JPH10298621A - Operation of blast furnace - Google Patents

Operation of blast furnace

Info

Publication number
JPH10298621A
JPH10298621A JP12156297A JP12156297A JPH10298621A JP H10298621 A JPH10298621 A JP H10298621A JP 12156297 A JP12156297 A JP 12156297A JP 12156297 A JP12156297 A JP 12156297A JP H10298621 A JPH10298621 A JP H10298621A
Authority
JP
Japan
Prior art keywords
furnace
tuyere
heat flux
blast furnace
reference value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12156297A
Other languages
Japanese (ja)
Other versions
JP4132128B2 (en
Inventor
Morimasa Ichida
守政 一田
Akihiko Shinotake
昭彦 篠竹
Kazuya Kunitomo
和也 国友
Takashi Kumaoka
尚 熊岡
Kazuyuki Morii
和之 森井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP12156297A priority Critical patent/JP4132128B2/en
Publication of JPH10298621A publication Critical patent/JPH10298621A/en
Application granted granted Critical
Publication of JP4132128B2 publication Critical patent/JP4132128B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)
  • Blast Furnaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for restraining the wearing of brick thickness by precisely detecting the wearing of the brick thickness in the side wall part of a furnace bottom at early time. SOLUTION: Heat flux from the inner part of the furnace to the outside direction of the furnace in the side wall part of the furnace bottom in a blast furnace is measured or calculated at one position or plural positions, and in the case of rising the heat flux to a reference value or more, blasting quantity of tuyere is adjusted with a blasting quantity control valve for branched tube. As the other way, the remaining thickness of the total of the brick and the high consistency layer in the side wall of the furnace bottom in the blast furnace is measured or calculated at one position or plural positions and in the case of lowering the remaining thickness to a reference value or less, the blasting quantity of the tuyere is adjusted with the branched tube blasting quantity control valve. As the other way, the heat flux from the inner part of the furnace at the center position of the furnace bottom in the blast furnace to the outside direction of the furnace is measured or calculated and in the case of lowering the heat flux to a reference value or less, the blasting quantity of the tuyere is adjusted with the branched tube blasting quantity control valve.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、炉底側壁部レンガ
厚みの損耗状態を早期かつ精度良く検知して、レンガ厚
みの損耗を抑制する高炉操業法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a blast furnace operating method for detecting a worn state of a brick thickness of a furnace bottom side wall at an early stage and accurately and suppressing the brick thickness wear.

【0002】[0002]

【従来の技術】高炉の溶銑原価を低減するためには、種
々の変動費を下げると同時に高炉の炉寿命をできるだけ
延ばすことが必要である。高炉の炉寿命を律速する部位
はシャフト下部と炉底部である。シャフト部については
近年補修技術の進歩すなわち休風時におけるステーブ取
り替え技術の進歩に伴い、必ずしも炉寿命を律速する要
因ではなくなってきている。
2. Description of the Related Art In order to reduce the cost of hot metal in a blast furnace, it is necessary to reduce various variable costs and extend the life of the blast furnace as much as possible. The parts that control the furnace life of the blast furnace are the lower part of the shaft and the furnace bottom. In recent years, with the progress of repair technology, that is, the progress of stave replacement technology during a calm, the shaft portion is not necessarily a factor that limits the furnace life.

【0003】一方、炉底部については休風時のレンガ取
り替え技術が確立されているとは言えず、炉底部とくに
炉底側壁部のレンガ厚みが高炉の炉寿命を律速する要因
となっているのが現状である。したがって、高炉の炉寿
命をできるだけ延ばすためには、耐溶銑性、耐溶融スラ
グ性および冷却効果の観点から、炭素質耐火物で構成さ
れている炉底側壁部のレンガの損耗を抑制する技術と同
時に、炉底側壁部のレンガ厚みを早期にかつ精度良く検
知し管理する技術が必要である。
[0003] On the other hand, the technique of replacing the bricks at the time of the calm of the furnace bottom has not been established, and the thickness of the bricks at the furnace bottom, especially at the side walls of the furnace bottom, is a factor that determines the life of the furnace of the blast furnace. Is the current situation. Therefore, in order to extend the furnace life of the blast furnace as much as possible, from the viewpoint of hot metal resistance, molten slag resistance and cooling effect, technology to suppress the wear of bricks on the bottom wall of the furnace made of carbonaceous refractory At the same time, there is a need for a technique for quickly and accurately detecting and managing the thickness of the brick on the bottom wall of the furnace.

【0004】炉底側壁部のレンガ厚みを検知する技術と
しては、炉底側壁部のレンガに挿入した熱電対の先端
(通常の挿入深度:50〜100mm)での温度を測定し、該
温度測定値からレンガ残存厚みを推定する方法が知られ
ている。該温度が事前に設定されたレンガ残存厚みの下
限値に対応する温度の上限値を越えた場合、あるいは越
えると予測される場合に、炉底側壁部レンガ厚み損耗の
抑制技術が適用されている。
[0004] As a technique for detecting the thickness of the brick on the bottom wall of the furnace, the temperature at the tip (normal insertion depth: 50 to 100 mm) of a thermocouple inserted into the brick on the bottom wall of the furnace is measured. A method of estimating the remaining brick thickness from a value is known. When the temperature exceeds the upper limit value of the temperature corresponding to the lower limit value of the preset brick residual thickness, or when it is predicted to exceed, the furnace bottom side wall portion brick thickness wear suppression technology is applied. .

【0005】炉底側壁部のレンガ厚みの損耗を抑制する
技術としては、炉底散水量を増加し冷却を強化する方
法、TiO2投入量を上昇させ炉底レンガ近傍に存在する溶
銑を高粘性化して炉底レンガを保護する方法、損耗箇所
の羽口径を縮小あるいは盲にして羽口前に滴下する溶銑
滓量を少なくするか、あるいは皆無にする方法、各羽口
に設置された熱風弁の開度を調節して、羽口前に滴下す
る溶銑滓量を少なくする方法が実施されている。とく
に、羽口径を縮小あるいは盲にして羽口前に滴下する溶
銑滓量を少なくするか、あるいは皆無にする方法は経験
的に効果が大きいことが知られている。
[0005] Furnace As a technique for suppressing wear of the bottom side wall of the brick thickness, furnace bottom methods watering amount increased to enhance the cooling, high viscosity hot metal present in the vicinity allowed hearth bricks increasing the TiO 2 dosages Method to protect the furnace bottom brick by reducing the diameter of the tuyere at the point of wear to reduce or eliminate the amount of hot metal slag dripping in front of the tuyere, and hot air valves installed at each tuyere A method has been implemented in which the opening degree is adjusted to reduce the amount of hot metal slag dripped in front of the tuyere. In particular, it is empirically known that a method of reducing or eliminating the amount of hot metal slag dripping in front of the tuyere by reducing or blinding the tuyere diameter is empirically effective.

【0006】例えば、特開昭60-243207号公報には、高
炉の円周に炉底温度計ならびに炉底側板温度計を円周の
複数箇所に設け、炉底温度ならびに炉底側板温度を測温
し、炉底温度、側板温度のいずれかが設定値以上に上昇
した場合に、上昇した温度計上部の羽口送風量を、送風
支管に設置した熱風制御弁により制御する方法が開示さ
れている。
For example, Japanese Patent Application Laid-Open No. Sho 60-243207 discloses that a furnace bottom thermometer and a furnace bottom side plate thermometer are provided at a plurality of locations around the circumference of a blast furnace to measure the furnace bottom temperature and the furnace bottom side plate temperature. A method is disclosed in which, when any one of the furnace bottom temperature and the side plate temperature rises above a set value, the amount of the raised tuyere blast of the thermometer unit is controlled by a hot blast control valve installed in a blast branch pipe. I have.

【0007】[0007]

【発明が解決しようとする課題】しかし、上記に示した
炉底側壁部のレンガ温度から炉底側壁部のレンガ厚みの
損耗状態を検知する方法では、以下に示す問題点があ
る。炉底側壁部に挿入した熱電対先端でのレンガ温度
は、炉内の熱状態だけでなく、冷却条件(例:季節によ
る冷却水温度差)、スタンプ材の劣化状態によるスタン
プ材熱物性値の変化等の影響を受けやすい。
However, the above-described method of detecting the state of wear of the brick thickness of the furnace bottom side wall from the brick temperature of the furnace bottom side wall has the following problems. The temperature of the brick at the tip of the thermocouple inserted into the bottom wall of the furnace bottom is determined not only by the heat state inside the furnace, but also by the cooling conditions (eg, cooling water temperature difference depending on the season) It is easily affected by changes.

