JP2006188768A - Method for preventing worn-out of brick in blast furnace - Google Patents

Method for preventing worn-out of brick in blast furnace Download PDF

Info

Publication number
JP2006188768A
JP2006188768A JP2006094709A JP2006094709A JP2006188768A JP 2006188768 A JP2006188768 A JP 2006188768A JP 2006094709 A JP2006094709 A JP 2006094709A JP 2006094709 A JP2006094709 A JP 2006094709A JP 2006188768 A JP2006188768 A JP 2006188768A
Authority
JP
Japan
Prior art keywords
brick
furnace
blast furnace
furnace bottom
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006094709A
Other languages
Japanese (ja)
Other versions
JP2006188768A5 (en
JP4598710B2 (en
Inventor
Masatoshi Miyawaki
雅敏 宮脇
Taiji Kurita
泰司 栗田
Yoshifumi Morisane
好文 森實
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006094709A priority Critical patent/JP4598710B2/en
Publication of JP2006188768A publication Critical patent/JP2006188768A/en
Publication of JP2006188768A5 publication Critical patent/JP2006188768A5/ja
Application granted granted Critical
Publication of JP4598710B2 publication Critical patent/JP4598710B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Iron (AREA)
  • Blast Furnaces (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for preventing the worn-out of brick in a blast furnace with which the worn-out of the side wall brick at a furnace bottom by beforehand grasping the state of starting the wearing of the side wall brick at the furnace bottom. <P>SOLUTION: At least two sets of thermometers T<SB>0</SB>, T<SB>1</SB>are embedded at different positions in the thickness direction of the furnace bottom brick 12 in the blast furnace 10, and a percolating heat quantity Q of the furnace bottom brick 12 is obtained from the measured values of the thermometers T<SB>0</SB>, T<SB>1</SB>and the percolating heat quantity Q is controlled in a prescribed range. Further, at least two sets of the thermometers T<SB>0</SB>, T<SB>1</SB>are embedded at different positions in the thickness direction of the furnace bottom brick 12 in the blast furnace 10, and a temperature gradient ΔT from the temperature difference between the measured values of the thermometers T<SB>0</SB>, T<SB>1</SB>, is obtained and this temperature gradient ΔT is controlled in a prescribed range. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、高炉に内張りされた耐火煉瓦の損耗を防止する高炉煉瓦の損耗防止方法に関する。 The present invention relates to a blast furnace brick wear prevention method for preventing wear of a refractory brick lined in a blast furnace.

高炉は、長期間にわたり稼動して鉄鉱石を還元し溶銑を製造する。この高炉の稼働中には、炉底側壁煉瓦が損耗され、損耗の程度が大きくなると炉寿命に影響する。この稼働中における炉底側壁煉瓦の損耗を管理するために、各煉瓦内に温度計を埋設し、測定した温度から炉底側壁煉瓦の損耗状態の把握を行っている。
しかし、この温度が急激に変化して管理値を超えることがあり、一旦管理値を超えた場合は、炉底側壁煉瓦の異常な損耗により高炉操業を停止する等の事態を余儀なくされるという問題があった。
そこで、この炉底側壁煉瓦の異常な損耗や、高炉操業の休止を回避する方法として、特許文献1には、炉底側壁部にオーバーフロー式の冷却水受を突設し、バルブの開閉制御によって冷却水量を制御して、炉底側壁部の冷却を行う炉底の冷却方法が開示されている。これにより、冷却水受のバルブの開閉制御のみで、炉底側壁部の抜熱量を制御できるので、高炉操業を安定に行うことができる。
The blast furnace operates for a long period of time to reduce iron ore and produce hot metal. During operation of this blast furnace, the bottom wall bricks are worn, and if the degree of wear increases, the life of the furnace is affected. In order to manage the wear of the bottom wall brick during operation, a thermometer is embedded in each brick, and the wear state of the bottom wall brick is grasped from the measured temperature.
However, this temperature may change suddenly and exceed the control value, and once the control value is exceeded, the blast furnace operation is forced to stop due to abnormal wear of the bottom wall bricks. was there.
Therefore, as a method of avoiding abnormal wear of the furnace bottom side wall bricks and suspension of blast furnace operation, Patent Document 1 includes an overflow type cooling water receiver projecting from the bottom wall of the furnace bottom, and by opening and closing control of the valve. A furnace bottom cooling method for cooling the furnace bottom side wall by controlling the amount of cooling water is disclosed. As a result, the amount of heat removed from the bottom wall of the furnace bottom can be controlled only by controlling the opening and closing of the cooling water receiving valve, so that the blast furnace operation can be performed stably.

また、特許文献2には、炉底面に埋設する冷却配管の中心部及び周辺部を各ブロックに分割し、炉底煉瓦の温度に応じて、それぞれを独立して冷却する炉底煉瓦及び側壁煉瓦の冷却方法が提案されている。これにより、各被冷却ゾーンごとに冷却水温度を独立して制御できるので、炉底を必要以上に冷却することなく、炉底煉瓦の保護を図りながら安定した状況で高炉操業を行うことができる。
そして、特許文献3には、高炉の炉底側壁部の温度及び冷却水温度の測定値をもとに、鉄皮の膨張収縮に伴う不定形耐火物の空気層の厚さを算出した上で炉底煉瓦の温度を推定し、その値に基づいて空気層を消失させるべく補修を行う炉底煉瓦の冷却方法が開示されている。これにより、炉底側壁部の鉄皮の冷却を効率的に実施し、炉底側壁部の煉瓦の損傷抑制と、炉底側壁部からの熱損失の減少を図ることができる。
Further, in Patent Document 2, the center part and the peripheral part of the cooling pipe embedded in the bottom surface of the furnace are divided into blocks, and each of them is cooled independently according to the temperature of the bottom brick. A cooling method has been proposed. As a result, the cooling water temperature can be controlled independently for each zone to be cooled, so that the blast furnace operation can be performed in a stable state while protecting the furnace bottom brick without cooling the furnace bottom more than necessary. .
And in patent document 3, after calculating the thickness of the air layer of the amorphous refractory accompanying the expansion and contraction of the iron skin based on the measured values of the temperature of the bottom wall of the blast furnace and the cooling water temperature. A method of cooling the bottom brick, which estimates the temperature of the bottom brick and repairs the air layer based on the estimated temperature, is disclosed. Thereby, cooling of the iron skin of a furnace bottom side wall part can be performed efficiently, damage prevention of the brick of a furnace bottom side wall part, and reduction of the heat loss from a furnace bottom side wall part can be aimed at.

特開平3−274208号公報JP-A-3-274208 特開平6−158132号公報JP-A-6-158132 特開平8−127810号公報JP-A-8-127810

しかしながら、特許文献1に記載の方法では、炉底煉瓦の温度が過剰に低下してしまった場合、炉底煉瓦の収縮によって炉底側壁煉瓦と鉄皮との間に隙間が生じ、鉄皮を外部から冷却しても炉底側壁煉瓦を冷却できずに、炉底側壁煉瓦に対する冷却能力が著しく低下する。これにより、炉底側壁煉瓦の冷却コントロールができなくなり、炉底側壁煉瓦の損傷が激しくなるので、安定した状況で高炉操業を行うことができなくなる。
また、特許文献2に記載の方法では、既に炉底に凝固層が異常生成して溶銑の対流が発生してから炉底部の部位に応じて強弱の冷却を行うので、溶銑の対流に起因した炉底側壁煉瓦の局部損耗を招き、炉底側壁煉瓦の温度上昇が発生して、これを解消するために高炉操業の休止や減産等を生ずる問題がある。また、この方法は、炉底側壁煉瓦と鉄皮との間に隙間が生じないように炉底煉瓦を温度コントロールするものでないので、炉底側壁煉瓦の損耗を未然に防ぐことができず、やはり炉底側壁煉瓦の損耗を招いている。
そして、特許文献3に記載の方法では、炉底側壁部の冷却を行うにあたり、炉底側壁部の冷却水温度測定値や炉底側壁温度を使用するので、炉底側壁部の冷却水温度上昇や炉底側壁温度上昇時には、すでに炉底側壁煉瓦の損耗が進行しており、溶銑の環状流による炉底側壁煉瓦の損耗を未然に防ぐことができない。
本発明はかかる事情に鑑みてなされたもので、炉底側壁煉瓦が損耗し始める状態を予め把握して、炉底側壁煉瓦の損耗を未然に抑制する高炉煉瓦の損耗防止方法を提供することを目的とする。
However, in the method described in Patent Document 1, when the temperature of the furnace bottom brick is excessively decreased, a gap is generated between the furnace bottom side wall brick and the iron skin due to the shrinkage of the furnace bottom brick, and the iron skin is removed. Even if it cools from the outside, a furnace bottom side wall brick cannot be cooled, but the cooling capacity with respect to a furnace bottom side wall brick falls remarkably. As a result, the cooling of the bottom wall brick cannot be controlled, and the bottom wall brick becomes severely damaged, and the blast furnace operation cannot be performed in a stable state.
Further, in the method described in Patent Document 2, since the solidified layer is already generated abnormally on the bottom of the furnace and the convection of the hot metal is generated, strong and weak cooling is performed according to the portion of the furnace bottom, resulting in the convection of the hot metal. There is a problem that local wear of the bottom wall brick is caused, and the temperature rise of the bottom wall brick is generated, and the blast furnace operation is stopped or the production is reduced to solve this. In addition, this method does not control the temperature of the furnace bottom brick so that no gap is generated between the furnace bottom side wall brick and the iron skin. The bottom wall bricks are worn out.
And in the method of patent document 3, in performing cooling of a furnace bottom side wall part, since the cooling water temperature measured value and furnace bottom side wall temperature of a furnace bottom side wall part are used, the cooling water temperature rise of a furnace bottom side wall part is used. When the temperature of the bottom wall of the furnace bottom increases, the wear of the brick at the bottom of the furnace has already progressed, and it is impossible to prevent the wear of the brick at the bottom of the furnace wall due to the annular flow of hot metal.
The present invention has been made in view of such circumstances, and provides a method for preventing wear of a blast furnace brick by previously grasping a state in which the furnace bottom side wall brick starts to be worn and suppressing wear of the bottom wall brick in advance. Objective.

前記目的に沿う第1の発明に係る高炉煉瓦の損耗防止方法は、高炉の炉底煉瓦内の厚さ方向の異なる位置に少なくとも2個の温度計を埋設し、温度計の計測値から炉底煉瓦の貫流熱量を求め、貫流熱量を所定範囲内で制御するに際し、前記貫流熱量の前記所定範囲が2500〜3400Kcal/m 2 ・hrである。従来、炉底煉瓦の貫流熱量が過剰に低下した場合、炉底煉瓦に収縮が発生し、炉底側壁煉瓦と鉄皮との間に空隙が発生していたので、鉄皮を冷却しても炉底側壁煉瓦を冷却できずに、炉底側壁煉瓦に対する冷却能力が著しく低下していた。しかし、炉底煉瓦の貫流熱量を所定範囲内で制御することにより、炉底煉瓦の温度コントロールを適切に行うことができ、炉底側壁煉瓦と鉄皮との間の空隙の発生を未然に防止できるので、鉄皮を外部から冷却することで炉底側壁煉瓦を冷却できる。
ここで、貫流熱量の所定範囲が2500〜3400cal/m2・hrであるので、炉底煉瓦の冷却を容易に適正な範囲で行うことができる。
The method for preventing wear of a blast furnace brick according to the first aspect of the present invention comprises burying at least two thermometers at different positions in the thickness direction in the bottom brick of the blast furnace, and calculating the bottom of the furnace from the measured value of the thermometer. When determining the heat flow through the brick and controlling the heat flow through within a predetermined range, the predetermined range of the heat flow through is 2500 to 3400 Kcal / m 2 · hr . Conventionally, when the heat flow through the bottom of the furnace brick has decreased excessively, shrinkage has occurred in the bottom brick, and a gap has formed between the bottom wall brick and the iron skin. The bottom wall brick could not be cooled, and the cooling capacity for the bottom wall brick was significantly reduced. However, by controlling the heat flow through the bottom brick within a specified range, it is possible to control the temperature of the bottom brick appropriately and prevent the formation of voids between the bottom brick and the iron shell. Since it can be done, the bottom wall brick can be cooled by cooling the iron shell from the outside.
Here, since the predetermined range of the heat flow through is 2500 to 3400 K cal / m 2 · hr , the furnace bottom brick can be easily cooled within an appropriate range.

前記目的に沿う第2の発明に係る高炉煉瓦の損耗防止方法は、高炉の炉底煉瓦内の厚さ方向の異なる位置に少なくとも2個の温度計を埋設し、各温度計の計測値の温度差から温度勾配ΔTを求め、この温度勾配ΔTを所定範囲内で制御する。このように、炉底煉瓦の各温度計の計測値から求めた温度勾配ΔTを所定範囲内で制御することにより、炉底煉瓦の温度コントロールを適切に行うことができ、炉底側壁煉瓦と鉄皮との間の空隙の発生を未然に防止できるので、鉄皮を外部から冷却することで炉底側壁煉瓦を冷却できる。また、温度計の計測値から求めた温度勾配ΔTで制御しているので、制御が容易である。
ここで、第2の発明に係る高炉煉瓦の損耗防止方法において、温度勾配ΔTの所定範囲が1〜3.5℃/cmであることが好ましい。なお、本所定範囲の上限値及び下限値は、それぞれ貫流熱量2500〜3400cal/m2・hrの上限値及び下限値に略対応する数字であるが、炉底煉瓦の熱伝導率に応じて、更に狭い範囲で管理することができる。また、温度勾配ΔTは、1cm当りの温度差となっているので、温度計の位置が変わった場合においても、所定範囲から高炉操業時における制御範囲を容易に求めることができる。
In the method for preventing wear of a blast furnace brick according to the second aspect of the present invention, at least two thermometers are buried in different positions in the thickness direction in the bottom brick of the blast furnace, and the temperature of the measured value of each thermometer is embedded. A temperature gradient ΔT is obtained from the difference, and the temperature gradient ΔT is controlled within a predetermined range. In this way, by controlling the temperature gradient ΔT obtained from the measured values of each thermometer of the furnace bottom brick within a predetermined range, the temperature control of the furnace bottom brick can be appropriately performed, and the bottom wall brick and iron Since the generation | occurrence | production of the space | gap between skins can be prevented beforehand, a furnace bottom side wall brick can be cooled by cooling an iron skin from the outside. Further, since the control is performed with the temperature gradient ΔT obtained from the measured value of the thermometer, the control is easy.
Here, in the method for preventing wear of a blast furnace brick according to the second invention, the predetermined range of the temperature gradient ΔT is preferably 1 to 3.5 ° C./cm. The upper limit value and the lower limit value of the predetermined range are numbers substantially corresponding to the upper limit value and the lower limit value of the heat flow through 2500 to 3400 K cal / m 2 · hr, respectively, but depending on the thermal conductivity of the furnace bottom brick. Therefore, it can be managed in a narrower range. Further, since the temperature gradient ΔT is a temperature difference per 1 cm, the control range during the blast furnace operation can be easily obtained from the predetermined range even when the position of the thermometer is changed.

第1、第2の発明に係る高炉煉瓦の損耗防止方法において、求めた数値を所定範囲内に制御するため、高炉内の鉱石量に対するコークス量の増減を行うことが好ましい。ここで、求めた数値が所定範囲の上限値に近づく場合は、炉内の温度が通常より高くなっているので、鉱石量に対するコークス量を現状より低減する。一方、求めた数値が所定範囲の下限値に近づく場合は、炉内の温度が通常より低くなっているので、鉱石量に対するコークス量を現状より増加する。これにより、高炉の炉内を適正な温度に維持できる。
第1、第2の発明に係る高炉煉瓦の損耗防止方法において、求めた数値を所定範囲内に制御するため、羽口前の燃焼温度を増減することが好ましい。ここで、求めた数値が所定範囲の上限値に近づく場合は、炉内の温度が通常より高くなっているので、羽口前の燃焼温度を現状より低減する。また、求めた数値が所定範囲の下限値に近づく場合は、炉内の温度が通常より低くなっているので、羽口前の燃焼温度を現状より増加する。このように、羽口前の燃焼温度を増減することで、炉内の温度を上昇又は低下させることができ、炉内を適正な温度に維持できる。
In the method for preventing blast furnace brick wear according to the first and second inventions, it is preferable to increase or decrease the amount of coke relative to the amount of ore in the blast furnace in order to control the obtained numerical value within a predetermined range. Here, when the obtained numerical value approaches the upper limit value of the predetermined range, the temperature in the furnace is higher than usual, so the amount of coke relative to the amount of ore is reduced from the current level. On the other hand, when the obtained numerical value approaches the lower limit value of the predetermined range, the temperature in the furnace is lower than usual, so the amount of coke relative to the amount of ore is increased from the current state. Thereby, the inside of a blast furnace can be maintained at an appropriate temperature.
In the blast furnace brick wear prevention method according to the first and second inventions, it is preferable to increase or decrease the combustion temperature before the tuyere in order to control the obtained numerical value within a predetermined range. Here, when the obtained numerical value approaches the upper limit value of the predetermined range, the temperature in the furnace is higher than usual, so the combustion temperature before the tuyere is reduced from the current state. Further, when the obtained numerical value approaches the lower limit value of the predetermined range, the temperature in the furnace is lower than usual, so the combustion temperature before the tuyere is increased from the current state. Thus, by increasing or decreasing the combustion temperature before the tuyere, the temperature in the furnace can be raised or lowered, and the inside of the furnace can be maintained at an appropriate temperature.

第1、第2の発明に係る高炉煉瓦の損耗防止方法において、求めた数値が所定範囲の下限値を下回る場合、炉底煉瓦の収縮時に炉底煉瓦と一体となった炉底側壁煉瓦と鉄皮との間に生じる隙間に、空気より熱伝導率が高い充填物を充填することが好ましい。このように、求めた数値が所定範囲の下限値を下回った場合、炉底煉瓦を通過する熱が少なくなっていることを意味するので、炉底煉瓦は収縮する。このとき、炉底煉瓦と一体となった炉底側壁煉瓦が高炉の中心方向へ移動し、炉底側壁煉瓦と鉄皮との間に隙間が生じるので、この隙間に充填物を充填することで、炉底側壁煉瓦と鉄皮との熱伝導を維持できる。これにより、鉄皮を外部から冷却することで、炉底側壁煉瓦を適正に冷却できる。
第1、第2の発明に係る高炉煉瓦の損耗防止方法において、充填物がモルタル、カーボンペースト、重油、及びCO2ガスのいずれか1又は2以上であることが好ましい。これにより、安価な材料で炉底側壁煉瓦と鉄皮との間に生じる隙間の影響を抑制することができる。
第1、第2の発明に係る高炉煉瓦の損耗防止方法において、求めた数値が所定範囲の下限値を下回る場合、炉底煉瓦と一体となった炉底側壁煉瓦外側の鉄皮の冷却水温度を現状より低下させることが好ましい。ここで、求めた数値が所定範囲の下限値を下回る場合、炉底側壁煉瓦と鉄皮との間に隙間が生じたり、また生じようとする。このとき、鉄皮の冷却水温度を現状より低下させることで鉄皮を炉底側壁煉瓦に対して収縮させ、隙間の生成の抑制、あるいは生成した隙間の消滅が可能になる。
In the method for preventing wear of blast furnace bricks according to the first and second inventions, when the obtained numerical value falls below the lower limit of the predetermined range, the bottom wall brick and iron integrated with the bottom brick when the bottom brick shrinks It is preferable to fill the gap formed between the skin with a filler having a higher thermal conductivity than air. Thus, when the obtained numerical value falls below the lower limit value of the predetermined range, it means that the heat passing through the furnace bottom brick is reduced, and the furnace bottom brick contracts. At this time, the bottom wall brick united with the bottom brick moves toward the center of the blast furnace, and a gap is formed between the bottom wall brick and the iron skin. The heat conduction between the bottom wall brick and the iron skin can be maintained. Thereby, a furnace bottom side wall brick can be cooled appropriately by cooling an iron skin from the outside.
In the method for preventing blast furnace brick wear according to the first and second inventions, the filler is preferably one or more of mortar, carbon paste, heavy oil, and CO 2 gas. Thereby, the influence of the clearance gap produced between a furnace bottom side wall brick and an iron skin with an inexpensive material can be suppressed.
In the method for preventing wear of blast furnace bricks according to the first and second inventions, when the obtained numerical value is below the lower limit value of the predetermined range, the cooling water temperature of the iron skin outside the furnace bottom side wall brick integrated with the furnace bottom brick It is preferable to reduce the current value from the current level. Here, when the obtained numerical value falls below the lower limit value of the predetermined range, a gap is generated or is about to occur between the furnace bottom side wall brick and the iron skin. At this time, by lowering the cooling water temperature of the iron skin from the current level, the iron skin is contracted with respect to the brick at the bottom of the furnace bottom, and the generation of the gap can be suppressed or the generated gap can be eliminated.

請求項1〜6記載の高炉煉瓦の損耗防止方法においては、炉底煉瓦内に埋設した温度計の計測値から求めた数値を所定範囲内で制御するので、炉底煉瓦の温度コントロールを適切に行うことができる。これにより、炉底側壁煉瓦と鉄皮との間の空隙の発生を未然に防止、あるいは空隙による断熱を防止できるので、鉄皮を冷却することで炉底側壁煉瓦を冷却できる。従って、炉底側壁煉瓦の冷却コントロールができるので、従来炉底側壁煉瓦に発生していた損耗を抑制、更には防止できる。
このように、炉底側壁煉瓦の溶銑による損耗を抑制することで、炉底煉瓦及び炉底側壁煉瓦の寿命を従来より長くできる。また、炉底側壁煉瓦の損耗を未然に抑制できるので、高炉操業の休止や減産等も防止でき経済的である。
In the method for preventing wear of blast furnace bricks according to claims 1 to 6, since the numerical value obtained from the measured value of the thermometer embedded in the furnace bottom brick is controlled within a predetermined range, the temperature control of the furnace bottom brick is appropriately performed. It can be carried out. Thereby, generation | occurrence | production of the space | gap between a furnace bottom side wall brick and an iron skin can be prevented beforehand, or the heat insulation by a space | gap can be prevented, Therefore A furnace bottom side wall brick can be cooled by cooling an iron skin. Therefore, since the cooling of the furnace bottom side wall brick can be controlled, it is possible to suppress and further prevent wear that has conventionally occurred in the furnace bottom side wall brick.
Thus, the lifetime of a furnace bottom brick and a furnace bottom side wall brick can be made longer than before by suppressing the abrasion by the hot metal of a furnace bottom side wall brick. In addition, since it is possible to suppress the wear of the bricks at the bottom of the furnace bottom, it is economical because it is possible to prevent the blast furnace operation from being suspended, to reduce production, and the like.

特に、請求項1記載の高炉煉瓦の損耗防止方法においては、貫流熱量の制御の範囲を設定したので、高炉操業の作業性が良好である。 In particular, in the method for preventing wear of a blast furnace brick according to claim 1, since the range of control of the through-flow heat quantity is set, the workability of blast furnace operation is good.

請求項2記載の高炉煉瓦の損耗防止方法においては、求めた数値に応じて、鉱石量に対するコークス量の増減を行うので、高炉の炉内を適正な温度に維持し、高炉煉瓦の損耗を防止できる。
請求項3記載の高炉煉瓦の損耗防止方法においては、求めた数値に応じて、羽口前の燃焼温度の増減を行うので、短時間の間に高炉の炉内を適正な温度に維持し、高炉煉瓦の損耗が防止できる。
請求項4記載の高炉煉瓦の損耗防止方法においては、求めた数値をもとに炉底煉瓦が冷却され収縮する時期を容易に把握できるので、例えば従来のように、隙間が発生したか否かを把握することなく行おうとしていた隙間の充填作業を、隙間が発生していない場合については行う必要がなくなるので、無駄な作業を省略できる。また、充填物により炉底側壁煉瓦と鉄皮との熱伝導を維持できるので、鉄皮を冷却した場合、炉底側壁煉瓦を適正に冷却できる。
In the method for preventing wear of blast furnace brick according to claim 2, since the amount of coke is increased or decreased with respect to the amount of ore according to the obtained numerical value, the inside of the furnace of the blast furnace is maintained at an appropriate temperature to prevent wear of the blast furnace brick. it can.
In the method for preventing wear of blast furnace brick according to claim 3, because the combustion temperature before the tuyere is increased or decreased according to the obtained numerical value, the inside of the furnace of the blast furnace is maintained at an appropriate temperature in a short time, Blast furnace brick wear can be prevented.
In the method for preventing wear of a blast furnace brick according to claim 4, since it is possible to easily grasp when the bottom brick is cooled and contracted based on the obtained numerical value, for example, whether or not a gap has occurred as in the conventional case. It is no longer necessary to perform the gap filling operation which is intended to be performed without grasping the case where no gap is generated, so that a wasteful operation can be omitted. Further, since the heat conduction between the furnace bottom side wall brick and the iron skin can be maintained by the filler, the furnace bottom side wall brick can be appropriately cooled when the iron skin is cooled.

請求項5記載の高炉煉瓦の損耗防止方法においては、安価な材料で炉底側壁煉瓦と鉄皮との間に生じる隙間の影響を抑制することができるので経済的である。
請求項6記載の高炉煉瓦の損耗防止方法においては、鉄皮の冷却水温度を現状より低下させることで鉄皮を炉底側壁煉瓦に対して収縮させ、隙間の生成の抑制、あるいは生成した隙間の消滅が可能になる。これにより、炉底側壁煉瓦に必要な冷却を行うことが可能となり、上昇した炉底側壁煉瓦の温度を低減でき、炉底側壁煉瓦の損耗を抑制できる。
In the method for preventing wear of a blast furnace brick according to claim 5, it is economical because an influence of a gap generated between the bottom wall brick and the iron skin can be suppressed with an inexpensive material.
In the method for preventing wear of a blast furnace brick according to claim 6, the iron shell is contracted with respect to the furnace bottom side wall brick by lowering the cooling water temperature of the iron skin from the current state, thereby suppressing the generation of a gap or the generated gap. Disappearance is possible. Thereby, it becomes possible to perform cooling required for a furnace bottom side wall brick, the temperature of the raised bottom wall brick can be reduced, and the wear of a furnace bottom side wall brick can be suppressed.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
ここに、図1は本発明の一実施の形態に係る高炉煉瓦の損耗防止方法を適用する高炉の説明図、図2(A)〜(C)はそれぞれ第1の実施例に係る炉底煉瓦の貫流熱量及び温度計の計測値の温度差の変化を示す説明図、ore/cokeの変化を示す説明図、炉底側壁煉瓦の温度変化の説明図、図3(A)、(B)はそれぞれ第2の実施例に係る炉底煉瓦の貫流熱量及び温度計の計測値の温度差の変化を示す説明図、底盤冷却水量の変化の説明図、図4(A)〜(C)はそれぞれ第3の実施例に係る炉底煉瓦の貫流熱量及び温度計の計測値の温度差の変化を示す説明図、充填材の使用時における炉底側壁煉瓦の温度変化の説明図、充填材の不使用時における炉底側壁煉瓦の温度変化の説明図、図5(A)〜(C)はそれぞれ第4の実施例に係る炉底煉瓦の貫流熱量及び温度計の計測値の温度差の変化を示す説明図、冷却水水温の変化を示す説明図、炉底側壁煉瓦の温度変化の説明図である。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
FIG. 1 is an explanatory diagram of a blast furnace to which the method for preventing wear of a blast furnace brick according to an embodiment of the present invention is applied, and FIGS. 2 (A) to (C) are furnace bottom bricks according to the first embodiment, respectively. Explanatory view showing the change in the temperature difference between the through-flow heat amount and the measured value of the thermometer, the explanatory view showing the change of ore / coke, the explanatory view of the temperature change of the furnace bottom side wall brick, FIG. 3 (A), (B) Explanatory drawing which shows the change of the temperature difference of the through-flow heat amount of the furnace bottom brick and the measured value of the thermometer according to the second embodiment, the explanatory drawing of the change of the bottom board cooling water amount, and FIGS. Explanatory drawing which shows the change of the temperature difference of the flow rate of the bottom brick and the measured value of the thermometer according to the third embodiment, the explanatory diagram of the temperature change of the bottom brick at the time of using the filler, Explanatory drawing of temperature change of furnace bottom side wall brick at the time of use, FIGS. 5 (A) to (C) are respectively related to the fourth embodiment. Explanatory view showing a change in temperature difference between the measured value of the cross-flow heat and a thermometer furnace bottom bricks, explanatory view showing a change in cooling water temperature is an explanatory diagram of a temperature change in the furnace bottom side wall bricks.

図1に示すように本発明の一実施の形態に係る高炉煉瓦の損耗防止方法を適用する高炉10は、鉄皮11と、鉄皮11の内部に内張りされた炉底煉瓦12及び炉底側壁煉瓦13と、炉底煉瓦12を保持する底盤14と、羽口15とを有している。以下、詳しく説明する。 As shown in FIG. 1, a blast furnace 10 to which a method for preventing wear of a blast furnace brick according to an embodiment of the present invention is applied. An iron skin 11, a furnace bottom brick 12 and a furnace bottom wall lined inside the iron skin 11. A brick 13, a bottom plate 14 that holds the furnace bottom brick 12, and tuyere 15 are provided. This will be described in detail below.

炉底煉瓦12は底盤14上に複数段積重ねられており、この炉底煉瓦12の外側並びに上方に鉄皮11の内壁に接触した状態で炉底側壁煉瓦13が複数段積重ねられ、炉底煉瓦12と炉底側壁煉瓦13とが一体となっている。
炉底煉瓦12内の厚さ方向の異なる位置には、例えば30〜100cmの間隔を開けて2個の温度計T0、T1が埋設されている。なお、炉底側壁煉瓦13にも、炉底側壁煉瓦13の温度測定を行う1個の温度計T2が埋設されている。各温度計T0、T1、T2は、熱電対を使用することが可能であり、また、温度計T0、T1、T2の各計測値は演算処理を行うことが可能な制御部(図示しない)に送られる。
底盤14には冷却管(図示しない)が設けられており、調整弁により冷却管に供給する冷却水量を調整することが可能な構成となっている。この調整弁の調整は、前記した制御部によって制御されている。
また、高炉10は羽口15を備え、高炉10内に酸素や微粉炭等を吹込むことができ、吹込み量比率の増減ができ、羽口前16における燃焼温度を増減することができる。
The furnace bottom brick 12 is stacked in a plurality of stages on the bottom board 14, and the furnace bottom side wall brick 13 is stacked in a plurality of stages in contact with the inner wall of the iron skin 11 on the outside and above the furnace bottom brick 12. 12 and the furnace bottom side wall brick 13 are united.
Two thermometers T 0 and T 1 are embedded at different positions in the thickness direction in the furnace bottom brick 12 with an interval of, for example, 30 to 100 cm. A single thermometer T 2 for measuring the temperature of the furnace bottom side wall brick 13 is also embedded in the furnace bottom side wall brick 13. Each thermometer T 0 , T 1 , T 2 can use a thermocouple, and each measured value of the thermometers T 0 , T 1 , T 2 can be controlled. Part (not shown).
The bottom plate 14 is provided with a cooling pipe (not shown) so that the amount of cooling water supplied to the cooling pipe can be adjusted by an adjustment valve. The adjustment of the adjusting valve is controlled by the control unit described above.
Moreover, the blast furnace 10 is provided with tuyere 15 and can inject oxygen, pulverized coal, etc. in the blast furnace 10, can increase / decrease the injection amount ratio, and can increase / decrease the combustion temperature in the front 16 of tuyere.

続いて、本発明の一実施の形態に係る高炉煉瓦の損耗防止方法について、前記した高炉10を参照しながら説明する。
高炉10が正常な場合は、炉底側壁煉瓦13に異常な損耗がなく、操業も安定した状態を維持できる。しかし、底盤14の不適切な冷却、炉内状況の異常等によって、炉底煉瓦12の表面にメタルとスラグを有する凝固層(粘稠層とも言う)が異常形成される。この形成される凝固層の量によっては、高炉10の底部に溶銑の炉底側壁煉瓦13に沿う流れ(環状流)が発生して、炉底側壁煉瓦13が損耗する。また、異常形成した凝固層により、高炉10の底部の熱が炉底煉瓦12に伝わることが抑制されるので、この場合、炉底煉瓦12の温度が低下する。これにより、炉底煉瓦12が収縮するので、炉底煉瓦12と一体となった炉底側壁煉瓦13が高炉10の中心部へ移動し、鉄皮11と炉底側壁煉瓦13との間に、例えば、0.2〜1mmの隙間が形成される。このため、鉄皮11の外側から冷却しても、炉底側壁煉瓦13を冷却することはできず、炉底側壁煉瓦13が損耗する。従って、炉底煉瓦12に形成される凝固層の量を適正な量とし、また、この凝固層に起因する溶銑の環状流をなくすために、以下のように調整する。
Next, a method for preventing blast furnace brick wear according to an embodiment of the present invention will be described with reference to the blast furnace 10 described above.
When the blast furnace 10 is normal, there is no abnormal wear on the bottom wall brick 13 and the operation can be kept stable. However, a solidified layer (also referred to as a viscous layer) having metal and slag is abnormally formed on the surface of the furnace bottom brick 12 due to improper cooling of the bottom plate 14, abnormal conditions in the furnace, and the like. Depending on the amount of the solidified layer to be formed, a flow (annular flow) of hot metal along the bottom wall brick 13 of the hot metal is generated at the bottom of the blast furnace 10, and the bottom wall brick 13 is worn out. Moreover, since the abnormally formed solidified layer suppresses the heat at the bottom of the blast furnace 10 from being transmitted to the furnace bottom brick 12, in this case, the temperature of the furnace bottom brick 12 decreases. Thereby, since the furnace bottom brick 12 contracts, the furnace bottom side wall brick 13 integrated with the furnace bottom brick 12 moves to the center of the blast furnace 10, and between the iron skin 11 and the furnace bottom side wall brick 13, For example, a gap of 0.2 to 1 mm is formed. For this reason, even if it cools from the outer side of the iron skin 11, the furnace bottom side wall brick 13 cannot be cooled, but the furnace bottom side wall brick 13 is worn out. Therefore, in order to set the amount of the solidified layer formed on the furnace bottom brick 12 to an appropriate amount and eliminate the annular flow of the hot metal resulting from the solidified layer, the following adjustment is performed.

高炉10の炉底煉瓦12内に埋設した2個の温度計T0、T1の計測値から、炉底煉瓦12の貫流熱量Qを求め、この貫流熱量Qを所定範囲内、即ち2500〜3400cal/m2・hrで制御するように、高炉操業条件や、底盤14を流れる冷却水量を調整する。
この貫流熱量Qは、溶銑から炉底煉瓦12を介して底盤14に伝わる熱量を示しており、炉底煉瓦12内に埋設した2個の温度計T0、T1の計測値から、以下の式を用いて求めることができる。
Q=λ×(T1−T0)/L
ここで、λ(cal/m・hr・℃)は炉底煉瓦12の伝熱係数(熱伝導率)、L(m)は炉底煉瓦12内に埋設された温度計T0、T1間の距離をそれぞれ示す。なお、λは炉底煉瓦12に使用した煉瓦の種類によって決定されるものである。
From the measured values of the two thermometers T 0 , T 1 embedded in the bottom brick 12 of the blast furnace 10, the through-flow heat quantity Q of the bottom brick 12 is obtained, and this through-flow heat quantity Q is within a predetermined range, that is, 2500 to 3400. The blast furnace operating conditions and the amount of cooling water flowing through the bottom plate 14 are adjusted so as to control at K cal / m 2 · hr.
This through-flow heat quantity Q indicates the amount of heat transferred from the hot metal to the bottom plate 14 via the furnace bottom brick 12. From the measured values of the two thermometers T 0 and T 1 embedded in the furnace bottom brick 12, It can be obtained using an equation.
Q = λ × (T 1 −T 0 ) / L
Here, λ ( K cal / m · hr · ° C.) is a heat transfer coefficient (thermal conductivity) of the furnace bottom brick 12, and L (m) is a thermometer T 0 , T 1 embedded in the furnace bottom brick 12. The distance between each is shown. Note that λ is determined by the type of brick used for the furnace bottom brick 12.

ここで、貫流熱量Qが3400cal/m2・hrを超える場合、炉内の温度が上昇しているので、溶銑と接触する炉底側壁煉瓦13は異常に損耗される。一方、貫流熱量Qが2500cal/m2・hrを下回る場合、炉底煉瓦12の表面に凝固層が多く形成され、炉底側壁煉瓦13に向かう対流(溶銑流れ)が強くなって炉底側壁煉瓦13が異常に損耗される。また、炉底煉瓦12の表面に凝固層が多く形成されるので、炉底煉瓦12を介して底盤14方向へ伝わる熱が少なくなり、炉底煉瓦12の温度が低下して収縮する。これにより、炉底煉瓦12と一体となった炉底側壁煉瓦13が高炉10の中心方向へ移動し、炉底側壁煉瓦13と鉄皮11との間に隙間が生じるので、炉底側壁煉瓦13と鉄皮11との接触状態を維持できない。このため、鉄皮11を介して炉底側壁煉瓦13の冷却を行うことができず、炉底側壁煉瓦13が異常に損耗される。
従って、炉内の温度を操業を安定に行う温度に維持できると共に、炉底煉瓦12の収縮を防止し、炉底側壁煉瓦13の損耗を抑制するには、貫流熱量Qの所定範囲を2600〜3300cal/m2・hr、更には2700〜3200cal/m2・hrとすることが好ましい。
Here, when the through-flow heat quantity Q exceeds 3400 K cal / m 2 · hr, the temperature in the furnace rises, so the furnace bottom side wall brick 13 in contact with the hot metal is abnormally worn. On the other hand, when the through-flow heat quantity Q is less than 2500 K cal / m 2 · hr, a lot of solidified layers are formed on the surface of the furnace bottom brick 12, and the convection (hot metal flow) toward the furnace bottom side wall brick 13 becomes stronger. The side wall brick 13 is worn abnormally. Moreover, since many solidified layers are formed on the surface of the furnace bottom brick 12, heat transmitted to the bottom board 14 through the furnace bottom brick 12 is reduced, and the temperature of the furnace bottom brick 12 is lowered and contracts. Thereby, the furnace bottom side wall brick 13 integrated with the furnace bottom brick 12 moves toward the center of the blast furnace 10, and a gap is generated between the furnace bottom side wall brick 13 and the iron skin 11. And the iron skin 11 cannot be maintained in contact with each other. For this reason, the furnace bottom side wall brick 13 cannot be cooled via the iron skin 11, and the furnace bottom side wall brick 13 is abnormally worn.
Therefore, in order to maintain the temperature in the furnace at a temperature at which the operation is stably performed, to prevent shrinkage of the furnace bottom brick 12 and to suppress wear of the furnace bottom side wall brick 13, a predetermined range of the through-flow heat quantity Q is set to 2600 to 2600. It is preferably 3300 K cal / m 2 · hr, more preferably 2700 to 3200 K cal / m 2 · hr.

また、炉底煉瓦12内に埋設した2個の温度計T0、T1の計測値から、計測値の温度差を求め、この温度差を2個の温度計T0、T1の熱の貫流方向(高炉10高さ方向)の距離で割った温度勾配をΔTとして、この温度勾配ΔTを所定範囲内、即ち1〜3.5℃/cmで制御することも可能である。
ここで、温度勾配ΔTの所定範囲の上限値である3.5℃/cmは、上記した貫流熱量Qの所定範囲の上限値3400cal/m2・hrに略対応するものであり、一方、温度勾配ΔTの所定範囲の下限値である1℃/cmは、上記した貫流熱量Qの所定範囲の下限値2500cal/m2・hrに略対応するものである。なお、この温度勾配ΔTの所定範囲は、炉底煉瓦12の熱伝導率に応じて、更に狭い範囲で管理することが可能である。
Further, a temperature difference between the measured values is obtained from the measured values of the two thermometers T 0 and T 1 embedded in the furnace bottom brick 12, and this temperature difference is calculated as the heat of the two thermometers T 0 and T 1 . It is also possible to control the temperature gradient ΔT within a predetermined range, that is, 1 to 3.5 ° C./cm, by setting ΔT as the temperature gradient divided by the distance in the flow-through direction (the height direction of the blast furnace 10).
Here, the upper limit value of 3.5 ° C./cm, which is the upper limit value of the predetermined range of the temperature gradient ΔT, substantially corresponds to the upper limit value of 3400 K cal / m 2 · hr of the predetermined range of the through-flow heat quantity Q described above, 1 ° C./cm, which is the lower limit value of the predetermined range of the temperature gradient ΔT, substantially corresponds to the lower limit value 2500 K cal / m 2 · hr of the predetermined range of the heat flow amount Q described above. The predetermined range of the temperature gradient ΔT can be managed in a narrower range according to the thermal conductivity of the furnace bottom brick 12.

なお、求めた数値を前記した所定範囲内に制御するため、高炉10内の鉱石量に対するコークス量の増減や、羽口15の炉内側の羽口前16における燃焼温度の増減を行う。ここで、求めた数値が所定範囲の上限値に近づく場合は、炉内の温度が通常より高くなっているので、鉱石量に対するコークス量の現状からの低減や、羽口前16における燃焼温度を現状より低減する。一方、求めた数値が所定範囲の下限値に近づく場合は、炉内の温度が通常より低くなっているので、鉱石量に対するコークス量の現状からの増加や、羽口前16における燃焼温度を現状より増加する。以上により、高炉10の炉内を適正な温度に維持できる。ここで、羽口前16の燃焼温度の増減には、燃焼温度を増減できるものであればいかなる方法でも良く、羽口15を通じて吹込むガスの酸素量比率、微粉炭量比率の増減等が例として挙げられる。 In order to control the obtained numerical value within the above-mentioned predetermined range, the amount of coke with respect to the amount of ore in the blast furnace 10 is increased or decreased, and the combustion temperature at the tuyere front 16 inside the tuyere 15 is increased or decreased. Here, when the obtained numerical value approaches the upper limit value of the predetermined range, the temperature in the furnace is higher than usual, so the reduction in the amount of coke relative to the amount of ore from the current state, and the combustion temperature at the tuyere 16 Reduce from the current level. On the other hand, when the obtained numerical value approaches the lower limit value of the predetermined range, the temperature in the furnace is lower than usual, so the increase in the amount of coke relative to the amount of ore from the current state, or the combustion temperature at the front 16 of tuyere Increase more. Thus, the inside of the blast furnace 10 can be maintained at an appropriate temperature. Here, any method may be used to increase / decrease the combustion temperature before the tuyere 16 as long as the combustion temperature can be increased / decreased, and examples include an increase / decrease in the oxygen amount ratio of the gas blown through the tuyere 15 and the pulverized coal amount ratio. As mentioned.

なお、求めた数値が所定範囲の下限値を下回る場合は、炉内の温度が通常よりも低くなり、炉底煉瓦12の温度が低下するので、炉底煉瓦12の収縮時に炉底煉瓦12と一体となった炉底側壁煉瓦13と鉄皮11との間に隙間が生じ、鉄皮11による炉底側壁煉瓦13の冷却ができなくなる。このため、この隙間に、空気より熱伝導率が高い充填物、例えば、モルタル、カーボンペースト、重油、及びCO2ガスのいずれか1又は2以上を充填する。また、炉底煉瓦12と一体となった炉底側壁煉瓦13外側の鉄皮11の冷却水温度を現状より低下(例えば、現状30℃の冷却水温度を5℃まで低下)させることも可能である。なお、冷却水温度の低下は、鉄皮11に供給する前の冷却水を、空冷又は冷凍機等の装置を使用して行うことができる。
これにより、鉄皮11と炉底側壁煉瓦13の間を伝導する熱量を増加させることができ、炉底側壁煉瓦13を冷却でき、炉底側壁煉瓦13の損耗を抑制できる。
In addition, when the calculated | required numerical value is less than the lower limit of a predetermined range, since the temperature in a furnace becomes lower than usual and the temperature of the furnace bottom brick 12 falls, when the furnace bottom brick 12 contracts, A gap is formed between the furnace bottom side wall brick 13 and the iron skin 11 which are integrated, and the furnace bottom side wall brick 13 cannot be cooled by the iron skin 11. For this reason, this gap is filled with one or more fillers having a higher thermal conductivity than air, such as mortar, carbon paste, heavy oil, and CO 2 gas. It is also possible to lower the cooling water temperature of the iron skin 11 outside the furnace bottom side wall brick 13 integrated with the furnace bottom brick 12 from the current level (for example, the current 30 ° C. cooling water temperature is reduced to 5 ° C.). is there. In addition, the cooling water temperature can be lowered using cooling water before being supplied to the iron skin 11 by using an apparatus such as air cooling or a refrigerator.
Thereby, the amount of heat conducted between the iron skin 11 and the bottom wall brick 13 can be increased, the bottom wall brick 13 can be cooled, and the wear of the bottom wall brick 13 can be suppressed.

本発明に係る高炉煉瓦の損耗防止方法を適用し、試験を行った結果について説明する。なお、高炉10の底部の条件として、炉底煉瓦12の厚みを2m以上とし、温度計T0を底盤14から約500mm、温度計T1を温度計T0から500mm以上上方の位置に埋設した。また、貫流熱量Qの管理範囲を2500〜3400cal/m2・hr、計測値の温度差の管理範囲を100〜130℃(温度勾配ΔTの前記所定範囲内)とした。 The result of having applied and tested the blast furnace brick wear prevention method according to the present invention will be described. In addition, as the conditions of the bottom part of the blast furnace 10, the thickness of the furnace bottom brick 12 was set to 2 m or more, the thermometer T 0 was embedded about 500 mm from the bottom board 14, and the thermometer T 1 was buried at a position above the thermometer T 0 by 500 mm or more. . In addition, the management range of the through-flow heat quantity Q was 2500 to 3400 K cal / m 2 · hr, and the management range of the temperature difference of the measured values was 100 to 130 ° C. (within the predetermined range of the temperature gradient ΔT).

まず、第1の実施例について説明する。
図2(A)に示すように、高炉10の操業時において、例えば炉底煉瓦12の表面に凝固層が多量に付着し始めることで、時間の経過と共に貫流熱量Q及び計測値の温度差が管理下限値(Q=2500cal/m2・hr、温度差=100℃)まで低下する傾向が生じる。このとき、管理下限値を下回る前に、図2(B)に示すように、ore/coke、即ち(コークス量に対する鉱石量の比)を現状の4.72から4.53まで、例えば0.1〜0.3低下させることで、鉱石量に対するコークス量を増加させ炉内の入熱を上昇させる。これにより、一度は管理範囲の下限値を下回った貫流熱量Q及び計測値の温度差を、時間の経過と共に管理範囲内に戻すことができる。なお、貫流熱量Q及び計測値の温度差が管理範囲内に戻った後は、ore/cokeをもとの4.72まで徐々(段階的)に増加させ、高炉10の安定操業を継続する。
First, the first embodiment will be described.
As shown in FIG. 2 (A), when the blast furnace 10 is operated, for example, a large amount of solidified layer starts to adhere to the surface of the bottom brick 12, so that the heat flow through Q and the temperature difference between the measured values are increased over time. There is a tendency to lower to a control lower limit (Q = 2500 K cal / m 2 · hr, temperature difference = 100 ° C.). At this time, before falling below the control lower limit value, as shown in FIG. 2B, ore / coke, that is, (ratio of ore amount to coke amount) is changed from the current 4.72 to 4.53, for example, 0.8. By reducing by 1 to 0.3, the amount of coke relative to the amount of ore is increased and the heat input in the furnace is increased. As a result, the once-through heat quantity Q once below the lower limit value of the management range and the temperature difference between the measured values can be returned to the management range over time. In addition, after the temperature difference of the through-flow heat amount Q and the measured value returns to the control range, ore / coke is gradually increased to 4.72 from the original (stepwise), and the stable operation of the blast furnace 10 is continued.

なお、炉底側壁煉瓦13の温度は、図2(C)に示すように、管理下限値を下回った後に、通常の100℃から125℃まで、25℃上昇している。これは、炉底煉瓦12の温度が低下し、炉底煉瓦12が収縮して、炉底側壁煉瓦13と鉄皮11との間に隙間が生じたためであり、炉底側壁煉瓦13を冷却できなくなったことを示している。しかし、前記した処置を施すことで、炉底煉瓦12の貫流熱量Q及び計測値の温度差が管理範囲内に戻るため、炉底側壁煉瓦13と鉄皮11とを再度接触させることができる。このため、炉底側壁煉瓦13の温度は、もとの100℃まで再び低下し、炉底側壁煉瓦13の損耗を抑制できる。 In addition, as shown in FIG.2 (C), the temperature of the furnace bottom side wall brick 13 rose 25 degreeC from normal 100 degreeC to 125 degreeC, after falling below a control lower limit. This is because the temperature of the furnace bottom brick 12 is lowered, the furnace bottom brick 12 is contracted, and a gap is formed between the furnace bottom side wall brick 13 and the iron shell 11 , and the furnace bottom side wall brick 13 can be cooled. Indicates that it has disappeared. However, since the temperature difference between the flow-through heat quantity Q and the measured value of the furnace bottom brick 12 returns to the control range by performing the above-described treatment, the furnace bottom side wall brick 13 and the iron skin 11 can be brought into contact again. For this reason, the temperature of the furnace bottom side wall brick 13 is lowered again to the original 100 ° C., and the wear of the furnace bottom side wall brick 13 can be suppressed.

次に、第2の実施例について説明する。
図3(A)に示すように、高炉10の操業時において、炉内の温度が高くなることで、時間の経過と共に貫流熱量Q及び計測値の温度差が管理上限値(Q=3400cal/m2・hr、温度差=130℃)まで上昇する傾向が生じる。このとき、管理上限値を超える前に、図3(B)に示すように、底盤14の冷却水量を貫流熱量Q及び計測値の温度差の上昇曲線に追従させて、現状の30トン/時間から38トン/時間程度まで徐々に増加させる。このように、底盤14の冷却を強化して炉底煉瓦12を冷却することで、一度は管理範囲の上限値を超えた貫流熱量Q及び計測値の温度差を、時間の経過と共に管理範囲内に戻すことができる。なお、貫流熱量Q及び計測値の温度差が管理範囲内に戻った後は、底盤14の冷却水量を貫流熱量Q及び計測値の温度差の下降曲線に追従させて、もとの30トン/時間程度まで徐々に減少させることで、高炉の安定操業を継続する。
Next, a second embodiment will be described.
As shown in FIG. 3 (A), when the temperature of the blast furnace 10 is increased, the temperature difference between the amount of through-flow heat Q and the measured value becomes a management upper limit value (Q = 3400 K cal as time passes). / M 2 · hr, temperature difference = 130 ° C.). At this time, before exceeding the control upper limit value, as shown in FIG. 3 (B), the amount of cooling water in the bottom plate 14 is made to follow the rising curve of the heat flow through Q and the temperature difference between the measured values, and the current 30 tons / hour. To 38 tons / hour. In this way, by cooling the bottom brick 12 by strengthening the cooling of the bottom plate 14, the once-through heat quantity Q exceeding the upper limit value of the management range and the temperature difference between the measurement values are within the management range as time passes. Can be returned to. In addition, after the temperature difference between the through-flow heat quantity Q and the measured value returns to the control range, the cooling water amount of the bottom plate 14 is made to follow the descending curve of the through-flow heat quantity Q and the measured temperature difference, and the original 30 ton / Stable operation of the blast furnace will be continued by gradually reducing it to about time.

続いて、第3の実施例について説明する。
図4(A)に示すように、高炉10の操業時において、例えば炉底煉瓦12の表面に凝固層が付着し始めることで、時間の経過と共に貫流熱量Q及び計測値の温度差が管理下限値(Q=2500cal/m2・hr、温度差=100℃)まで低下する傾向が生じる。このとき、炉底煉瓦12の温度が低下し、炉底煉瓦12が収縮して、炉底側壁煉瓦13と鉄皮11との間に隙間が形成される。従って、鉄皮11の外側から冷却水をかけても、炉底側壁煉瓦13を冷却することはできず、図4(B)に示すように、炉底側壁煉瓦13の温度が急激に上昇する。ここで、隙間に、空気より熱伝導率が高い充填物、例えば、モルタル、カーボンペースト、重油、及びCO2ガスのいずれか1又は2以上を充填(側壁圧入実施)することで、この充填材を介して鉄皮11と炉底側壁煉瓦13との間の熱伝導が確保されるので、炉底側壁煉瓦13の熱は鉄皮11へ伝わり、炉底側壁煉瓦13の温度がもとの温度になるまで冷却できる。
なお、鉄皮11と炉底側壁煉瓦13との間に充填材を充填しない場合は、図4(C)に示すように、120℃以上に上昇した炉底側壁煉瓦13の温度が、長時間低下しないことが分かる。このため、炉底側壁煉瓦13に損耗が発生する。
Subsequently, a third embodiment will be described.
As shown in FIG. 4 (A), when the blast furnace 10 is operated, for example, the solidified layer starts to adhere to the surface of the bottom brick 12, so that the temperature difference between the through-flow heat quantity Q and the measured value with the passage of time is lower than the control lower limit. There is a tendency to decrease to a value (Q = 2500 K cal / m 2 · hr, temperature difference = 100 ° C.). At this time, the temperature of the furnace bottom brick 12 decreases, the furnace bottom brick 12 contracts, and a gap is formed between the furnace bottom side wall brick 13 and the iron skin 11 . Therefore, even if cooling water is applied from the outside of the iron shell 11, the furnace bottom side wall brick 13 cannot be cooled, and the temperature of the furnace bottom side wall brick 13 rapidly increases as shown in FIG. 4B. . Here, a filler having a higher thermal conductivity than air, for example, one or more of mortar, carbon paste, heavy oil, and CO 2 gas is filled in the gap (side wall press-fitting). Therefore, the heat conduction between the iron shell 11 and the furnace bottom side wall brick 13 is ensured, so that the heat of the furnace bottom side wall brick 13 is transmitted to the iron skin 11 and the temperature of the furnace bottom side wall brick 13 is the original temperature. Can be cooled until
In addition, when a filler is not filled between the iron shell 11 and the furnace bottom side wall brick 13, as shown in FIG.4 (C), the temperature of the furnace bottom side wall brick 13 raised to 120 degreeC or more is long time. It turns out that it does not fall. For this reason, the furnace bottom side wall brick 13 is worn out.

第4の実施例について説明する。
図5(A)に示すように、高炉10の操業時において、例えば炉底煉瓦12の表面に凝固層が付着し始めることで、時間の経過と共に貫流熱量Q及び計測値の温度差が管理下限値(Q=2500cal/m2・hr、温度差=100℃)まで低下する傾向が生じる。このとき、炉底煉瓦12の温度が低下し、炉底煉瓦12が収縮して、炉底側壁煉瓦13と鉄皮11との間に隙間が形成される。従って、このとき、管理下限値を下回る前に、図5(B)に示すように、鉄皮11の冷却水温度を現状の30℃から5℃まで低下させることで鉄皮11を冷却し、炉底側壁煉瓦13に対して鉄皮11を収縮させ、隙間の生成の抑制、あるいは生成した隙間の消滅を行うことができる。
これにより、一度は管理範囲の下限値を下回った貫流熱量Q及び計測値の温度差を、時間の経過と共に管理範囲内に戻すことができる。
A fourth embodiment will be described.
As shown in FIG. 5 (A), during operation of the blast furnace 10, for example, the solidified layer starts to adhere to the surface of the bottom brick 12, so that the temperature difference between the through-flow heat quantity Q and the measured value with time elapses. There is a tendency to decrease to a value (Q = 2500 K cal / m 2 · hr, temperature difference = 100 ° C.). At this time, the temperature of the furnace bottom brick 12 decreases, the furnace bottom brick 12 contracts, and a gap is formed between the furnace bottom side wall brick 13 and the iron skin 11 . Therefore, at this time, before falling below the control lower limit value, as shown in FIG. 5 (B), the iron skin 11 is cooled by reducing the cooling water temperature of the iron skin 11 from the current 30 ° C. to 5 ° C., The iron skin 11 can be contracted with respect to the furnace bottom side wall brick 13 to suppress the generation of the gap or to eliminate the generated gap.
As a result, the once-through heat quantity Q once below the lower limit value of the management range and the temperature difference between the measured values can be returned to the management range over time.

なお、炉底側壁煉瓦13の温度は、図5(C)に示すように、管理下限値を下回った後に、通常の100℃から118℃まで、18℃上昇している。これは、炉底煉瓦12の温度が低下し、炉底煉瓦12が収縮して、炉底側壁煉瓦13と鉄皮11との間に隙間が生じたためであり、炉底側壁煉瓦13を冷却できなくなったことを示している。しかし、前記した処置を施すことで、炉底煉瓦12の貫流熱量Q及び計測値の温度差が管理範囲内に戻るため、炉底煉瓦12の冷却は適切に行われる。このため、炉底側壁煉瓦13の温度は、78℃程度まで低下し、炉底側壁煉瓦13の損耗を抑制できる。 In addition, as shown in FIG.5 (C), the temperature of the furnace bottom side wall brick 13 rose 18 degreeC from normal 100 degreeC to 118 degreeC, after falling below a control lower limit. This is because the temperature of the furnace bottom brick 12 is lowered, the furnace bottom brick 12 is contracted, and a gap is formed between the furnace bottom side wall brick 13 and the iron shell 11 , and the furnace bottom side wall brick 13 can be cooled. Indicates that it has disappeared. However, since the temperature difference between the flow-through heat quantity Q and the measured value of the furnace bottom brick 12 returns to the management range by performing the above-described treatment, the furnace bottom brick 12 is appropriately cooled. For this reason, the temperature of the furnace bottom side wall brick 13 falls to about 78 ° C., and wear of the furnace bottom side wall brick 13 can be suppressed.

以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、前記したそれぞれの実施の形態や変形例の一部又は全部を組合せて本発明の高炉煉瓦の損耗防止方法を構成する場合にも本発明は適用される。
また、前記実施の形態においては、炉底煉瓦に2個の温度計を埋設した場合について説明したが、3個以上の温度計を埋設することも可能である。また、温度計の埋設位置は、少なくとも2個の温度計の埋設位置が炉底煉瓦内の厚さ方向の異なる位置であれば、任意の位置にすることが可能である。
As described above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the configuration described in the above embodiment, and the matters described in the scope of claims. Other embodiments and modifications conceivable within the scope are also included. For example, the present invention is also applied when the blast furnace brick wear prevention method of the present invention is configured by combining some or all of the above-described embodiments and modifications.
Moreover, in the said embodiment, although the case where two thermometers were embed | buried in the furnace bottom brick was demonstrated, it is also possible to embed | buy three or more thermometers. In addition, the embedded positions of the thermometers can be set to arbitrary positions as long as the embedded positions of at least two thermometers are different positions in the thickness direction in the furnace bottom brick.

本発明の一実施の形態に係る高炉煉瓦の損耗防止方法を適用する高炉の説明図である。It is explanatory drawing of the blast furnace to which the wear prevention method of the blast furnace brick which concerns on one embodiment of this invention is applied. (A)〜(C)はそれぞれ第1の実施例に係る炉底煉瓦の貫流熱量及び温度計の計測値の温度差の変化を示す説明図、ore/cokeの変化を示す説明図、炉底側壁煉瓦の温度変化の説明図である。(A)-(C) is explanatory drawing which shows the change of the temperature difference of the through-flow heat amount and the thermometer measurement value of the furnace bottom brick which concerns on 1st Example, respectively, explanatory drawing which shows the change of ore / coke, a furnace bottom It is explanatory drawing of the temperature change of a side wall brick. (A)、(B)はそれぞれ第2の実施例に係る炉底煉瓦の貫流熱量及び温度計の計測値の温度差の変化を示す説明図、底盤冷却水量の変化の説明図である。(A), (B) is explanatory drawing which shows the change of the temperature difference of the through-flow heat amount of the furnace bottom brick which concerns on a 2nd Example, and the measured value of a thermometer, respectively, and explanatory drawing of the change of bottom board cooling water amount. (A)〜(C)はそれぞれ第3の実施例に係る炉底煉瓦の貫流熱量及び温度計の計測値の温度差の変化を示す説明図、充填材の使用時における炉底側壁煉瓦の温度変化の説明図、充填材の不使用時における炉底側壁煉瓦の温度変化の説明図である。(A)-(C) is explanatory drawing which shows the change of the temperature difference of the through-flow heat amount of the furnace bottom brick which concerns on 3rd Example, and the measured value of a thermometer, respectively, The temperature of the furnace bottom side wall brick at the time of use of a filler It is explanatory drawing of a change, and explanatory drawing of the temperature change of the furnace bottom side wall brick at the time of non-use of a filler. (A)〜(C)はそれぞれ第4の実施例に係る炉底煉瓦の貫流熱量及び温度計の計測値の温度差の変化を示す説明図、冷却水水温の変化を示す説明図、炉底側壁煉瓦の温度変化の説明図である。(A)-(C) is explanatory drawing which shows the change of the temperature difference of the through-flow heat amount of the bottom brick and the measured value of a thermometer which concerns on a 4th Example, respectively, explanatory drawing which shows the change of cooling water temperature, a furnace bottom It is explanatory drawing of the temperature change of a side wall brick.

符号の説明Explanation of symbols

10:高炉、11:鉄皮、12:炉底煉瓦、13:炉底側壁煉瓦、14:底盤、15:羽口、16:羽口前 10: Blast furnace, 11: Iron skin, 12: Brick at the bottom of the furnace, 13: Brick at the bottom of the furnace bottom, 14: Bottom board, 15: Tuyere, 16: In front of the tuyere

Claims (6)

高炉の炉底煉瓦内の厚さ方向の異なる位置に少なくとも2個の温度計を埋設し、該温度計の計測値から前記炉底煉瓦の貫流熱量を求め、該貫流熱量を所定範囲内で制御するに際し、前記貫流熱量の前記所定範囲が2500〜3400Mcal/m2・hrであることを特徴とする高炉煉瓦の損耗防止方法。 At least two thermometers are buried at different positions in the thickness direction in the bottom brick of the blast furnace, and the through heat of the bottom brick is obtained from the measured value of the thermometer, and the through heat is controlled within a predetermined range. In this case, the predetermined range of the heat flow through is 2500 to 3400 Mcal / m 2 · hr, and a method for preventing blast furnace brick wear. 請求項1記載の高炉煉瓦の損耗防止方法において、求めた数値を前記所定範囲内に制御するため、前記高炉内の鉱石量に対するコークス量の増減を行うことを特徴とする高炉煉瓦の損耗防止方法。 The method for preventing wear of a blast furnace brick according to claim 1, wherein the amount of coke relative to the amount of ore in the blast furnace is increased or decreased in order to control the obtained numerical value within the predetermined range. . 請求項1及び2のいずれか1項に記載の高炉煉瓦の損耗防止方法において、求めた数値を前記所定範囲内に制御するため、羽口前の燃焼温度を増減することを特徴とする高炉煉瓦の損耗防止方法。 The blast furnace brick according to any one of claims 1 and 2, wherein the combustion temperature before the tuyere is increased or decreased in order to control the obtained numerical value within the predetermined range. How to prevent wear. 請求項1〜3のいずれか1項に記載の高炉煉瓦の損耗防止方法において、求めた数値が前記所定範囲の下限値を下回る場合、前記炉底煉瓦の収縮時に該炉底煉瓦と一体となった炉底側壁煉瓦と鉄皮との間に生じる隙間に、空気より熱伝導率が高い充填物を充填することを特徴とする高炉煉瓦の損耗防止方法。 The method for preventing wear of a blast furnace brick according to any one of claims 1 to 3, wherein when the obtained numerical value falls below a lower limit value of the predetermined range, the furnace bottom brick is integrated with the furnace bottom brick when shrinking. A method for preventing wear of a blast furnace brick, characterized in that a gap generated between the bottom wall brick and the iron shell is filled with a filler having a higher thermal conductivity than air. 請求項4記載の高炉煉瓦の損耗防止方法において、前記充填物がモルタル、カーボンペースト、重油、及びCO2ガスのいずれか1又は2以上であることを特徴とする高炉煉瓦の損耗防止方法。 The method for preventing wear of blast furnace brick according to claim 4, wherein the filler is any one or more of mortar, carbon paste, heavy oil, and CO 2 gas. 請求項1〜5のいずれか1項に記載の高炉煉瓦の損耗防止方法において、求めた数値が前記所定範囲の下限値を下回る場合、前記炉底煉瓦と一体となった炉底側壁煉瓦外側の鉄皮の冷却水温度を現状より低下させることを特徴とする高炉煉瓦の損耗防止方法。 In the wear prevention method of the blast furnace brick of any one of Claims 1-5, when the calculated | required numerical value is less than the lower limit of the said predetermined range, the bottom wall brick outer side united with the said furnace bottom brick is integrated. A method for preventing wear of blast furnace bricks, characterized by lowering the cooling water temperature of the iron skin from the current level.
JP2006094709A 2006-03-30 2006-03-30 Blast furnace brick wear prevention method Expired - Fee Related JP4598710B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006094709A JP4598710B2 (en) 2006-03-30 2006-03-30 Blast furnace brick wear prevention method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006094709A JP4598710B2 (en) 2006-03-30 2006-03-30 Blast furnace brick wear prevention method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002216630A Division JP2004059956A (en) 2002-07-25 2002-07-25 Method for preventing wearing of blast furnace brick

Publications (3)

Publication Number Publication Date
JP2006188768A true JP2006188768A (en) 2006-07-20
JP2006188768A5 JP2006188768A5 (en) 2008-12-11
JP4598710B2 JP4598710B2 (en) 2010-12-15

Family

ID=36796216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006094709A Expired - Fee Related JP4598710B2 (en) 2006-03-30 2006-03-30 Blast furnace brick wear prevention method

Country Status (1)

Country Link
JP (1) JP4598710B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113960064A (en) * 2021-09-15 2022-01-21 包头钢铁(集团)有限责任公司 Method for investigating damage of blast furnace hearth

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10298621A (en) * 1997-04-25 1998-11-10 Nippon Steel Corp Operation of blast furnace
JP2004059956A (en) * 2002-07-25 2004-02-26 Nippon Steel Corp Method for preventing wearing of blast furnace brick

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10298621A (en) * 1997-04-25 1998-11-10 Nippon Steel Corp Operation of blast furnace
JP2004059956A (en) * 2002-07-25 2004-02-26 Nippon Steel Corp Method for preventing wearing of blast furnace brick

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113960064A (en) * 2021-09-15 2022-01-21 包头钢铁(集团)有限责任公司 Method for investigating damage of blast furnace hearth
CN113960064B (en) * 2021-09-15 2024-03-08 包头钢铁(集团)有限责任公司 Method for investigating breakage of blast furnace hearth

Also Published As

Publication number Publication date
JP4598710B2 (en) 2010-12-15

Similar Documents

Publication Publication Date Title
JP4752021B2 (en) Reduced blast operation method of blast furnace
JP4598710B2 (en) Blast furnace brick wear prevention method
JP6669024B2 (en) Method of estimating hot metal flow velocity in blast furnace and operating method of blast furnace
JPH08246014A (en) Water-cooled molten slag trough for blast furnace
JP2004059956A (en) Method for preventing wearing of blast furnace brick
JP5854200B2 (en) Blast furnace operation method
JP5747286B2 (en) Three-phase AC electrode type circular electric furnace cooling method and three-phase AC electrode type circular electric furnace
KR880002277B1 (en) Blast furnace
JP5811019B2 (en) Reduced blast method for blast furnace
JP2006188768A5 (en)
JP6913043B2 (en) How to operate a metal smelter
JP5353118B2 (en) Blast furnace operation method
WO2023021870A1 (en) Method for estimating depositional shape of blast furnace filling and method for substituting blast furnace coke
LU101057B1 (en) Method for protecting an inner wall of a shaft furnace
JPH0995709A (en) Water-cooling molten slag trough
JP2001073016A (en) Operation of blast furnace
JP4038153B2 (en) Blast furnace bottom cooling method
JP2004052038A (en) Apparatus for forming inner wall of lower part of shaft kiln
JP2001335818A (en) Method for cooling furnace bottom in blast furnace
JPH10298619A (en) Operation of blast furnace
Coetzee et al. New refractory lining direction at Jindal Stainless FeCr# 1 and# 2 furnaces
JPH09157716A (en) Structure for cooling furnace bottom of blast furnace
JPS5925906A (en) Blast furnace bottom
CN115820957A (en) Method for forming self-protection layer in blast furnace hearth erosion area
JPH0417609A (en) Method for cooling bottom of blast furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100924

R151 Written notification of patent or utility model registration

Ref document number: 4598710

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees