is often less than 15 years. This is because the higher the tapping ratio, the greater the heat load on the furnace bottom.

【0009】すなわち、炉底の耐火物に高熱負荷がかか
ると、耐火物が損耗する頻度が増大する。さらに、出銑
比を変動させた場合、出銑比の変化により炉底にかかる
熱負荷が変動すると炉底の付着物厚も変り、炉内の溶銑
滓流れが変化することから、最も浸食されやすい炉床壁
付着物が剥離を起こし、炉命を縮めることが多い。
That is, when a high heat load is applied to the refractory at the furnace bottom, the frequency of wear of the refractory increases. In addition, when the tapping ratio is varied, if the heat load on the furnace bottom changes due to the change in tapping ratio, the thickness of the deposits on the furnace bottom also changes, and the molten iron slag flow in the furnace changes, so that erosion is most likely. Frequent hearth wall deposits cause delamination, often shortening the life of the furnace.

【0010】しかして、これらの対処策として開発され
た前記した発明についてみるに、特開平9−22791
0の技術によれば、高価なチタンを使用することからコ
ストが嵩み、一部のチタンが溶銑・滓中に溶け込んで炉
外に排出されることから、浸食部位へのチタン歩留まり
が低いという問題点があった。また、特開平6−145
738の技術によれば、冷凍機を用いる場合、冷凍機の
設置のみならず、運転費用(電力費)が嵩むとともに、
炉底隆起による環状流を根本的に防止することは困難で
あった。さらに、特開昭62−80207または特開平
10−245608に示される技術によれば、このよう
な装置は設備費が嵩むとともに、一旦炉底冷却配管中の
冷却水を排出する必要があることから、事実上高炉改修
時期以外に本装置を導入することは不可能であるという
欠点があった。
The above-mentioned inventions developed as a countermeasure for these problems are described in Japanese Patent Application Laid-Open No. 9-22791.
According to the technology of No. 0, the cost is increased due to the use of expensive titanium, and part of the titanium melts into the hot metal and slag and is discharged out of the furnace, so that the yield of titanium to the erosion site is low. There was a problem. Also, Japanese Patent Application Laid-Open No. 6-145
According to the technology of 738, when a refrigerator is used, not only the installation of the refrigerator but also the operating cost (electricity cost) increases,
It was difficult to fundamentally prevent the annular flow due to the hearth uplift. Further, according to the technology disclosed in Japanese Patent Application Laid-Open No. 62-80207 or Japanese Patent Application Laid-Open No. Hei 10-245608, such a device requires a large facility cost and also needs to once discharge the cooling water in the furnace bottom cooling pipe. However, there is a drawback that it is practically impossible to introduce this apparatus other than at the time of blast furnace repair.

【0011】上記のように従来例ではその解決に多くの
困難性を有しており、より適切な対策が要望されてい
た。そこで本発明においては、比較的簡易な設備の変更
によってその解決の達成を図ろうとするものである。す
なわち、本発明は高炉の操業条件に因らず、炉底付着物
残存厚を任意の管理範囲内に制御する炉底冷却方法を提
供することを目的としたものである。
As described above, the conventional example has many difficulties in solving the problem, and more appropriate measures have been demanded. Therefore, in the present invention, an attempt is made to achieve the solution by relatively simple equipment change. That is, an object of the present invention is to provide a bottom cooling method for controlling the bottom thickness remaining on the bottom of the furnace within an arbitrary control range regardless of the operating conditions of the blast furnace.

【0012】[0012]

【課題を解決するための手段】本発明は前記した従来方
法における問題点を解決するためになされたものであっ
て、その要旨するところは、下記手段にある。 (1) 高炉炉底全面にわたって複数本の冷却管を平行
に配設し、該冷却管を主に出銑口直下部領域を含む周辺
帯と、主に炉中心部領域を含む中央帯に分割し、前記周
辺帯は強冷却を行い前記中央帯は該周辺帯より冷却能力
を小さくした緩冷却を行う高炉炉底冷却方法において、
各種温度情報により、前記中央帯を冷却する冷却水の温
度を調整する高炉炉底冷却方法。 (2) 前記高炉の炉底冷却に際し、高炉炉底中心部近
傍直下の炉底耐火物内に上・下2箇所に温度計を設置
し、この温度測定値から炉底に付着した付着物の厚みを
推定し、その付着物の厚みが予め設定した管理範囲内に
なるように中央帯を冷却する冷却水の温度を調整する
(1)記載の高炉炉底冷却方法。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems in the conventional method, and its gist lies in the following means. (1) A plurality of cooling pipes are arranged in parallel over the entire bottom of the blast furnace, and the cooling pipes are divided into a peripheral zone mainly including the region immediately below the taphole and a central zone mainly including the central region of the furnace. In the blast furnace hearth cooling method, the peripheral zone performs strong cooling, and the central zone performs gentle cooling with a cooling capacity smaller than that of the peripheral zone.
A blast furnace bottom cooling method for adjusting the temperature of cooling water for cooling the central zone based on various types of temperature information. (2) At the time of cooling the bottom of the blast furnace, thermometers are installed at two locations above and below the bottom of the blast furnace immediately below the center of the blast furnace bottom, and from the temperature measurement values, The blast furnace bottom cooling method according to (1), wherein the thickness is estimated, and the temperature of the cooling water for cooling the central zone is adjusted so that the thickness of the deposit is within a preset control range.

【0013】(3) 前記高炉の炉底冷却に際し、高炉
炉底中央帯を冷却した冷却水の排水温度について温度管
理限界範囲を設定し、該排水温度が設定管理限界範囲内
になるように中央帯を冷却する冷却水の温度を調整する
(1)または(2)記載の高炉炉底冷却方法。 (4) 前記中央帯を冷却する冷却水の温度調整を冷却
水を供給する給水ポンプの稼働時間により調整する高炉
炉底冷却方法。
(3) In cooling the bottom of the blast furnace, a temperature control limit range is set for a drain temperature of cooling water for cooling the central zone of the blast furnace bottom, and the central temperature is set so that the drain temperature falls within the set control limit range. The blast furnace bottom cooling method according to (1) or (2), wherein the temperature of the cooling water for cooling the zone is adjusted. (4) A blast furnace bottom cooling method in which the temperature of the cooling water for cooling the central zone is adjusted by the operation time of a water supply pump for supplying the cooling water.

【0014】[0014]

【発明の実施の形態】本発明者らは、高炉の炉底冷却に
ついて種々の検討を行った結果、高炉炉底部の耐火物の
損耗を抑制するには、炉底耐火物の表面に適当な厚みを
有する付着物を確保してやれば、その付着物によって耐
火物表面の損耗を防止できることに着目し、その付着物
の量(厚み)を炉底耐火物を冷却せしめる冷却水の温度
を調整することによって、容易に行うことができるとの
知見を得るに至った。すなわち、冷却水の量を調整する
のではなく温度を調整することによって管理するなら
ば、不必要な給水量を浪費することなく、また、冷却水
を通水するために無駄にポンプを稼働する必要がないと
の結論に到達した。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have conducted various studies on the cooling of the furnace bottom of a blast furnace. As a result, in order to suppress the wear of the refractory at the bottom of the blast furnace, it is necessary to apply a suitable material to the surface of the furnace bottom refractory. Focusing on the fact that if a thick deposit is secured, it is possible to prevent the refractory surface from being worn by the deposit, and the amount (thickness) of the deposit should be adjusted by adjusting the temperature of the cooling water for cooling the bottom refractory. Has led to the finding that it can be easily performed. In other words, if management is performed by adjusting the temperature instead of adjusting the amount of cooling water, the pump is operated without wasting unnecessary water supply amount and wastefully for passing the cooling water. We reached the conclusion that there was no need.

【0015】以下、高炉炉底の冷却方法を適用する高炉
炉底の概要について、図1を参照しながら説明する。図
1aは高炉炉底部を含む炉床部の側断面図を示したもの
で、図1bはその平面図を示した。炉底部の耐火物1
は、通常、熱伝導性および耐溶損性に優れた炭素質レン
ガを多数積層させてなる耐火構造体である。その底部に
は該耐火物1を冷却するための冷却管2が全面にわたっ
て平行に多数配設されており、該冷却管は出銑口3が設
置されている炉底側壁部の下部の周辺帯4の系統と、そ
の部分以外の炉中心部領域を含む中央帯5の系統に分割
されている。
The outline of the blast furnace bottom to which the method for cooling the blast furnace bottom is applied will be described below with reference to FIG. FIG. 1a is a side sectional view of a hearth including a blast furnace bottom, and FIG. 1b is a plan view thereof. Refractory at furnace bottom 1
Is a refractory structure usually formed by laminating many carbonaceous bricks having excellent thermal conductivity and erosion resistance. A large number of cooling pipes 2 for cooling the refractory 1 are provided at the bottom thereof in parallel over the entire surface, and the cooling pipes are formed in a peripheral band at a lower portion of a furnace bottom side wall where a taphole 3 is installed. The system is divided into a system 4 and a system of a central zone 5 including a furnace center region other than the system 4.

【0016】本発明では前記した中央帯5の冷却に主体
を置いているので、それに沿って述べる。冷却水は冷却
管2に給水するための給水ポンプ6から給水管7を通し
て給水され、炉底冷却完了後は冷却管2からの排水とし
て排水管8を通り、給水ポンプ6に戻るよう構成されて
おり、冷却水の経路は閉経路を形成し自己循環系統とな
っている。このような冷却水経路において、外部からの
低温冷却水を供給するための供給管10と、高温になっ
た冷却水を系外に排出するための排出管11が、ポンプ
6の直前の排水管8にそれぞれ配設されている。
In the present invention, the cooling of the central zone 5 is mainly performed, and the description will be made accordingly. The cooling water is supplied from a water supply pump 6 for supplying water to the cooling pipe 2 through a water supply pipe 7, and after the furnace bottom cooling is completed, passes through a drain pipe 8 as drainage from the cooling pipe 2 and returns to the water supply pump 6. As a result, the cooling water path forms a closed path and is a self-circulation system. In such a cooling water path, a supply pipe 10 for supplying low-temperature cooling water from the outside and a discharge pipe 11 for discharging the high-temperature cooling water to the outside of the system include a drain pipe immediately before the pump 6. 8 respectively.

【0017】また、高炉炉底部の温度を計測する温度計
は、高炉炉底中心部近傍直下の炉底耐火物内に上部温度
計T1(測定温度t1 )と、下部温度計T2(測定温度
2)が2箇所の位置にレベルを異にして設置されてい
る。なお、図中9は高炉内壁および炉底表面に生成した
付着物を示し、t3 は給水冷却水温度を、t4 は排水冷
却水温度をそれぞれ示したものである。このような高炉
炉底耐火物内における上部温度t1 と下部温度t2 は、
高炉の炉況変化に応じて時間と共に変化するが、それぞ
れの温度データは図示しない制御装置等に取り込まれる
ようになっている。
A thermometer for measuring the temperature of the bottom of the blast furnace is provided with an upper thermometer T1 (measured temperature t 1 ) and a lower thermometer T2 (measured temperature) in the furnace bottom refractory immediately below the center of the blast furnace bottom. t 2 ) are installed at two different levels. In the drawing, reference numeral 9 denotes deposits formed on the inner wall of the blast furnace and the bottom surface of the blast furnace, t 3 denotes the temperature of the feed water cooling water, and t 4 denotes the temperature of the waste water cooling water. The upper temperature t 1 and the lower temperature t 2 in such a blast furnace refractory are
The temperature of the blast furnace changes with time according to a change in the furnace condition. The temperature data of each blast furnace is taken into a controller (not shown) or the like.

【0018】前記したように高炉炉底部を冷却する冷却
水系統を分割し、炉底耐火物が損耗しやすい出銑口直下
部には、低温の強化系冷却水を連続して循環使用するこ
とで、適宜な厚みを有するよう炉内付着物の成長を促進
し、炉底鉄皮を低温に保ち、熱膨張による鉄皮とステー
ブ間のエアギャップの発生を防止する。また、出銑口直
下以外、すなわち炉底中央部には比較的高温の自己循環
水を使用して緩冷却することで、炉底中央部領域に適切
な厚みを有する付着物を成長せしめて炉底耐火物を保護
せしめるものである。かくすることによって炉床部に溜
った溶銑・滓は炉底部全域にわたって流動し得るので、
炉床側壁部に集中して流れる、いわゆる環状流を抑制す
ることができる。
As described above, the cooling water system for cooling the bottom of the blast furnace is divided, and the cooling water of low-temperature strengthening system is continuously circulated and used immediately below the taphole where the refractory of the furnace bottom is easily worn. Therefore, the growth of deposits in the furnace is promoted so as to have an appropriate thickness, the furnace bottom steel is kept at a low temperature, and the generation of an air gap between the steel and the stave due to thermal expansion is prevented. In addition, by slow cooling using relatively high-temperature self-circulating water except under the taphole, that is, in the central part of the furnace bottom, deposits having an appropriate thickness grow in the central part of the furnace bottom, It protects the bottom refractory. By doing so, the hot metal and slag accumulated in the hearth can flow over the entire furnace bottom,
The so-called annular flow, which flows intensively on the hearth side wall, can be suppressed.

【0019】前述したように本発明で調整してやらなけ
ればならないのは、炉底耐火物の表面に付着する付着物
であり、その厚みを適正に確保することにある。そのた
めには炉底の温度を管理する必要があり、その温度管理
に当たっては冷却水の温度を指針とし、絶えず適正な値
を保持できるように冷却水の制御を行う必要がある。こ
のように、炉底耐火物の表面に生成せしめる付着物の厚
みは、高炉の規模に依っても多少の差異はあるが、本発
明者らが永年の経験上から知得た結果では、内容積50
00m3 程度の高炉においては、その値は100〜20
0mm程度が好ましく、その範囲内に管理するならば溶
銑はほぼ炉底を全面にわたって均一に流れ、炉床側壁部
を多く流れることを阻止でき、耐火物の損耗を防ぐこと
ができる。
As described above, what must be adjusted in the present invention is the deposits adhering to the surface of the furnace bottom refractory, and the purpose is to properly secure the thickness thereof. For that purpose, it is necessary to control the temperature of the furnace bottom, and in controlling the temperature, it is necessary to control the cooling water so as to constantly maintain an appropriate value by using the temperature of the cooling water as a guideline. As described above, although the thickness of the deposits formed on the surface of the furnace bottom refractory varies slightly depending on the scale of the blast furnace, the results obtained by the present inventors based on many years of experience show that Product 50
In a blast furnace of about 00 m 3 , the value is 100 to 20
It is preferably about 0 mm, and if it is controlled within the range, the hot metal flows substantially uniformly over the entire furnace bottom and can be prevented from flowing much on the hearth side wall, thereby preventing the refractory from being worn.

【0020】ここで、実稼働中の高炉の1例について炉
底付着物に関連して各種温度との関係を調査した結果を
図2〜4に示す。図2は炉底耐火物内の上部温度t1
よび下部温度t2 の温度差(t1 −t2)と、炉底付着
物の生成厚みの関係を示したもので、付着物厚みを適正
範囲内に収めるにはt1 −t2 の値を約65〜75℃に
管理してやらなければならないことが判明した。
FIGS. 2 to 4 show the results of an investigation of the relationship between various temperatures in relation to furnace bottom deposits for one example of a blast furnace in actual operation. FIG. 2 shows the relationship between the temperature difference (t 1 −t 2 ) between the upper temperature t 1 and the lower temperature t 2 in the furnace bottom refractory and the thickness of the furnace bottom deposits. It was found that the value of t 1 -t 2 had to be controlled at about 65 to 75 ° C. in order to fall within the range.

【0021】図3は高炉炉底部を冷却した冷却水の排水
温度t4 と、炉底耐火物内の上部温度t1 および下部温
度t2 温度の関係を示したもので、当然のことながら炉
底耐火物内の上部温度t1 および下部温度t2 が上昇し
てくると、冷却水の排水温度t4 が上昇することを表し
ている。
FIG. 3 shows the relationship between the drain temperature t 4 of the cooling water for cooling the bottom of the blast furnace and the upper temperature t 1 and the lower temperature t 2 in the furnace bottom refractory. This indicates that when the upper temperature t 1 and the lower temperature t 2 in the bottom refractory rise, the drainage temperature t 4 of the cooling water rises.

【0022】図4は高炉炉底部を冷却する自己循環水量
と冷却水給水ポンプの運転時間の積(冷却エネルギー)
と、高炉炉底部を冷却した冷却水の排水温度t4 の関係
を示したもので、これも当然のことながら冷却エネルギ
ーが増すと冷却水の排水温度t4 が低下することを表し
ている。
FIG. 4 shows the product (cooling energy) of the amount of self-circulating water for cooling the bottom of the blast furnace and the operation time of the cooling water feed pump.
And the temperature t 4 of the cooling water that has cooled the bottom of the blast furnace, which also shows that the cooling water drain temperature t 4 decreases as the cooling energy increases.

【0023】本発明において冷却制御を行うのは、前記
した高炉中央部の中央帯のみであり、周辺帯は強冷却の
ままの冷却を続行し、冷却の制御は特に行わない。冷却
に当たっては、各種温度情報により、冷却水温度を調整
して緩冷却を維持する。また、高炉炉底中心部近傍直下
の炉底耐火物内で測定された上部温度t1 と、下部温度
2 の温度についてそれぞれ温度限界管理範囲を設定
し、測定された温度が設定温度管理範囲内に収まるよう
に冷却制御を行う。
In the present invention, the cooling control is performed only in the central zone in the central portion of the blast furnace described above, and the peripheral zone continues cooling with strong cooling, and cooling control is not particularly performed. In cooling, the temperature of the cooling water is adjusted based on various kinds of temperature information to maintain gentle cooling. In addition, a temperature limit control range is set for each of the upper temperature t 1 and the lower temperature t 2 measured in the furnace bottom refractory just below the center of the blast furnace bottom, and the measured temperature is set to the set temperature control range. Cooling control is performed so that the temperature falls within the range.

【0024】さらに、高炉炉底中心部近傍直下の炉底耐
火物内で測定された上部温度t1 と、下部温度t2 の温
度差(t1 −t2 )についても温度限界管理範囲を設定
し、測定された温度が設定温度管理範囲内に収まるよう
に冷却制御を行う。さらにまた、高炉炉底中央帯を冷却
した冷却水の排水温度についても温度管理範囲を設定
し、該排水温度が設定管理限界範囲内に収まるように冷
却制御を行うものである。
Further, a temperature limit control range is set for the temperature difference (t 1 -t 2 ) between the upper temperature t 1 and the lower temperature t 2 measured in the hearth refractory just below the center of the blast furnace hearth. Then, cooling control is performed so that the measured temperature falls within the set temperature management range. Furthermore, a temperature control range is set for the drainage temperature of the cooling water that has cooled the central zone of the blast furnace furnace bottom, and the cooling control is performed so that the drainage temperature falls within the set control limit range.

【0025】このように、本発明においての冷却水制御
のために必要な温度は、冷却水の給水温度t3 と排水温
度t4 および、炉底耐火物内の上部温度t1 ,下部温度
2の値であり、これらの温度中制御できるのは、冷却
水の給水温度t3 であり、また、冷却水給水ポンプの運
転時間である。したがって、前記したように冷却水の排
水温度t4 ,炉底耐火物内の上部温度t1 ,下部温度t
2 に温度管理範囲を設け、絶えずこれらの温度を把握
し、これらの温度が温度管理範囲を逸脱することのない
ように、冷却水の給水温度t3 と冷却水給水ポンプの運
転時間を調節し、炉底冷却の度合いを制御し炉底耐火物
の表面に適切な付着物の厚みを確保せしめるものであ
る。
As described above, the temperatures required for controlling the cooling water in the present invention include the cooling water supply temperature t 3 and the drain temperature t 4 , the upper temperature t 1 and the lower temperature t in the furnace bottom refractory. The value of 2 that can be controlled during these temperatures is the cooling water supply temperature t 3 and the operation time of the cooling water supply pump. Therefore, as described above, the drainage temperature t 4 of the cooling water, the upper temperature t 1 in the furnace bottom refractory, and the lower temperature t
2 the temperature control range provided keeps track of these temperatures, these temperatures so as not to deviate from the temperature control range, by adjusting the feed water temperature t 3 and operation time of the cooling water feed pump of the cooling water The degree of cooling of the furnace bottom is controlled to secure an appropriate thickness of the deposit on the surface of the furnace bottom refractory.

【0026】冷却水の給水温度t3 は、設備的な保護の
ため排水温度t4 が温度管理範囲の上限値を超えたた場
合、自己循環系の給水ポンプの直前の配管に設けられた
供給管に、外部からの低温冷却水を供給することによ
て、温度管理範囲内の冷却水温度まで低下させることが
できるので、温度調整の目的を達成することができる。
また、冷却水の排水温度t4 及び炉底耐火物内の上部温
度t1 ,下部温度t2の値が温度管理範囲に在るとき
は、給水ポンプの運転の稼働を中断して待機状態として
おき、温度管理範囲から外れる惧れがでてきたときのみ
稼働させることにとり、電力の節減を図ることができ
る。
The supply temperature t 3 of the cooling water is set at the supply pipe provided immediately before the feed pump of the self-circulation system when the drainage temperature t 4 exceeds the upper limit of the temperature control range for facility protection. By supplying low-temperature cooling water from the outside to the pipe, the temperature of the cooling water can be reduced to a temperature within the temperature control range, so that the purpose of temperature adjustment can be achieved.
The upper temperature t 1 in the drainage temperature t 4 and the hearth refractory of the cooling water, when the value of the lower temperature t 2 is in the temperature control range, a wait state to suspend the operation of the operation of the water supply pump By operating only when there is a possibility that the temperature will be out of the temperature control range, power can be saved.

【0027】なお、炉底中央部の付着物残存厚は、炉底
の冷却方法以外に、出銑・滓量、出銑・滓温度、溶銑・
滓品質に影響される。したがって、出銑口直下以外の緩
冷却しなければならない炉底中央帯においては、付着物
の残存厚を管理範囲内に収めるためには、冷却水温度,
冷却水流量,給水ポンプ運転時間等を調整することによ
り、自己循環水温度を制御することができる。
The remaining thickness of the deposit at the center of the furnace bottom is determined by the method of tapping and slag, tapping and slag temperature,
Affected by slag quality. Therefore, in the central zone of the hearth that must be slowly cooled except under the taphole, the cooling water temperature,
The self-circulating water temperature can be controlled by adjusting the cooling water flow rate, the operation time of the feed water pump, and the like.

【0028】[0028]

【実施例】以下、実施例により本発明の効果を具体的に
説明する。本発明を実施した高炉は5000m3 級の内
容積をもち、炉床径は約15mで出銑量は約11,00
0t/dの通常に操業されている高炉である。なお、高
炉炉底中央帯の耐火物内に設置した上部温度計T1(測
定温度t1 )と、下部温度計T2(測定温度t2 )の位
置は、それぞれ高炉炉底耐火物内面から700,200
mmで、炉底冷却面(冷却管埋設位置)から900,4
00mmである。
EXAMPLES The effects of the present invention will be specifically described below with reference to examples. The blast furnace according to the present invention has a 5000 m 3 class internal volume, a hearth diameter of about 15 m, and a tapping rate of about 11,000.
This is a normally operated blast furnace of 0 t / d. The positions of the upper thermometer T1 (measured temperature t 1 ) and the lower thermometer T2 (measured temperature t 2 ) installed in the refractory in the central zone of the blast furnace bottom are 700, 200
mm, 900,4 from the furnace bottom cooling surface (cooling pipe burial position)
00 mm.

【0029】また、本発明の実施に際しては、炉底耐火
物の表面付着物の厚みを100〜200mm狙いとし、
温度管理範囲としては、冷却水の排水温度t4 を70±
5℃とした。本発明を実施したところ、15日程度で各
種測定温度が温度管理範囲内に収まり、その結果、高炉
炉底付着物の厚みの変動も少なく目標とした厚みを確保
することができたので、それに要する給水ポンプの稼働
時間も短縮され、冷却制御が適切に行われ炉底冷却が良
好裏に推移した。
In the practice of the present invention, the thickness of the surface deposits on the furnace bottom refractory is set to 100 to 200 mm.
As the temperature control range, the drainage temperature t 4 of the cooling water is set to 70 ±
5 ° C. When the present invention was carried out, various measured temperatures fell within the temperature control range in about 15 days, and as a result, the target thickness could be secured with little change in the thickness of the blast furnace bottom deposits. The required operation time of the feed pump was also shortened, the cooling control was properly performed, and the furnace bottom cooling changed favorably.

【0030】これに対して従来法によるものは、炉底冷
却量を制御するための調整を冷却水流量を変更して種々
試みてみたが、24日間経過しても高炉炉底付着物の厚
みを目標とする範囲内に収めることができなく、かつ高
炉炉底付着物の厚みの変動が大きく、給水ポンプの稼働
も間断なく行われ、それによる電力量の増加が目立っ
た。
On the other hand, in the case of the conventional method, various attempts were made to control the amount of cooling of the bottom by changing the flow rate of cooling water. Was not within the target range, the thickness of the blast furnace bottom deposits fluctuated greatly, and the feedwater pump was operated without interruption, resulting in a noticeable increase in power consumption.

【0031】[0031]

【発明の効果】本発明により、高炉の出銑比や溶銑・滓
品質に因らず、炉底中央部の付着物残存厚を制御するこ
とができ、環状流による炉床壁耐火物損傷が抑制されて
炉寿命が延長される。また、炉底自己循環水量制御を自
動化することで、省力化と冷却水炉底冷却水ポンプの運
転費用が大幅に削減される。
According to the present invention, it is possible to control the thickness of the deposit remaining at the center of the furnace bottom regardless of the tapping ratio of the blast furnace and the quality of the hot metal and slag, and the refractory damage to the hearth wall due to the annular flow can be prevented. It is suppressed and the furnace life is extended. Also, by automating the control of the bottom self-circulating water amount, labor saving and the operating cost of the cooling water bottom cooling water pump are greatly reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】高炉炉底部を含む炉床部の概略を示したもので
aは側断面図,bは平面図
FIG. 1 schematically shows a hearth section including a blast furnace bottom, where a is a side sectional view and b is a plan view.

【図2】炉底耐火物内の上部温度と下部温度の温度差に
よる炉底付着物の生成厚みの関係を示した図
FIG. 2 is a diagram showing the relationship between the thickness of the furnace bottom deposits and the temperature difference between the upper and lower temperatures in the furnace bottom refractory.

【図3】高炉炉底部を冷却した冷却水の排水温度と炉底
耐火物内の上部温度および下部温度の温度の関係を示し
た図
FIG. 3 is a diagram showing a relationship between a drainage temperature of cooling water for cooling a blast furnace bottom and a temperature of an upper temperature and a lower temperature in the furnace bottom refractory.

【図4】高炉炉底部を冷却する自己循環水量と冷却水給
水ポンプの運転時間の積と高炉炉底部を冷却した冷却水
の排水温度の関係を示した図
FIG. 4 is a diagram showing the relationship between the product of the amount of self-circulating water for cooling the bottom of the blast furnace, the operation time of the cooling water feed pump, and the temperature of the drainage of cooling water for cooling the bottom of the blast furnace.

【符号の説明】[Explanation of symbols]

1 耐火物 2 冷却管 3 出銑口 4 周辺帯 5 中央帯 6 給水ポンプ 7 給水管 8 排水管 9 付着物 10 供給管 11 排出管 DESCRIPTION OF SYMBOLS 1 Refractory 2 Cooling pipe 3 Tap hole 4 Peripheral zone 5 Central zone 6 Water supply pump 7 Water supply pipe 8 Drainage pipe 9 Deposits 10 Supply pipe 11 Discharge pipe

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三宮 公一 大分県大分市大字西ノ洲1番地 新日本製 鐵株式会社大分製鐵所内 (72)発明者 山本 進 大分県大分市大字西ノ洲1番地 新日本製 鐵株式会社大分製鐵所内 (72)発明者 井尾 和宏 大分県大分市大字西ノ洲1番地 新日本製 鐵株式会社大分製鐵所内 Fターム(参考) 4K015 CA07  ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Koichi Sannomiya, Oita Prefecture, Oita City, Oita, Nishi-no-Susu 1 (Nippon Steel Corporation) Inside the Oita Works of Steel Corporation (72) Inventor Kazuhiro Io 1-floor Nishinosu, Oita-shi, Oita Prefecture F-term in Nippon Steel Corporation Oita Works 4K015 CA07

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 高炉炉底全面にわたって複数本の冷却管
を平行に配設し、該冷却管を主に出銑口直下部領域を含
む周辺帯と、主に炉中心部領域を含む中央帯に分割し、
前記周辺帯は強冷却を行い前記中央帯は該周辺帯より冷
却能力を小さくした緩冷却を行う高炉炉底冷却方法にお
いて、各種温度情報により、前記中央帯を冷却する冷却
水の温度を調整することを特徴とする高炉炉底冷却方
法。
1. A plurality of cooling pipes are disposed in parallel over the entire bottom of a blast furnace, and the cooling pipes are mainly arranged in a peripheral zone including a region immediately below a taphole and a central zone mainly including a central region of a furnace. Divided into
In the blast furnace bottom cooling method in which the peripheral zone performs strong cooling and the central zone performs gentle cooling with a smaller cooling capacity than the peripheral zone, the temperature of the cooling water for cooling the central zone is adjusted based on various temperature information. A blast furnace hearth cooling method characterized by the above-mentioned.
【請求項2】 前記高炉の炉底冷却に際し、高炉炉底中
心部近傍直下の炉底耐火物内に上・下2箇所に温度計を
設置し、この温度測定値から炉底に付着した付着物の厚
みを推定し、その付着物の厚みが予め設定した管理範囲
内になるように中央帯を冷却する冷却水の温度を調整す
ることを特徴とする請求項1記載の高炉炉底冷却方法。
2. When cooling the furnace bottom of the blast furnace, thermometers are installed at two locations, upper and lower, in the furnace bottom refractory immediately below the center of the blast furnace bottom. 2. The blast furnace bottom cooling method according to claim 1, wherein the thickness of the kimono is estimated, and the temperature of the cooling water for cooling the central zone is adjusted so that the thickness of the deposit is within a preset control range. .
【請求項3】 前記高炉の炉底冷却に際し、高炉炉底中
央帯を冷却した冷却水の排水温度について温度管理限界
範囲を設定し、該排水温度が設定管理限界範囲内になる
ように中央帯を冷却する冷却水の温度を調整することを
特徴とする請求項1または2記載の高炉炉底冷却方法。
3. A temperature control limit range is set for a drain temperature of cooling water for cooling the central zone of the blast furnace bottom when cooling the bottom of the blast furnace, and the central zone is set so that the drain temperature falls within the set control limit range. The method according to claim 1 or 2, wherein the temperature of the cooling water for cooling the blast furnace is adjusted.
【請求項4】 前記中央帯を冷却する冷却水の温度調整
を冷却水を供給する給水ポンプの稼働時間により調整す
ることを特徴とする高炉炉底冷却方法。
4. A method for cooling a bottom of a blast furnace according to claim 1, wherein the temperature of the cooling water for cooling the central zone is adjusted by the operation time of a water supply pump for supplying the cooling water.
JP2000152420A 2000-05-24 2000-05-24 Method for cooling furnace bottom in blast furnace Withdrawn JP2001335818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000152420A JP2001335818A (en) 2000-05-24 2000-05-24 Method for cooling furnace bottom in blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000152420A JP2001335818A (en) 2000-05-24 2000-05-24 Method for cooling furnace bottom in blast furnace

Publications (1)

Publication Number Publication Date
JP2001335818A true JP2001335818A (en) 2001-12-04

Family

ID=18657847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000152420A Withdrawn JP2001335818A (en) 2000-05-24 2000-05-24 Method for cooling furnace bottom in blast furnace

Country Status (1)

Country Link
JP (1) JP2001335818A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100823599B1 (en) 2006-12-07 2008-04-21 주식회사 포스코 Cooling apparatus for bottom of blast furnace
JP2010048528A (en) * 2008-08-25 2010-03-04 Sumitomo Metal Ind Ltd Control method of melting furnace

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100823599B1 (en) 2006-12-07 2008-04-21 주식회사 포스코 Cooling apparatus for bottom of blast furnace
JP2010048528A (en) * 2008-08-25 2010-03-04 Sumitomo Metal Ind Ltd Control method of melting furnace

Similar Documents

Publication Publication Date Title
JP2003105415A (en) Method and device for producing molten metal
CN106319118A (en) Method for prolonging service life of copper cooling wall of blast furnace
WO1999023262A1 (en) Method of operating blast furnace
JP2001335818A (en) Method for cooling furnace bottom in blast furnace
KR102230333B1 (en) Apparatus for keeping warm molten metal in the blast furnace
JP3887838B2 (en) Blast furnace operation method
JP4380331B2 (en) How to protect the iron core of a rotary furnace
JP5353118B2 (en) Blast furnace operation method
KR100435492B1 (en) Method for Cooling Blast Furance
KR960006322B1 (en) Method for removing stuck material on furnace wall in blast-furnace
JP2004052038A (en) Apparatus for forming inner wall of lower part of shaft kiln
Kyllo et al. Composite furnace module cooling systems in the electric slag cleaning furnace
JP4038153B2 (en) Blast furnace bottom cooling method
JPH09296205A (en) Cooling plate for furnace wall in blast furnace
JPH07278627A (en) Cooling piping for bottom of blast furnace and method for cooling bottom of blast furnace
JP2000283425A (en) Slag hole
JP2004292856A (en) Cooling system for side wall of blast furnace bottom
JPH09209008A (en) Method for protecting furnace bottom part of blast furnace
JPH06158131A (en) Device for cooling side wall in furnace bottom part of blast furnace
JP2004059956A (en) Method for preventing wearing of blast furnace brick
JP2000001709A (en) Operation of blast furnace
JP2006188768A (en) Method for preventing worn-out of brick in blast furnace
UA127749C2 (en) Method for protecting an inner wall of a shaft furnace
JPH10280020A (en) Operation of smelting reduction
EA041677B1 (en) METHOD FOR PROTECTING THE INTERNAL WALL OF A SHIELD FURNACE

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070807