【0008】例えば、炉底側壁部に挿入した熱電対先端
でのレンガ温度は、夏場と冬場での冷却水温度の差によ
り変化する。とくに、スタンプ材の劣化状態によりスタ
ンプ材の熱物性値が大きく変化している高炉では、熱電
対先端でのレンガ温度値からレンガ残存厚み、またはレ
ンガと粘稠層合計の残存厚みを推定する際の誤差が大き
くなる。上記の方法では、レンガ残存厚みの誤差に起因
する制御手段実施時期の間違いや遅れにより、高炉の炉
寿命を短くしてしまう可能性もある。
For example, the temperature of the brick at the tip of the thermocouple inserted in the bottom wall of the furnace changes depending on the difference between the cooling water temperature in summer and the temperature in winter. In particular, in a blast furnace where the thermophysical property value of the stamp material changes greatly due to the deterioration state of the stamp material, when estimating the remaining brick thickness or the total remaining thickness of the brick and the viscous layer from the brick temperature value at the thermocouple tip Error increases. In the above method, there is a possibility that the life of the blast furnace may be shortened due to an erroneous or delayed control means execution time due to an error in the remaining brick thickness.

【0009】本発明は、このような従来の炉底側壁部の
レンガに挿入した熱電対先端の温度指示値による炉底側
壁部のレンガ厚みの誤差に起因する検知の時間遅れの問
題点に鑑み、炉底側壁部のレンガ温度指示値による検知
方法とは異なる方法を用いて、炉底側壁部のレンガの損
耗状態を早期かつ精度良く検知することにより、上記問
題点を解決することを目的としている。
The present invention has been made in view of such a conventional problem of a time delay in detection caused by an error in the thickness of the brick at the bottom wall of the furnace due to the temperature indication value at the tip of the thermocouple inserted into the brick at the bottom wall of the conventional furnace. By using a method different from the detection method based on the brick temperature indicating value of the hearth side wall portion, by detecting the wear state of the brick on the hearth side wall portion early and accurately, the object is to solve the above problems. I have.

【0010】[0010]

【課題を解決するための手段】本発明は、上記の課題を
解決するために、下記手段を講じるものである。 (1),高炉炉底側壁部における炉内から炉外方向への
熱流束を一箇所または複数箇所で測定または計算し、熱
流束が基準値以上に上昇した場合に、羽口の送風量を支
管風量制御弁によって調節することを特徴とする。 (2),(1)において、熱流束が基準値以上に上昇し
た箇所の円周方向の角度で少なくとも±30゜以内に位
置する羽口の内、一本または複数本の羽口の送風量を支
管風量制御弁によって調節することを特徴とする。
According to the present invention, the following means are taken to solve the above-mentioned problems. (1) Measure or calculate the heat flux from the inside of the furnace to the outside of the furnace at the bottom wall of the blast furnace at one or a plurality of locations, and when the heat flux rises above the reference value, reduce the amount of air blown from the tuyere. It is characterized by being adjusted by a branch pipe air flow control valve. (2) In (1), the air flow rate of one or a plurality of tuyeres out of the tuyeres located within at least ± 30 ° in the circumferential angle of the place where the heat flux rises above the reference value. Is controlled by a branch pipe air flow control valve.

【0011】(3),(1)、(2)の方法で羽口の送
風量を調節して、熱流束が基準値未満に降下した場合
に、支管風量制御弁によって各羽口の送風量をほぼ同じ
値になるように戻すことを特徴とする。 (4),高炉炉底側壁のレンガと粘稠層合計の残存厚み
を一箇所または複数箇所で測定または計算し、残存厚み
が基準値以下に低下した場合に、羽口の送風量を支管風
量制御弁によって調節することを特徴とする高炉操業
法。
(3) The air flow rate of the tuyere is adjusted by the method of (1) or (2), and when the heat flux falls below the reference value, the air flow rate of each tuyere is adjusted by the branch air flow rate control valve. Is returned to be substantially the same value. (4) Measure or calculate the remaining thickness of the brick and viscous layer total at one or more locations on the bottom wall of the blast furnace, and when the remaining thickness falls below the reference value, determine the airflow from the tuyere A blast furnace operating method characterized by adjusting by a control valve.

【0012】(5),(4)において、残存厚みが基準
値以下に低下した箇所の円周方向の角度で少なくとも±
30゜以内に位置する羽口の内、一本または複数本の羽
口の送風量を支管風量制御弁によって調節することを特
徴とする。 (6),(4)、(5)の方法で羽口の送風量を調節し
て、残存厚みが基準値超に上昇した場合に、支管風量制
御弁によって各羽口の送風量をほぼ同じ値になるように
戻すことを特徴とする。
[0012] In (5) and (4), at least ±± the angle in the circumferential direction of the location where the remaining thickness is reduced below the reference value.
The air flow rate of one or more of the tuyeres located within 30 ° is adjusted by a branch pipe air flow control valve. (6) The air flow rate of the tuyere is adjusted by the methods of (4) and (5), and when the remaining thickness rises above the reference value, the air flow rate of each tuyere is substantially the same by the branch pipe air flow control valve. It is characterized by returning to a value.

【0013】(7),高炉炉底中心位置での炉内から炉
外方向への熱流束を測定または計算し、熱流束が基準値
以下に下降した場合に、羽口の送風量を支管風量制御弁
によって調節することを特徴とする。 (8),高炉炉底中心位置での炉内から炉外方向への熱
流束を測定または計算し、熱流束が基準値以下に下降し
た場合に、炉底側壁部のレンガと粘稠層合計の残存厚み
が、過去に基準値以下となった箇所の上部の羽口の送風
量を支管風量制御弁によって調節することを特徴とす
る。
(7) The heat flux from the inside of the furnace to the outside of the furnace at the center position of the blast furnace hearth is measured or calculated, and when the heat flux falls below the reference value, the amount of air blown from the tuyere is changed to the branch air flow. It is characterized by being adjusted by a control valve. (8) Measure or calculate the heat flux from the inside of the furnace to the outside of the furnace at the center of the blast furnace bottom, and when the heat flux falls below the reference value, the total of the brick and viscous layer on the side wall of the furnace bottom Is characterized in that the amount of air blown through the tuyere above the portion where the remaining thickness has become equal to or less than the reference value in the past is adjusted by the branch pipe air volume control valve.

【0014】(9),高炉炉底中心位置での炉内から炉
外方向への熱流束を測定または計算し、熱流束が基準値
以下に下降した場合に、炉底側壁部のレンガと粘稠層合
計の残存厚みが相対的に薄くなっている箇所、または残
存厚みの減少速度が大きい箇所の上部の羽口の送風量を
支管風量制御弁によって調節することを特徴とする。 (10),(7)〜(9)のいずれかに記載の方法で羽
口の送風量を調節して、高炉炉底中心位置での炉内から
炉外方向への熱流束が基準値超に上昇した場合に、支管
風量制御弁によって各羽口の送風量をほぼ同じ値になる
ように戻すことを特徴とする。
(9) The heat flux from the inside of the furnace to the outside of the furnace at the center position of the blast furnace bottom is measured or calculated. The amount of air blown to the upper tuyere at a location where the total thickness of the dense layer is relatively thin or at a location where the rate of reduction of the remaining thickness is large is adjusted by a branch pipe air volume control valve. (10) The flow rate of the tuyere is adjusted by the method described in any one of (7) to (9), and the heat flux from the inside of the furnace to the outside of the furnace at the center position of the blast furnace bottom exceeds the reference value. In this case, when the air flow rate rises, the air flow rate of each tuyere is returned to substantially the same value by the branch air flow rate control valve.

【0015】[0015]

【発明の実施の形態】従来の炉底側壁部のレンガに挿入
した熱電対先端のレンガ温度を検知し、該温度が下限レ
ンガ残存厚みに対応する温度上限値を越えた場合に、炉
底側壁部のレンガ損耗が進行していると判断する方法に
対して、本発明法は、炉底側壁部のレンガ損耗状態を早
期かつ精度良く検知して、炉底側壁部レンガの損耗前あ
るいはレンガ損耗の初期段階で炉底側壁部のレンガ損耗
を抑制するものである。炉底側壁部のレンガ損耗状態を
早期かつ精度良く検知する方法にはいくつかの方法があ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The temperature of a brick at the tip of a thermocouple inserted into a brick on a conventional furnace bottom side wall is detected, and when the temperature exceeds a temperature upper limit value corresponding to a lower limit brick remaining thickness, a furnace bottom side wall is detected. In contrast to the method of judging that the brick wear of the furnace part is progressing, the method of the present invention detects the brick wear state of the furnace bottom side wall at an early stage with high accuracy, and before the furnace bottom side wall brick is worn or the brick wear state. In the initial stage of the above, brick wear on the furnace bottom side wall is suppressed. There are several methods for early and accurate detection of the brick wear state on the furnace bottom side wall.

【0016】一番目の方法は、高炉の炉底側壁部の炉内
から炉外への熱流束を測定または計算する方法である。
熱流束とは単位面積あたり単位時間あたりの熱の移動量
(kW/m2)であり、下記(1)式で定義される。 Q = ΔT×λ/L ・・・・(1) ここで、Qは熱流束(kW/m2) ΔTは2点間の温度差(℃) λは2点間の物質の熱伝導率(kW/(m・K)) Lは2点間の距離(m) である。
The first method is a method of measuring or calculating the heat flux from inside the furnace to outside the furnace on the bottom wall of the blast furnace.
Heat flux is the amount of heat transfer per unit area per unit time
(kW / m 2 ) and is defined by the following equation (1). Q = ΔT × λ / L (1) where Q is the heat flux (kW / m 2 ), ΔT is the temperature difference between two points (° C.), and λ is the thermal conductivity of the material between the two points ( kW / (m · K)) L is the distance (m) between two points.

【0017】一次元定常伝熱解析により、夏場と冬場の
冷却水温度の差異による熱電対先端のレンガ温度の変化
と同じ位置での熱流束の変化、および、スタンプ材の劣
化前後における熱電対先端のレンガ温度の変化と同じ位
置での熱流束の変化を比較する。基礎式を下記(2)式に
示す。 d2 T/dx2 = 0 ・・・・(2) ここで、Tは温度(℃) xは位置(m) である。
According to the one-dimensional steady-state heat transfer analysis, the change in heat flux at the same position as the change in the brick temperature at the tip of the thermocouple due to the difference in the cooling water temperature between summer and winter, and the tip of the thermocouple before and after the deterioration of the stamp material Compare the change in heat flux at the same position with the change in brick temperature. The basic formula is shown in the following formula (2). d 2 T / dx 2 = 0 (2) where T is a temperature (° C.) x is a position (m).

【0018】図1に計算例における境界条件を示す。鉄
皮、スタンプ材、レンガ、粘稠層の厚みをそれぞれ60m
m,100mm,700mm,100mmと仮定し、熱電対のレンガ挿入位
置をレンガ外表面から150mmの位置と仮定した。なお、
鉄皮、スタンプ材、レンガ、粘稠層の熱伝導率について
は、それぞれ6、16、29、52(W/(m ・K))と仮定した。粘
稠層の炉内側温度は1150℃と仮定し、冷却水温度は30
℃、35℃、25℃と仮定して計算した。スタンプ材の劣化
の影響については、スタンプ材と鉄皮の間の1mmの間隙
が生じたと仮定して計算した。
FIG. 1 shows boundary conditions in a calculation example. The thickness of steel skin, stamp material, brick, viscous layer is 60m each
m, 100 mm, 700 mm, and 100 mm, and the brick insertion position of the thermocouple was assumed to be 150 mm from the outer surface of the brick. In addition,
The thermal conductivity of the iron shell, stamp material, brick, and viscous layer was assumed to be 6, 16, 29, and 52 (W / (m · K)), respectively. The inside temperature of the viscous layer is assumed to be 1150 ° C, and the cooling water temperature is 30 ° C.
Calculation was performed assuming that the temperature was 35 ° C, 35 ° C, and 25 ° C. The effect of the deterioration of the stamp material was calculated on the assumption that a gap of 1 mm occurred between the stamp material and the steel.

【0019】[0019]

【表1】 [Table 1]

【0020】表1に一次元定常伝熱解析結果を示す。表
から明らかなように、夏場(35℃)と冬場(25℃)の冷
却水温度差によるレンガ温度T2の相対変化の絶対値
は、2.4%(=|(297-290)/290×100|)、熱流束の相対変
化の絶対値は、0.9%(=|(16.71-16.86)/16.86×100|)
と、熱流束の相対変化の絶対値はレンガ温度の相対変化
の絶対値に比べて小さく、熱流束でレンガ損耗状態を検
知・管理するほうが誤差が小さい。
Table 1 shows the results of the one-dimensional steady-state heat transfer analysis. As apparent from Table, the absolute value of the relative change in the brick temperature T 2 by the cooling water temperature difference summer (35 ° C.) and winter (25 ℃), 2.4% ( = | (297-290) / 290 × 100 |), The absolute value of the relative change in heat flux is 0.9% (= | (16.71-16.86) /16.86×100 |)
The absolute value of the relative change of the heat flux is smaller than the absolute value of the relative change of the brick temperature, and the error is smaller when detecting and managing the brick wear state with the heat flux.

【0021】さらに、スタンプ材と鉄皮の間に1mmの間
隙が生じた場合のレンガ温度の相対変化の絶対値は、9
0.1%(=|(557-293)/293×100|)、熱流束の相対変化
は、30.8%(=|(11.62-16.78)/16.78×100|)と、熱流
束の相対変化はレンガ温度の相対変化に比べて圧倒的に
小さく、熱流束でレンガ損耗状態を検知・管理するほう
が誤差が小さい。
Further, when a gap of 1 mm is formed between the stamp material and the steel bar, the absolute value of the relative change in the brick temperature is 9
0.1% (= | (557-293) / 293 × 100 |), relative change of heat flux is 30.8% (= | (11.62-16.78) /16.78×100 |), and relative change of heat flux is brick temperature It is overwhelmingly small compared to the relative change of, and the error is smaller when detecting and managing the brick wear state with the heat flux.

【0022】さらに最も重要なことは、熱流束で判断す
る場合には、粘稠層の成長かスタンプ材の劣化の影響と
容易に推定できるため、間違って炉底側壁部のレンガ損
耗の抑制対策を実施することがないことである。しか
し、温度で判断する場合には、炉内側の影響すなわちレ
ンガ損耗の影響かスタンプ材劣化の影響かを容易に判断
することはできず、炉底側壁部レンガの保護という安全
サイドの立場から、過剰なレンガ損耗抑制対策(例えば
燃料比上昇、臨時休風、減風、羽口の盲化、ほか)を実
施する可能性があり、その場合には大幅な減産や操業変
動を招く可能性がある。
More importantly, when judging from the heat flux, the influence of the growth of the viscous layer or the deterioration of the stamp material can be easily estimated. Is not implemented. However, when judging from the temperature, it is not possible to easily judge the effect of the inside of the furnace, that is, the effect of brick wear or the effect of stamp material deterioration, and from the standpoint of the safety side of protecting the furnace bottom side wall brick, Measures to control excessive brick wear (eg, increase in fuel ratio, temporary shutoff, wind reduction, blindness of tuyere, etc.) may be implemented, which may result in significant reduction in production and operational fluctuations. is there.

【0023】次に、一次元非定常伝熱解析により、炉内
のステップ応答的変化に対する熱流束と温度の時間変化
を比較する。基礎式を下記(3)式に示す。 ∂T/∂t = α・∂2 T/∂x2 ・・・・(3) ここで、Tは温度(℃) xは位置(m) tは時間(h) αは温度伝導率(m2 /h) である。本計算時には、ある時点で粘稠層が剥離して、
レンガ表面が1150℃になったと仮定し、その時点からの
炉底側壁部の熱流束と温度の変化を計算した。
Next, a one-dimensional unsteady heat transfer analysis is used to compare the time change of the heat flux and the temperature with respect to the step response change in the furnace. The basic equation is shown in the following equation (3). ∂T / ∂t = α∂ 2 T / ∂x 2 (3) where T is temperature (° C) x is position (m) t is time (h) α is temperature conductivity (m 2 / h). At the time of this calculation, at some point the viscous layer peeled off,
Assuming that the brick surface reached 1150 ° C, the change of heat flux and temperature at the bottom wall of the furnace from that point was calculated.

【0024】図2に示すように、熱流束の時間微分値は
温度の時間微分値に比べ、約1時間早い時期から急激に
上昇している。したがって熱流束で判断する場合には、
前述したレンガ厚みの損耗状態の推定精度の良さに加え
て、温度に比べて早期にレンガ厚みの損耗状態を検知で
きることがわかる。なお、熱流束を測定する手段として
は、熱流束計により測定する方法、炉底側壁のレンガ内
の半径方向に挿入した深度の異なる熱電対先端の温度か
ら計算する方法等がある。熱流束計については、鉄皮だ
けでなく、レンガ外表面あるいはレンガ内に埋め込むこ
とも可能である。
As shown in FIG. 2, the time derivative of the heat flux rises sharply from about one hour earlier than the time derivative of the temperature. Therefore, when judging by heat flux,
It can be seen that, in addition to the good estimation accuracy of the brick thickness wear state described above, the brick thickness wear state can be detected earlier than the temperature. As means for measuring the heat flux, there are a method of measuring with a heat flux meter, a method of calculating from the temperatures of thermocouple tips of different depths inserted in the brick in the furnace bottom side wall in the radial direction, and the like. The heat flux meter can be embedded not only in the steel skin but also in the outer surface of the brick or in the brick.

【0025】熱流束が基準値以上に上昇した場合には、
熱流束が基準値以上に上昇した箇所の円周方向の角度で
少なくとも±30゜以内に位置する羽口の内、一本また
は複数本の羽口の送風量を相対的に低下させる。その方
法としては、前記箇所の羽口の支管風量制御弁の開度を
小さくするか、または前記箇所以外の羽口の支管風量制
御弁の開度を大きくするか、何れかの処置をとることに
よって送風量を調整する。上記方法により、熱流束が基
準値未満になった場合には、支管風量制御弁により各羽
口の送風量をほぼ同じ値となるように調節して通常操業
に戻す。
If the heat flux rises above the reference value,
Among the tuyeres located within at least ± 30 ° of the circumferential angle of the place where the heat flux has risen to the reference value or more, the blowing amount of one or more tuyeres is relatively reduced. As the method, either the opening degree of the tuyere air flow control valve at the tuyere at the location is reduced, or the opening degree of the branch pipe air flow control valve at the tuyere at a location other than the location is increased. Adjust the air volume by using According to the above method, when the heat flux becomes less than the reference value, the flow rate of each tuyere is adjusted to be substantially the same value by the branch air flow control valve, and the operation is returned to the normal operation.

【0026】二番目の方法は、高炉炉底側壁のレンガと
粘稠層合計の残存厚みを測定または計算する方法であ
る。粘稠層とは炉内側の凝固層のことであり、伝熱計算
上では1100℃〜1200℃の炉内温度より決定される。な
お、残存厚みを測定する手段としては、弾性波により測
定する方法、炉底側壁のレンガ内の半径方向に挿入した
深度の異なる熱電対先端の温度差から計算する方法があ
る。
The second method is to measure or calculate the remaining thickness of the total of the brick and the viscous layer on the bottom wall of the blast furnace. The viscous layer is a solidified layer inside the furnace, and is determined from the temperature in the furnace of 1100 ° C to 1200 ° C in the heat transfer calculation. As a means for measuring the residual thickness, there are a method of measuring by an elastic wave and a method of calculating from a temperature difference between thermocouple tips at different depths inserted in the brick in the furnace bottom side wall in the radial direction.

【0027】残存厚みが基準値以下に低下する場合に
は、残存厚みが基準値以下に低下した箇所の円周方向の
角度で±30゜以内に位置する羽口の内、一本または複
数本の羽口の送風量を相対的に低下させる。その方法と
しては、前記箇所の羽口の支管風量制御弁の開度を小さ
くするか、または前記箇所以外の羽口の支管風量制御弁
の開度を大きくするか、何れかの処置をとることによっ
て送風量を調整する。上記方法により、残存厚みが基準
値超に上昇した場合には、支管風量制御弁により各羽口
の送風量がほぼ同じ値となるように調整して通常操業に
戻す。
When the remaining thickness falls below the reference value, one or more of the tuyeres located within ± 30 ° of the circumferential angle of the place where the remaining thickness falls below the reference value. Of the tuyere is relatively reduced. As the method, either the opening degree of the tuyere air flow control valve at the tuyere at the location is reduced, or the opening degree of the branch pipe air flow control valve at the tuyere at a location other than the location is increased. Adjust the air volume by using When the remaining thickness rises above the reference value by the above method, the flow rate of each tuyere is adjusted by the branch air flow rate control valve to be substantially the same value, and the operation is returned to the normal operation.

【0028】三番目の方法は、高炉炉底中心位置での炉
内から炉外方向への熱流束を測定または計算する方法で
ある。この方法では、高炉炉底中心の炉内から炉外方向
への熱流束が低位レベルで推移した後には炉底側壁部の
レンガ温度が上昇するという従来の知見に基づき、高炉
炉底中心位置の炉内から炉外方向への熱流束から1〜3
ヶ月後の炉底側壁のレンガ損耗状態を事前に予測する。
なお、熱流束を測定する手段としては、レンガ外表面あ
るいはレンガ内に埋め込んだ熱流束計により測定する方
法、炉底中心のレンガ内の深さ方向に挿入した深度の異
なる熱電対先端の温度差から計算する方法がある。
The third method is a method of measuring or calculating the heat flux from the inside of the furnace to the outside of the furnace at the center of the blast furnace bottom. In this method, based on the conventional knowledge that the brick temperature on the bottom wall of the furnace rises after the heat flux from the inside of the furnace at the center of the blast furnace bottom to the outside of the furnace changes at a low level, 1 to 3 from the heat flux from inside the furnace to outside the furnace
Predict the state of brick wear on the bottom wall after a month.
As a means for measuring the heat flux, a method of measuring with a heat flux meter embedded in the outer surface of the brick or in the brick, a temperature difference between thermocouple tips of different depths inserted in the depth direction in the brick at the center of the furnace bottom. There is a method to calculate from.

【0029】熱流束が基準値以下に下降する場合には、
炉底側壁部のレンガと粘稠層合計の残存厚みが過去に基
準値以下となった箇所、または、炉底側壁部のレンガの
残存厚みまたはレンガと粘稠層合計の残存厚みが相対的
に薄くなっている箇所、または、残存厚みの減少速度が
大きい箇所、これらの何れかの箇所の上部の羽口の送風
量を低下させる。その方法としては、前記箇所の羽口の
支管風量制御弁の開度を小さくするか、または前記箇所
以外の羽口の支管風量制御弁の開度を大きくするか、何
れかの処置をとることによって送風量を調整する。上記
方法により、炉底中心位置での炉内から炉外への熱流束
が基準値超に上昇した場合には、支管風量制御弁により
各羽口の送風量がほぼ同じ値となるように調整して通常
操業に戻す。
When the heat flux falls below the reference value,
Where the residual thickness of the brick and viscous layer total on the hearth side wall part was below the reference value in the past, or the residual thickness of the brick on the hearth side wall part or the residual thickness of the brick and viscous layer total is relatively It reduces the amount of air blown from the tuyere above the thinner part, the part where the remaining thickness decreases at a high rate, or any of these parts. As the method, either the opening degree of the tuyere air flow control valve at the tuyere at the location is reduced, or the opening degree of the branch pipe air flow control valve at the tuyere at a location other than the location is increased. Adjust the air volume by using According to the above method, when the heat flux from the inside of the furnace to the outside of the furnace at the center of the furnace bottom rises above the reference value, the blower air flow control valve adjusts the flow rate of each tuyere to substantially the same value. And return to normal operation.

【0030】[0030]

【実施例】以下、図面に示す実施例に基づいて具体的に
説明する。 (実施例1)内容積が3000m3級で羽口数が29本の中型高
炉において、高炉炉底側壁部における炉内から炉外方向
への熱流束を6箇所で測定し、ある箇所の熱流束の時間
微分値が急上昇すると同時に熱流束が上昇し基準値の13
00W/m2以上になった。そこで、炉底側壁部のレンガ損耗
が進行すると予測し、熱流束が基準値以上に上昇した箇
所の円周方向の角度で±30゜以内に位置する羽口の送
風量を、送風支管に設置した支管風量制御弁により制御
を開始した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a specific description will be given based on embodiments shown in the drawings. (Example 1) 29 pieces of medium-sized blast furnace wings talkative in internal volume of 3000 m 3 grade, the heat flux from the furnace in the blast furnace bottom side wall portion to the outside the furnace direction measured at six locations, the heat flux of a portion The heat flux rises at the same time as the time derivative of
00W / m 2 or more. Therefore, it is predicted that brick wear on the bottom wall of the furnace will progress, and the amount of air blown from tuyeres located within ± 30 ° in the circumferential angle of the place where the heat flux has risen above the reference value will be installed in the blower branch pipe. The control was started by the branch pipe air flow control valve.

【0031】図3に示すように、熱流束が基準値以上に
上昇した箇所の円周方向の角度で±30゜以内に位置す
る5箇所の羽口の送風量を、全周の支管風量制御弁の調
整により、送風量を羽口数で除した平均羽口送風量を10
0%とした相対羽口送風量で70%以下になるように制御し
た。なお、円周方向の角度で±30゜以内に位置する羽
口数は高炉の全羽口数(高炉の内容積によって異なる)
の内、本高炉の場合には5箇所であった。
As shown in FIG. 3, the flow rate of air from the five tuyeres located within ± 30 ° in the circumferential direction at the point where the heat flux has risen to the reference value or more is determined by controlling the air flow in the branch pipe over the entire circumference. By adjusting the valve, the average amount of tuyere blown by dividing the amount of blown air by the number of tuyeres is 10
Control was performed so that the relative tuyere ventilation rate was 0% or less and 70% or less. The number of tuyeres located within ± 30 ° of the circumferential angle is the total number of tuyeres in the blast furnace (depending on the internal volume of the blast furnace)
Of the blast furnaces, five were found.

【0032】このアクションを1週間続けた後に高炉炉
底側壁の熱流束が低下し始め、10日後には基準値以下に
なった。さらに5日経過した後に、上昇箇所上部の5箇
所の羽口の相対羽口送風量を80%になるように支管風量
制御弁により制御し、さらに5日経過した後に、上昇箇
所上部の5箇所の羽口の相対羽口送風量を90%になるよ
うに支管風量制御弁により制御し、さらに10日経過した
後に、上昇箇所上部の5箇所の羽口の相対羽口送風量を
100%に戻した。結果的には、炉底側壁部の熱流束が上昇
し基準値以上になった時点から30日後には、炉底側壁部
の熱流束が沈静化しほぼ元のレベルに戻った。
After this action was continued for one week, the heat flux on the bottom wall of the blast furnace started to decrease, and after 10 days, it fell below the reference value. After a further 5 days, the relative tuyere airflow of the five tuyeres at the top of the ascending point is controlled by the branch pipe airflow control valve so as to be 80%. The tuyere's relative tuyere airflow is controlled by the branch pipe airflow control valve so that the tuyere's relative tuyere airflow becomes 90%.
Returned to 100%. As a result, 30 days after the heat flux at the furnace bottom side wall increased and exceeded the reference value, the heat flux at the furnace bottom side wall calmed down and returned to almost the original level.

【0033】図4には従来法、すなわち、炉底側壁部の
レンガに挿入した熱電対の先端位置(通常の挿入深度:
50〜100mm)でのレンガ温度を測定し、その温度測定値
が事前に設定された上限値に近づいた場合、あるいは上
限値を越えた場合に、上述した炉底側壁部レンガの損耗
を抑制する対策を実施した場合を示したが、温度測定値
の精度上の問題および感度上の問題から、レンガ損耗の
抑制対策の実施が、本発明法を実施した場合に比べて、
数時間から時には1日も遅れることがある。このレンガ
損耗の抑制対策の実施の遅れは、炉底側壁部のレンガ損
耗の進行に致命的な影響を及ぼす可能性がある。
FIG. 4 shows a conventional method, that is, the position of the tip of a thermocouple inserted into a brick on the side wall of the furnace bottom (normal insertion depth:
Measure the brick temperature at 50 to 100 mm), and if the measured temperature approaches the upper limit set in advance or exceeds the upper limit, suppress the above-described wear of the furnace bottom side wall brick. Although the case where the countermeasure was implemented was shown, the implementation of the measure for suppressing the brick abrasion is more difficult than the case where the method of the present invention is implemented due to the problem of accuracy and sensitivity of the temperature measurement value.
It can be as late as a few hours to an entire day. The delay in the implementation of the measures for suppressing brick wear may have a fatal effect on the progress of brick wear on the furnace bottom side wall.

【0034】(実施例2)内容積が4000m3級で羽口数が
35本の火入れ以降11年を経過した大型高炉において、高
炉炉底側壁の粘稠層を含んだ残存厚みを4箇所で測定
し、ある箇所の残存厚みが基準値の700mm以下になっ
た。そこで、炉底側壁部のレンガ損耗が進行すると予測
し、残存厚みが基準値以下に低下した箇所の円周方向の
角度で±30゜以内に位置する羽口の送風量を、送風支
管に設置した支管風量制御弁により制御を開始した。
[0034] (Example 2) internal volume is feather number of units in the tertiary 4000m
In a large blast furnace 11 years after 35 burns, the residual thickness including the viscous layer on the bottom wall of the blast furnace was measured at four locations, and the residual thickness at one location was below the standard value of 700 mm. Therefore, it is predicted that brick wear on the bottom wall of the furnace will progress, and the amount of air from the tuyere located within ± 30 ° in the circumferential angle of the place where the remaining thickness has fallen below the reference value will be installed in the air duct. The control was started by the branch pipe air flow control valve.

【0035】図5に示すように、円周方向の角度で±3
0゜以内に位置する6箇所の羽口の送風量を、送風量を
羽口数で除した平均羽口送風量を100%とした相対羽口送
風量で70%以下になるように支管風量制御弁により制御
した。なお、残存厚みが基準値以下に低下した箇所の円
周方向の角度で±30゜以内に位置する羽口数は高炉の
全羽口数(高炉の内容積によって異なる)の内、本高炉
の場合には6箇所であった。
As shown in FIG. 5, the angle in the circumferential direction is ± 3.
Blower air volume control so that the relative volume of the tuyere is less than 70% with the average volume of the tuyere divided by the number of tuyeres being 100% of the volume of air from six tuyeres located within 0 ° Controlled by a valve. The number of tuyeres within ± 30 ° of the circumferential angle of the place where the remaining thickness has dropped below the reference value is the total number of tuyeres in the blast furnace (depending on the internal volume of the blast furnace), Were six places.

【0036】このアクションを1週間続けた後に該残存
厚み低下箇所の残存厚みが上昇し始め、10日後には基準
値以上になった。さらに5日経過した後に、該残存厚み
低下箇所上部の6箇所の羽口の相対羽口送風量を80%に
なるように支管風量制御弁により制御し、さらに5日経
過した後に、該残存厚み低下箇所の6箇所の羽口の相対
羽口送風量を90%になるように支管風量制御弁により制
御し、さらに10日経過した後に、該残存厚み低下箇所上
部の6箇所の羽口の相対羽口送風量を100%に戻した。結
果的には、高炉炉底側壁の粘稠層を含んだ残存厚みが低
下し基準値以下になった時点から30日後には、高側壁部
の粘稠層を含んだ残存厚みがほぼ元のレベルに戻った。
After this action was continued for one week, the remaining thickness of the portion where the remaining thickness was reduced started to increase, and after 10 days, the value exceeded the reference value. After a further 5 days, the relative tuyere airflow of the six tuyeres above the remaining thickness-reduced portion was controlled by a branch pipe airflow control valve so as to be 80%. The relative amount of the tuyere at the six points at the lowered point is controlled by a branch pipe air flow control valve so as to be 90%. The tuyere blowing volume was returned to 100%. As a result, 30 days after the residual thickness including the viscous layer on the bottom wall of the blast furnace decreased below the reference value, the residual thickness including the viscous layer on the high side wall portion was almost the original. Back to level.

【0037】(実施例3)内容積が5000m3級で羽口数が
38本の大型高炉において、高炉炉底中心位置での炉内か
ら炉外方向への熱流束を1箇所で測定し、該熱流束が基
準値の700W/m2 以下になった。その時点から1ヶ月後に
は高炉炉底に粘稠層が発達して、炉底部での溶融体の流
れが環状流に向かう危険があると判断した。炉底部での
溶融体の流れが環状流に向かえば、炉底側壁部のレンガ
損耗が進行すると予測し、炉底側壁の粘稠層を含んだ残
存厚みが過去に基準値以下になった箇所の上部の3箇所
の羽口の送風量を、送風支管に設置した支管風量制御弁
により調整した。
(Example 3) The inner volume is 5000m 3 class and the number of tuyeres
In 38 large blast furnaces, the heat flux from the inside of the furnace to the outside of the furnace at the center of the blast furnace bottom was measured at one point, and the heat flux was below the standard value of 700 W / m 2 . One month after that point, it was determined that a viscous layer had developed on the bottom of the blast furnace, and there was a danger that the flow of the melt at the bottom of the furnace would flow toward the annular flow. If the flow of the melt at the bottom of the furnace goes to the annular flow, it is predicted that brick wear on the bottom wall of the furnace will progress, and where the remaining thickness including the viscous layer on the bottom wall of the furnace has fallen below the reference value in the past. The air flow rate of the three tuyeres at the upper part was adjusted by a branch air flow control valve installed on the air blow branch pipe.

【0038】具体的には、図6に示すように、送風量を
羽口数で除した平均羽口送風量を100%とした相対羽口送
風量で70%以下になるように支管風量制御弁により調整
した。このアクションを実施した時点から20日経過後に
まず炉底中心の熱流束が上昇し始め、さらに10日後には
基準値以上になった。そして、その時点で一旦上昇し始
めた炉底側壁部の熱流束も低下し始めた。
More specifically, as shown in FIG. 6, the relative tuyere airflow control valve is set so that the average tuyere airflow obtained by dividing the airflow by the number of tuyeres is 100% and the relative tuyere airflow control valve is 70% or less. Adjusted by Twenty days after the action was taken, the heat flux at the center of the hearth first started to increase, and after 10 days, it exceeded the standard value. Then, at that time, the heat flux of the furnace bottom side wall, which once started rising, also started to fall.

【0039】さらに10日経過した後に、粘稠層を含んだ
残存厚みが過去に基準値以下になった箇所の上部の2な
いし3箇所の上部の羽口の相対羽口送風量を80%になる
ように支管風量制御弁により調整し、さらに10日経過し
た後に、粘稠層を含んだ残存厚みが過去に基準値以下に
なった箇所の上部の2ないし3箇所の上部の羽口の相対
羽口送風量を100%に戻した。結果的には、炉底中心の炉
内から炉外方向への熱流束が低下し基準値以下になった
時点から50日後には、炉底中心の炉内から炉外方向への
熱流束が上昇しほぼ元のレベルに戻った。
After a lapse of 10 days, the relative tuyere ventilation rate of the upper two or three tuyeres above the places where the residual thickness including the viscous layer became below the reference value in the past was reduced to 80%. It is adjusted by a branch pipe air flow control valve so that after 10 days, the relative thickness of the upper two or three upper tuyeres of the upper part where the residual thickness including the viscous layer has become below the reference value in the past. The tuyere blowing volume was returned to 100%. As a result, 50 days after the heat flux from the inside of the furnace at the center of the hearth to the outside of the furnace fell below the reference value, the heat flux from the inside of the furnace at the center of the hearth to the outside of the furnace decreased. It rose and returned to almost its original level.

【0040】本発明法を実施した場合と、従来法、すな
わち、炉底側壁部のレンガに挿入した熱電対の先端位置
(通常の挿入深度:50〜100mm)でのレンガ温度を測定
し、その温度測定値が事前に設定された上限値に近づい
た場合、あるいは上限値を越えた場合に、上述した炉底
側壁部レンガの損耗を抑制する対策を実施した場合の炉
底側壁部のレンガ温度の変化を図7に示した。
When the method of the present invention was carried out, the temperature of the brick at the tip position (normal insertion depth: 50 to 100 mm) of the thermocouple inserted into the brick on the bottom wall of the furnace was measured by the conventional method. When the temperature measurement value approaches the upper limit set in advance, or when the temperature exceeds the upper limit, the brick temperature of the bottom wall of the hearth when the above-described measures to suppress the wear of the bottom wall of the hearth are performed. Are shown in FIG.

【0041】本発明法実施の場合には、従来法実施時に
比べて、炉底側壁部のレンガ損耗状況を早期に予測して
いるため、対策の実施時期が早くなっている。そのた
め、炉底側壁部のレンガ温度の上昇レベルが小さく、し
かも対策実施後の炉底側壁部のレンガ温度の元のレベル
への低下時間も、従来法実施時に比べて、短くなってい
る。
In the case of implementing the method of the present invention, since the state of brick wear on the bottom wall of the furnace is predicted earlier than in the case of implementing the conventional method, the time for implementing the measures is earlier. For this reason, the rise level of the brick temperature on the furnace bottom side wall is small, and the time required for the brick temperature on the furnace bottom side wall to fall to the original level after the countermeasure is taken is shorter than in the conventional method.

【0042】(実施例4)内容積が5000m3級で羽口数が
38本の大型高炉において、高炉炉底中心位置での炉内か
ら炉外方向への熱流束を1箇所で測定し、該熱流束が基
準値の700W/m2 以下になった。そこでその時点から1ヶ
月後には、高炉炉底に粘稠層が発達して、炉底部での溶
融体の流れが環状流に向かう危険があると判断した。炉
底部での溶融体の流れが環状流に向かえば、炉底側壁部
のレンガ侵食が進行すると予測し、炉底側壁の粘稠層を
含んだ残存厚みが現時点で相対的に薄くなっている箇所
で、最小および2番目、3番目に小さい箇所の上部の羽
口の送風量を、送風支管に設置した支管風量制御弁によ
り調整した。
[0042] (Example 4) internal volume is feather number of units in the tertiary 5000m
In 38 large blast furnaces, the heat flux from the inside of the furnace to the outside of the furnace at the center of the blast furnace bottom was measured at one point, and the heat flux was below the standard value of 700 W / m 2 . One month after that point, it was determined that a viscous layer had developed at the bottom of the blast furnace, and there was a danger that the flow of the melt at the bottom of the furnace would flow toward the annular flow. If the flow of the melt at the bottom of the furnace goes to an annular flow, it is predicted that brick erosion on the bottom wall of the furnace will progress, and the remaining thickness including the viscous layer on the bottom wall of the furnace is relatively thin at the moment. The airflow at the upper tuyere at the minimum and second and third smallest locations was adjusted by a branch pipe airflow control valve installed in the ventilation branch pipe.

【0043】図8に示すように、送風量を羽口数で除し
た平均羽口送風量を100%とした相対羽口送風量で70%以
下になるように支管風量制御弁により調整した。このア
クションを実施した20日経過後には、まず炉底中心の熱
流束が上昇し始め、さらに10日後には基準値以上になっ
た。そしてその時点で、一旦上昇し始めた炉底側壁部の
熱流束も低下し始めた。
As shown in FIG. 8, the relative tuyere airflow was adjusted by the branch airflow control valve so that the relative tuyere airflow was 70% or less, with the average airflow being the airflow divided by the number of tuyeres being 100%. Twenty days after this action was taken, the heat flux in the center of the hearth began to rise first, and after 10 days, exceeded the standard value. At that time, the heat flux on the bottom wall of the furnace, which had once started to rise, also began to fall.

【0044】さらに10日経過した後に、粘稠層を含んだ
残存厚みが現時点で相対的に薄くなっている箇所で、最
小および2番目、3番目に小さい箇所の上部の相対羽口
送風量を80%になるように支管風量制御弁により制御
し、さらに10日経過した後に、上記した箇所すなわち、
残存厚みが最小および2番目、3番目に小さい箇所の上
部の相対羽口送風量を100%に戻した。結果的には、炉底
中心の炉内から炉外方向への熱流束が低下し基準値以下
になった時点から50日後には、炉底中心の炉内から炉外
方向への熱流束が上昇しほぼ元のレベルに戻った。
After a further 10 days have passed, at the point where the remaining thickness including the viscous layer is relatively thin at the present time, the relative tuyere airflow at the top of the minimum, second and third smallest points is calculated. It is controlled by the branch pipe air flow control valve so that it becomes 80%, and after further 10 days,
The relative tuyere blow rate at the top of the portion where the remaining thickness was the smallest and the second and third smallest was returned to 100%. As a result, 50 days after the heat flux from the inside of the furnace at the center of the hearth to the outside of the furnace fell below the reference value, the heat flux from the inside of the furnace at the center of the hearth to the outside of the furnace decreased. It rose and returned to almost its original level.

【0045】本発明法を実施した場合と、従来法、すな
わち、炉底側壁部のレンガに挿入した熱電対の先端位置
(通常の挿入深度:50〜100mm)でのレンガ温度を測定
し、その温度測定値が事前に設定された上限値に近づい
た場合、あるいは上限値を越えた場合に、上述した炉底
側壁部レンガの損耗を抑制する対策を実施した場合の炉
底側壁部のレンガ温度の変化を図9に示した。
When the method of the present invention was carried out, the brick temperature was measured at the tip position (normal insertion depth: 50 to 100 mm) of the thermocouple inserted into the brick on the bottom wall of the furnace. When the temperature measurement value approaches the upper limit set in advance, or when the temperature exceeds the upper limit, the brick temperature of the bottom wall of the hearth when the above-described measures to suppress the wear of the bottom wall of the hearth are performed. 9 is shown in FIG.

【0046】本発明法実施の場合には、従来法実施時に
比べて、炉底側壁部のレンガ損耗状況を早期に予測して
いるため、対策の実施時期が早くなっている。そのた
め、炉底側壁部のレンガ温度の上昇レベルが小さく、し
かも対策実施後の炉底側壁部のレンガ温度の元のレベル
への低下時間も、従来法実施時に比べて、短くなってい
る。
In the case of implementing the method of the present invention, since the state of brick wear on the bottom wall of the furnace is predicted earlier than in the case of implementing the conventional method, the implementation time of the countermeasure is earlier. For this reason, the rise level of the brick temperature on the furnace bottom side wall is small, and the time required for the brick temperature on the furnace bottom side wall to fall to the original level after the countermeasure is taken is shorter than in the conventional method.

【0047】[0047]

【発明の効果】レンガ温度指示値による炉底側壁部のレ
ンガ残存厚みを検知する従来の方法とは異なる本発明法
を用いて、炉底側壁部のレンガの損耗状態を早期かつ精
度良く検知し、レンガ損耗度が大きいまたはレンガ損耗
速度が大きい羽口または複数本の羽口の支管風量制御弁
を調節することにより、レンガ温度を検知して対策を実
施している従来の方法に比べて、炉底側壁部のレンガ損
耗が進行してレンガ温度が大幅に上昇する事態を防止で
きるようになった。その結果、炉底側壁部のレンガ損耗
の抑制対策による長期間にわたる大幅な減産や溶銑コス
トの上昇をもたらす事態を回避できるようになった。
According to the method of the present invention, which is different from the conventional method for detecting the remaining thickness of the bricks on the bottom wall of the furnace based on the indicated brick temperature, the state of wear of the bricks on the bottom wall of the furnace is detected quickly and accurately. By adjusting the branch pipe air flow control valve of a tuyere or a plurality of tuyeres with a high degree of brick wear or a high brick wear rate, compared to the conventional method of detecting brick temperature and taking countermeasures, The situation in which the brick temperature of the furnace bottom side wall portion is greatly increased due to the progress of brick wear can be prevented. As a result, it has become possible to avoid a situation in which a significant reduction in production over a long period of time and an increase in hot metal cost due to measures for suppressing brick wear on the bottom wall of the furnace are taken.

【図面の簡単な説明】[Brief description of the drawings]

【図1】伝熱計算時の境界条件を示す図FIG. 1 is a diagram showing boundary conditions at the time of heat transfer calculation.

【図2】一次元非定常伝熱解析による炉内のステップ応
答的変化に対する熱流束と温度の時間微分値の比較を示
す図
FIG. 2 is a diagram showing a comparison of a time derivative of a heat flux and a temperature with respect to a step response change in a furnace by a one-dimensional transient heat transfer analysis.

【図3】本発明法実施前後のある箇所の炉底側壁部の炉
内から炉外方向への熱流束の推移とアクションを実施し
た羽口の相対羽口送風量の推移を示す図
FIG. 3 is a diagram showing a change in the heat flux from the inside of the furnace to the outside of the furnace at a certain place of the bottom wall of the furnace before and after the method of the present invention is performed, and a change in the relative amount of the tuyere of the tuyere in which the action is performed.

【図4】本発明法実施時と従来法実施時のレンガ損耗抑
制対策実施時期の比較を示す図
FIG. 4 is a diagram showing a comparison between the implementation timings of the brick wear reduction measures when the present invention method is implemented and when the conventional method is implemented.

【図5】本発明法実施前後のある箇所の炉底側壁部の粘
稠層を含んだ残存厚みの推移とアクションを実施した羽
口の相対羽口送風量の推移を示す図
FIG. 5 is a diagram showing a transition of a remaining thickness including a viscous layer of a furnace bottom side wall portion at a certain place before and after the method of the present invention is performed, and a transition of a relative tuyere blowing amount of a tuyere where an action is performed.

【図6】本発明法実施前後の炉底中心の炉内から炉外方
向への熱流束の推移と粘稠層を含んだ残存厚みが過去に
基準値以下になった箇所の上部の羽口の相対羽口送風量
の推移を示す図
FIG. 6 shows the transition of the heat flux from the inside of the furnace to the outside of the furnace at the center of the furnace bottom before and after the method of the present invention and the tuyere at the upper portion where the residual thickness including the viscous layer has become below the reference value in the past. Figure showing changes in relative tuyere airflow

【図7】本発明法実施時と従来法実施時のレンガ損耗抑
制対策実施時期の比較を示す図
FIG. 7 is a diagram showing a comparison between the implementation timing of the brick wear prevention measure when the method of the present invention is performed and the conventional method.

【図8】本発明法実施前後の炉底中心の炉内から炉外方
向への熱流束の推移と粘稠層を含んだ残存厚みが現時点
で最小になった箇所の上部の2箇所の羽口の相対羽口送
風量の推移を示す図
FIG. 8 shows the transition of the heat flux from the inside of the furnace at the center of the furnace bottom to the outside of the furnace before and after the method of the present invention and the two upper blades at the point where the remaining thickness including the viscous layer is currently at a minimum. Diagram showing transition of relative tuyere ventilation volume at the mouth

【図9】本発明法実施時と従来法実施時のレンガ損耗抑
制対策実施時期の比較を示す図
FIG. 9 is a diagram showing a comparison between the implementation timing of the brick wear prevention measure when the method of the present invention is performed and the conventional method.

【符号の説明】[Explanation of symbols]

1.粘稠層 2.レンガ 3.スタンプ材 4.鉄皮 5.熱電対の挿入位置 6.炉内(溶銑、溶滓) 7.散水部 1. 1. viscous layer Brick 3. Stamp material 4. Iron skin 5. 5. Insertion position of thermocouple 6. Furnace (hot metal, slag) Watering section

───────────────────────────────────────────────────── フロントページの続き (72)発明者 熊岡 尚 千葉県君津市君津1番地 新日本製鐵株式 会社君津製鐵所内 (72)発明者 森井 和之 東京都千代田区大手町2−6−3 新日本 製鐵株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Takashi Kumaoka 1 Kimitsu, Kimitsu-shi, Chiba Nippon Steel Corporation Kimitsu Works (72) Inventor Kazuyuki Morii 2-6-3 Otemachi, Chiyoda-ku, Tokyo Nippon Steel Corporation

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 高炉炉底側壁部における炉内から炉外方
向への熱流束を一箇所または複数箇所で測定または計算
し、熱流束が基準値以上に上昇した場合に、羽口の送風
量を支管風量制御弁によって調節することを特徴とする
高炉操業法。
1. Measurement or calculation of the heat flux from the inside of the furnace to the outside of the furnace at the bottom wall of the blast furnace at one or a plurality of places, and when the heat flux rises above a reference value, the amount of air blown from the tuyere Is controlled by a branch pipe air flow control valve.
【請求項2】 熱流束が基準値以上に上昇した箇所の円
周方向の角度で少なくとも±30゜以内に位置する羽口
の内、一本または複数本の羽口の送風量を支管風量制御
弁によって調節することを特徴とする請求項1記載の高
炉操業方法。
2. The air flow control of one or a plurality of tuyeres, among the tuyeres located at least within ± 30 ° of the circumferential angle of the place where the heat flux rises above the reference value, is a branch pipe airflow control. The blast furnace operating method according to claim 1, wherein the blast furnace is adjusted by a valve.
【請求項3】 請求項1または請求項2記載の方法で羽
口の送風量を調節して、熱流束が基準値未満に降下した
場合に、支管風量制御弁によって各羽口の送風量をほぼ
同じ値になるように戻すことを特徴とする高炉操業方
法。
3. A method according to claim 1, wherein the amount of air blown to the tuyere is adjusted by adjusting the amount of air blown to the tuyere when the heat flux falls below a reference value. A blast furnace operation method characterized by returning the values to approximately the same value.
【請求項4】 高炉炉底側壁のレンガと粘稠層合計の残
存厚みを一箇所または複数箇所で測定または計算し、残
存厚みが基準値以下に低下した場合に、羽口の送風量を
支管風量制御弁によって調節することを特徴とする高炉
操業法。
4. A method for measuring or calculating the remaining thickness of the brick and the viscous layer on the bottom wall of the blast furnace at one or a plurality of locations and, when the remaining thickness falls below a reference value, determines the amount of air blown from the tuyere. A blast furnace operating method characterized in that the blast furnace is adjusted by an air flow control valve.
【請求項5】 残存厚みが基準値以下に低下した箇所の
円周方向の角度で少なくとも±30゜以内に位置する羽
口の内、一本または複数本の羽口の送風量を支管風量制
御弁によって調節することを特徴とする請求項4記載の
高炉操業方法。
5. A branch pipe air volume control for one or a plurality of tuyeres, among the tuyeres located at least within ± 30 ° in a circumferential angle of a location where the remaining thickness is reduced below a reference value. The blast furnace operating method according to claim 4, wherein the adjustment is performed by a valve.
【請求項6】 請求項4または請求項5記載の方法で羽
口の送風量を調節して、残存厚みが基準値超に上昇した
場合に、支管風量制御弁によって各羽口の送風量をほぼ
同じ値になるように戻すことを特徴とする高炉操業方
法。
6. A method according to claim 4 or 5, wherein the amount of air blown from each tuyere is adjusted by a branch pipe airflow control valve when the remaining thickness rises above a reference value. A blast furnace operation method characterized by returning the values to approximately the same value.
【請求項7】 高炉炉底中心位置での炉内から炉外方向
への熱流束を測定または計算し、熱流束が基準値以下に
下降した場合に、羽口の送風量を支管風量制御弁によっ
て調節することを特徴とする高炉操業法。
7. A method for measuring or calculating the heat flux from the inside of the furnace to the outside of the furnace at the center position of the blast furnace hearth, and when the heat flux falls below a reference value, adjusts the amount of air blown from the tuyere to a branch pipe air flow control valve. Blast furnace operation method characterized by adjusting by.
【請求項8】 高炉炉底中心位置での炉内から炉外方向
への熱流束を測定または計算し、熱流束が基準値以下に
下降した場合に、炉底側壁部のレンガと粘稠層合計の残
存厚みが、過去に基準値以下となった箇所の上部の羽口
の送風量を支管風量制御弁によって調節することを特徴
とする高炉操業方法。
8. A method for measuring or calculating the heat flux from the inside of the furnace to the outside of the furnace at the center position of the blast furnace bottom, and when the heat flux falls below a reference value, the bricks and the viscous layer on the side wall of the furnace bottom. A method for operating a blast furnace, comprising: adjusting a blowing amount of a tuyere above a portion where a total remaining thickness has become equal to or less than a reference value in the past by a branch pipe air flow control valve.
【請求項9】 高炉炉底中心位置での炉内から炉外方向
への熱流束を測定または計算し、熱流束が基準値以下に
下降した場合に、炉底側壁部のレンガと粘稠層合計の残
存厚みが、相対的に薄くなっている箇所、または残存厚
みの減少速度が大きい箇所の上部の羽口の送風量を支管
風量制御弁によって調節することを特徴とする高炉操業
方法。
9. A method for measuring or calculating the heat flux from the inside of the furnace to the outside of the furnace at the center position of the blast furnace bottom, and when the heat flux falls below a reference value, bricks and a viscous layer on the side wall of the furnace bottom. A method for operating a blast furnace, characterized in that the amount of air blown from the tuyere above the portion where the total remaining thickness is relatively thin or where the rate of reduction of the remaining thickness is large is adjusted by a branch air flow control valve.
【請求項10】 請求項7ないし9のいずれかに記載の
方法で羽口の送風量を調節して、高炉炉底中心位置での
炉内から炉外方向への熱流束が基準値超に上昇した場合
に、支管風量制御弁によって各羽口の送風量をほぼ同じ
値になるように戻すことを特徴とする高炉操業方法。
10. The method according to claim 7, wherein the amount of air blown from the tuyere is adjusted so that the heat flux from the inside of the furnace to the outside of the furnace at the center of the blast furnace bottom exceeds the reference value. A method for operating a blast furnace, comprising: returning a flow rate of each tuyere to substantially the same value by a branch pipe flow rate control valve when the temperature rises.
JP12156297A 1997-04-25 1997-04-25 Blast furnace operation method Expired - Fee Related JP4132128B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12156297A JP4132128B2 (en) 1997-04-25 1997-04-25 Blast furnace operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12156297A JP4132128B2 (en) 1997-04-25 1997-04-25 Blast furnace operation method

Publications (2)

Publication Number Publication Date
JPH10298621A true JPH10298621A (en) 1998-11-10
JP4132128B2 JP4132128B2 (en) 2008-08-13

Family

ID=14814315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12156297A Expired - Fee Related JP4132128B2 (en) 1997-04-25 1997-04-25 Blast furnace operation method

Country Status (1)

Country Link
JP (1) JP4132128B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006188768A (en) * 2006-03-30 2006-07-20 Nippon Steel Corp Method for preventing worn-out of brick in blast furnace

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006188768A (en) * 2006-03-30 2006-07-20 Nippon Steel Corp Method for preventing worn-out of brick in blast furnace
JP4598710B2 (en) * 2006-03-30 2010-12-15 新日本製鐵株式会社 Blast furnace brick wear prevention method

Also Published As

Publication number Publication date
JP4132128B2 (en) 2008-08-13

Similar Documents

Publication Publication Date Title
JP4752021B2 (en) Reduced blast operation method of blast furnace
WO1999023262A1 (en) Method of operating blast furnace
JPH10298621A (en) Operation of blast furnace
JP4119620B2 (en) In-furnace situation estimation method for blast furnace
RU2286523C2 (en) Method of control of refractory wearing out
JP4380331B2 (en) How to protect the iron core of a rotary furnace
KR960006322B1 (en) Method for removing stuck material on furnace wall in blast-furnace
JP2669279B2 (en) Blast furnace operation method
JP4081248B2 (en) Control method of the lower part of the blast furnace
KR20030050868A (en) Estimation method for blast furnace hearth refractory thickness
JP4252684B2 (en) Reduced blast furnace operation method
JPH09209008A (en) Method for protecting furnace bottom part of blast furnace
JPH06212215A (en) Method for controlling temperature of refractory brick at furnace bottom
RU2044058C1 (en) Method for control of erosion of blast-furnace well
JPH10280020A (en) Operation of smelting reduction
JPH0365404B2 (en)
SU1129241A1 (en) Method for controlling and removing crust from chilled elements of gas removal duct of converter
JP4038153B2 (en) Blast furnace bottom cooling method
JPS62238308A (en) Temperature measuring method for bottom part of blast furnace
JPH03104808A (en) Method for operating blast furnace
JPS5912306A (en) Method for measuring thickness of refractory for furnace body
JPH09272905A (en) Method for repairing side wall brick of furnace bottom part in blast furnace
JPS60243207A (en) Method for operating blast furnace
JPS6137327B2 (en)
JP2004059956A (en) Method for preventing wearing of blast furnace brick

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051021

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080520

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080602

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees