JP4252684B2 - Reduced blast furnace operation method - Google Patents

Reduced blast furnace operation method Download PDF

Info

Publication number
JP4252684B2
JP4252684B2 JP24992399A JP24992399A JP4252684B2 JP 4252684 B2 JP4252684 B2 JP 4252684B2 JP 24992399 A JP24992399 A JP 24992399A JP 24992399 A JP24992399 A JP 24992399A JP 4252684 B2 JP4252684 B2 JP 4252684B2
Authority
JP
Japan
Prior art keywords
furnace
pressure
blowing
blast furnace
reduced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24992399A
Other languages
Japanese (ja)
Other versions
JP2001073015A (en
Inventor
和彦 松山
直也 菅原
茂 小谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nippon Steel Nisshin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Nisshin Co Ltd filed Critical Nippon Steel Nisshin Co Ltd
Priority to JP24992399A priority Critical patent/JP4252684B2/en
Publication of JP2001073015A publication Critical patent/JP2001073015A/en
Application granted granted Critical
Publication of JP4252684B2 publication Critical patent/JP4252684B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、定期点検・補修等の際に高炉を休風するときの減尺操業に関する。
【0002】
【従来の技術】
耐火物でライニングされている高炉の内壁は、装入物の衝撃・摩擦や高温ガスに曝される環境で使用される。そのため、長期間操業により損耗した耐火物は、定期的に点検され、損耗がひどい場合には補修される。
点検・補修等に際しては、原料装入層のレベルを徐々に下げる減尺操業が実施される。しかし、炉内の装入物分布や炉内ガス分布が減尺の過程で不規則に変化し、スリップや吹抜け等のトラブルが発生し易く、目標レベルまで減尺できないことがある。
【0003】
スリップや吹抜け等のトラブルは、減尺過程で融着帯の円周バランスが崩れ、炉内を水平方向断面でみたとき装入物の落下や炉内ガス流が局部的に上昇することに原因がある。そこで、原料装入層のレベルに応じ送風量を調整しながら減尺する方法が従来から採用されている。たとえば、装入原料層頂面の降下に応じて予め定められた限界送風量以下で減尺操業する方法(特開昭55−110710号公報),融着帯の頂面から装入物までの距離が異常に接近したとき風量減少又は炉頂圧上昇のアクションを採る方法(特開昭56−116806号公報)等がある。
【0004】
【発明が解決しようとする課題】
従来の減尺操業では、主として送風量の調整によりスリップ,吹抜け等のトラブルを防止している。しかし、融着帯の形状変化に起因した炉内ガス流の急変に伴って送風圧力が変動するとき、送風量調整ではスリップや吹抜けの発生を十分に防止できず、依然として目標レベルまでの減尺操業ができないことがある。そこで、送風量に変動がないことを確認しながら、指尺低下,送風量低下等のアクションが採られている。しかし、この方法では、減風量が多くなり、その分だけ減産量が多くなる。
本発明は、このような問題を解消すべく案出されたものであり、減尺過程で送風量指定から送風圧指定に送風条件制御を切り替えることにより、スリップや吹抜けを防止しながら最大送風量を確保し、安定した炉況下で減尺操業することを目的とする。
【0005】
【課題を解決するための手段】
本発明は、その目的を達成するため、高炉内の装入原料層を炉腹近傍まで降下させる減尺操業に際し、装入原料層のレベル低下に応じて調整した風量で熱風を炉内に吹き込み、シャフト部の上段,中段及び下段に設けた各圧力計で測定される円周方向に関する圧力の最大値と最小値との差が30g/cm以下で、且つ各段の圧力及び送風圧力の変動幅が20g/cm以内に安定した段階で、送風圧指定に切り替えて熱風を炉内に吹き込むことを特徴とする。
【0006】
【作用】
高炉の減尺操業では、鉱石,コークス等の原料を装入することなく送風を継続し、炉内にある装入原料層のレベルを順次低下させる操業法であり、目標時間に指尺レベル(炉頂からストックラインまでの距離)を目標位置まで下げ、減鉱を羽口レベルに到達させることが必要とされる。そのため、減尺操業開始から休風までの装入原料に応じた送風量の累計が炉況を安定に維持する上で重要な要因になる。
【0007】
減尺操業中、装入原料層のレベル低下に伴って炉内の通気抵抗が減少するため、一定した送風量を維持するとスリップや吹抜けが発生しがちな炉況になる。通気抵抗の減少は、微粉炭の吹込み中止によっても大きく影響される。そこで、レベル低下に応じた指定風量が得られるように、高炉に熱風を吹き込む送風機を制御する。送風量指定の減尺操業は、制御が容易であるものの、送風圧力に変動がないことを確認しながら指尺低下及び送風量低下のアクションをとるため、送風圧力に変動が生じた場合には送風量を大幅に低下させて変動を抑制するアクションが必要になる。また、送風圧力の変動が抑制されても、送風圧力の変動を誘発する送風量の回復は実行が困難になることから、減風量が更に多くなる。具体的には、内容積1650m3の高炉でストックラインを15m下げる減尺操業したときの実績値を示す図1にみられるように、減尺操業の開始から送風停止までに8〜9時間がかかる。減風量の増加は、炉内を必要以上に温度降下させ、休風停止後に炉況を立ち上げるまでの時間を長くする原因となる。
【0008】
そこで、本発明においては、減尺操業の途中で送風量指定から送風圧指定に切り替えることにより、減尺操業の開始から送風停止までの期間を短縮し、減風量の増加を抑制している。送風量指定から送風圧指定に切り替えるタイミングは、高炉シャフト部の垂直方向に関する圧力変動が低位に安定したことを確認して設定される。圧力変動は、高炉シャフト部の垂直方向に関して炉壁に挿入した圧力計で炉内圧力を多段に測定し、測定値の時間変化から検出される。
【0009】
具体的には、図2に示すように高炉シャフトの上段,中段及び下段に円周方向に関して等間隔で4本の圧力計を埋め込み、高炉内の装入原料及びガス流の変動部位及び変動の大きさを把握する。減尺操業されている高炉では、装入原料レベルの低下に従って上段の圧力計で検出される圧力値が炉頂圧に近づき、装入原料レベルに偏差が生じた場合には各段の圧力値に変動幅が生じる。したがって、炉内圧力の推移及び各段の円周方向に関する圧力値の変動幅から炉況の安定度及び減尺操業の良否を判定でき、本発明においてはこの判定結果に基づいて送風量指定から送風圧指定に切り替えるタイミングを設定している。
【0010】
切替えのタイミングは、シャフト部の上段,中段及び下段の各段において円周方向に等間隔で4本配置した圧力計及び羽口に設けた圧力計で測定される炉内各部の圧力及び送風圧力に応じて定められる。
各圧力計で得られた圧力値の変動幅が20g/cm2以下になっているとき、スリップや吹抜けのない安定した炉況が維持されている。他方、圧力変動が20g/cm2を超える個所では、部分的なスリップや吹抜けが発生している可能性が高く、この段階で風圧指定に切り替えると炉況が更に不安定になる。なお、圧力変動は、全13点の圧力計で1分ごとに測定した値の過去約5分間における実績で示す。また、各段の圧力計で検出された圧力の最大値−最小値として求められる炉体円周方向に関する変動幅が30g/cm2以下になっているとき、炉況が安定に維持されている。他方、30g/cm2を超える変動幅は、円周方向に関して装入原料層の片減り等、原料降下速度に差が発生していることの現われであり、この段階で風圧指定に切り替えると片減り部分に風量が集中し吹抜け等が誘発され易くなる。
【0011】
また、減尺操業で装入原料層のレベルを徐々に低下させるに従って送風量を低下させているので、高炉内を通過するガス流量の低下が吹抜けの可能性を減少させる。そのため、送風圧指定の操業が可能になる。ただし、ガス流量の低下は、羽口風速低下に伴った中心流不足や、局部的な周辺流に起因して装入原料層に偏差を生じさせる原因にもなり易い。そこで、スリップ,吹抜け等のトラブルが発生しない炉況下で目標の装入原料層レベルまで減尺する上で、低送風量での操業時間を短くすることは、休風前後の炉況の安定化に重要である。
【0012】
減尺操業が送風圧指定に移行した段階では、指尺レベルに応じて炉内圧損(=送風圧力−炉頂圧力)が制御される。本発明者等による調査・研究の結果から、指尺レベルとの関係で炉内圧損を図3の直線よりも下方にある吹抜け防止域に維持するとき、スリップ,吹抜け等のトラブル発生を防止できることが判った。図3の関係は、炉頂圧力を一定に維持し、指定した送風圧力での減圧操業が可能なことを示している。
送風圧力の指定は、炉頂圧力を一定に維持しているため高炉の操業中に指尺レベル及び炉内圧損が常に把握されていることから、指尺レベルの低下に先行して実施できる。また、スリップや吹抜け等が発生しない炉況下で最大風量が確保される。したがって、減尺時間が図1に示すように短縮された無装入減尺操業が可能になり、減尺,休風に伴った減産量も低く抑えられる。
【0013】
【実施例】
内容積1650m3の高炉を休風するに際し、指尺レベルの低下に応じて図1に示すように風量を下げた。減尺操業中、シャフト部の垂直方向に関する炉内圧力を常時測定し、炉内圧力の変動幅が20g/cm2以内で,各段の圧力計で計測された圧力値の最大値と最小値との差が30g/cm2以下に至った時点で送風条件を送風量指定から送風圧指定に切り替えた。この切替え時点は、減尺操業前の通常操業中の指定風量のほぼ7割に当たる。送風圧指定の減尺操業では、ストックラインと炉内圧損との関係から定まる吹抜け防止域(図3)に調節した送風圧で熱風を炉内に吹き込んだ。
【0014】
減尺操業開始から炉内装入原料層のレベルが炉腹近傍に達するまでに8時間を要したが、この間にスリップや吹抜けは何ら検出されなかった。次いで、炉内を補修・点検した後、炉況を立ち上げて通常操業に移行した。通常操業に移行するまでの期間は、11時間と短期間であった。これは、減尺操業中の減風量低下が抑えられたことによるものである。
比較のため、同じ高炉を用い送風量指定の減尺操業で炉内装入原料層のレベルを炉腹近傍まで下げた。この場合には、本発明例に比較して9時間と長い時間が必要であった。そのため、減尺操業中の減風量が増加し、休風後に高炉を通常の炉況に回復させるまでに15時間と長時間が必要であった。
【0015】
【発明の効果】
以上に説明したように、本発明においては、高炉の休風に際し装入原料層のレベルに応じて調節した送風量の熱風を炉内に吹き込み、炉内圧力が低位に安定したことを検出した段階で、送風条件を送風量指定から送風圧指定に切り替えている。この切替えにより比較的短時間で装入原料層のレベルを炉腹近傍まで下げることができ、減尺操業・休風に伴った減風量や減風期間の増加が抑制される。そのため、休風後の高炉が短時間で通常の炉況に回復し、減産量を少なくした減尺操業が可能になる。
【図面の簡単な説明】
【図1】 送風量指定から送風圧指定に切り替える減尺操業の操業諸元の変化を送風量指定の減尺操業と対比して示したグラフ
【図2】 送風量指定から送風圧指定に切り替えるタイミングを検出するため垂直方向に複数の圧力計を埋め込んだシャフト部をもつ高炉
【図3】 ストックラインと炉内圧損との関係が吹抜けに及ぼす影響を示したグラフ
[0001]
[Industrial application fields]
The present invention relates to a reduced scale operation when a blast furnace is closed during periodic inspections / repairs and the like.
[0002]
[Prior art]
The inner wall of the blast furnace lined with refractory is used in an environment where it is exposed to impact / friction of the charge and high-temperature gas. Therefore, refractories that have been worn out by long-term operation are regularly inspected and repaired if the wear is severe.
During inspections / repairs, etc., a scale-down operation that gradually lowers the level of the raw material charging layer is implemented. However, the distribution of charges in the furnace and the distribution of gas in the furnace change irregularly during the reduction process, and troubles such as slips and blowouts are likely to occur, and the reduction to the target level may not be possible.
[0003]
Troubles such as slips and blowouts are caused by the circumferential balance of the cohesive zone being lost during the reduction process, and when the inside of the furnace is viewed in a horizontal section, the fall of the charge and the gas flow in the furnace rise locally. There is. Therefore, a method of reducing the air volume while adjusting the air flow rate according to the level of the raw material charging layer has been conventionally employed. For example, a method of performing a reduction operation with a predetermined air flow below a predetermined amount according to the lowering of the charge raw material layer top surface (Japanese Patent Laid-Open No. 55-110710), from the top surface of the cohesive zone to the charge There is a method of taking an action of decreasing the air volume or increasing the furnace top pressure when the distance is abnormally close (Japanese Patent Laid-Open No. 56-116806).
[0004]
[Problems to be solved by the invention]
In the conventional scale-down operation, troubles such as slips and blowouts are mainly prevented by adjusting the air flow rate. However, when the blowing pressure fluctuates due to a sudden change in the gas flow in the furnace due to the change in the shape of the cohesive zone, the adjustment of the blowing amount cannot sufficiently prevent the occurrence of slips and blow-throughs, and it is still reduced to the target level. Operation may not be possible. Therefore, actions such as finger scale reduction and air flow rate reduction are taken while confirming that there is no fluctuation in the air flow rate. However, with this method, the amount of wind reduction increases, and the amount of production reduction increases accordingly.
The present invention has been devised to solve such a problem, and by switching the blowing condition control from the blowing amount designation to the blowing pressure designation in the reduction process, the maximum blowing amount is prevented while preventing slipping or blow-through. The purpose is to reduce the scale under stable furnace conditions.
[0005]
[Means for Solving the Problems]
In order to achieve the object, the present invention blows hot air into the furnace with an air volume adjusted according to the lowering of the level of the charged raw material layer during the reduced operation of lowering the charged raw material layer in the blast furnace to the vicinity of the furnace belly. The difference between the maximum value and the minimum value of the pressure in the circumferential direction measured by the pressure gauges provided in the upper, middle and lower stages of the shaft portion is 30 g / cm 2 or less, and When the fluctuation range is stabilized within 20 g / cm 2 , hot air is blown into the furnace by switching to the blowing pressure designation .
[0006]
[Action]
In the blast furnace scale-down operation, air blowing is continued without charging raw materials such as ore and coke, and the level of the charged raw material layer in the furnace is gradually lowered. The distance from the top of the furnace to the stock line is required to be lowered to the target position, and the reduction is required to reach the tuyere level. For this reason, the total amount of air blown according to the charged raw materials from the start of reduced scale operation to resting air becomes an important factor in maintaining the furnace condition stably.
[0007]
During the scale-down operation, the resistance to ventilation in the furnace decreases as the level of the charged raw material layer decreases. Therefore, if a constant air flow rate is maintained, slipping or blow-through tends to occur. The decrease in ventilation resistance is also greatly affected by the stopping of pulverized coal blowing. Therefore, the blower that blows hot air into the blast furnace is controlled so that the specified air volume corresponding to the level drop is obtained. Although the reduction operation specified by the air flow rate is easy to control, the action of lowering the finger scale and air flow rate is taken while confirming that there is no change in the air flow pressure. An action that significantly reduces the amount of air blown to suppress fluctuations is required. Moreover, even if fluctuations in the blowing pressure are suppressed, recovery of the blowing amount that induces fluctuations in the blowing pressure becomes difficult to execute, so the amount of wind reduction is further increased. Specifically, as shown in FIG. 1 which shows the actual value when the stock line is reduced by 15 m in a blast furnace having an internal volume of 1650 m 3 , 8 to 9 hours from the start of the reduction operation to the stop of air blowing. Take it. The increase in the amount of wind reduction causes the temperature in the furnace to drop more than necessary, and causes a longer time to start up the furnace after the stop of the wind.
[0008]
Therefore, in the present invention, the period from the start of the reduced operation to the stop of the blowing is shortened by suppressing the increase in the reduced amount of wind by switching from the blowing amount designation to the blowing pressure designation during the reduction operation. The timing for switching from the blowing amount designation to the blowing pressure designation is set after confirming that the pressure fluctuation in the vertical direction of the blast furnace shaft portion is stabilized at a low level. The pressure fluctuation is detected from the time change of the measured value by measuring the pressure in the furnace in multiple stages with a pressure gauge inserted in the furnace wall in the vertical direction of the blast furnace shaft portion.
[0009]
Specifically, as shown in FIG. 2, four pressure gauges are embedded at equal intervals in the circumferential direction in the upper, middle and lower stages of the blast furnace shaft, and the fluctuation parts and fluctuations of the charging material and gas flow in the blast furnace are embedded. Know the size. In a blast furnace operating in a reduced scale, if the pressure value detected by the upper pressure gauge approaches the furnace top pressure as the charge level decreases, the pressure value of each stage will vary if there is a deviation in the charge level. Fluctuation range occurs. Therefore, it is possible to determine the stability of the furnace condition and the quality of the reduced scale operation from the transition of the pressure in the furnace and the fluctuation range of the pressure value in the circumferential direction of each stage, and in the present invention, from the air flow rate designation based on this determination result The timing to switch to blow pressure specification is set.
[0010]
The timing of switching is the pressure of each part in the furnace and the blowing pressure measured by four pressure gauges arranged at equal intervals in the circumferential direction at the upper, middle and lower stages of the shaft part and the pressure gauge provided at the tuyere It is decided according to.
When the fluctuation range of the pressure value obtained by each pressure gauge is 20 g / cm 2 or less, a stable furnace condition without slipping or blow-through is maintained. On the other hand, if the pressure fluctuation exceeds 20 g / cm 2 , there is a high possibility that partial slip or blow-through has occurred, and switching to wind pressure designation at this stage will make the furnace condition more unstable. In addition, a pressure fluctuation is shown by the result in the past about 5 minutes of the value measured every minute with all 13 pressure gauges. Further, when the fluctuation range in the circumferential direction of the furnace body obtained as the maximum value-minimum value of the pressure detected by the pressure gauge at each stage is 30 g / cm 2 or less, the furnace condition is stably maintained. . On the other hand, the fluctuation range exceeding 30 g / cm 2 is a manifestation of a difference in the raw material descending speed such as a decrease in the charged raw material layer in the circumferential direction. The air volume is concentrated on the reduced part, and it becomes easy to induce blow-through.
[0011]
In addition, since the blown air volume is reduced as the level of the charged raw material layer is gradually reduced in the scale operation, the reduction in the gas flow rate passing through the blast furnace reduces the possibility of blow-through. Therefore, the operation specified by the blowing pressure can be performed. However, a decrease in the gas flow rate is likely to cause a deviation in the charged raw material layer due to a shortage of the central flow accompanying a decrease in the tuyere wind speed or a local peripheral flow. Therefore, shortening the operation time with a low air flow rate in order to reduce the operating time with a low air flow rate in order to stabilize the furnace conditions before and after the off-air flow, while reducing the target raw material layer level in the furnace conditions where slips and blow-offs do not occur. It is important for conversion.
[0012]
At the stage where the reduction operation shifts to the blowing pressure designation, the furnace pressure loss (= blowing pressure−furnace top pressure) is controlled according to the finger scale level. From the results of investigations and researches by the present inventors, it is possible to prevent the occurrence of troubles such as slips and blowouts when maintaining the pressure loss in the furnace in the blowout prevention area below the straight line in FIG. 3 in relation to the finger scale level. I understood. The relationship shown in FIG. 3 indicates that the pressure at the top of the furnace can be kept constant and the decompression operation can be performed at a specified blowing pressure.
Since the pressure at the top of the furnace is kept constant, the finger pressure level and the pressure loss in the furnace are always known during the operation of the blast furnace, so that the blowing pressure can be specified prior to the reduction of the finger level. In addition, the maximum air volume is ensured under furnace conditions where slip and blow-out do not occur. Therefore, a reduced charging operation with a reduced reduction time as shown in FIG. 1 is possible, and a reduction in production due to reduction and resting wind can be kept low.
[0013]
【Example】
When the blast furnace with an internal volume of 1650 m 3 was rested, the air volume was lowered as shown in FIG. During the reduction operation, the furnace pressure in the vertical direction of the shaft part is constantly measured, and the fluctuation range of the furnace pressure is within 20 g / cm 2 , and the maximum and minimum pressure values measured by the pressure gauge at each stage When the difference from the above reached 30 g / cm 2 or less, the blowing condition was switched from the blowing amount designation to the blowing pressure designation. This switching time corresponds to approximately 70% of the specified air volume during normal operation before reduced operation. In the scaled operation specified by the blowing pressure, hot air was blown into the furnace with the blowing pressure adjusted to the blowout prevention area (Fig. 3) determined from the relationship between the stock line and the pressure loss in the furnace.
[0014]
It took 8 hours from the start of the scale-down operation until the level of the raw material layer in the furnace interior reached the vicinity of the furnace belly, but no slip or blow-through was detected during this time. Next, after repairing and inspecting the inside of the furnace, the furnace condition was started and the operation was shifted to normal operation. The period until the transition to normal operation was as short as 11 hours. This is because the decrease in the amount of wind reduction during the reduced scale operation was suppressed.
For comparison, using the same blast furnace, the level of the raw material layer in the furnace interior was lowered to the vicinity of the furnace belly by the reduced operation specified by the blast amount. In this case, it took 9 hours longer than the example of the present invention. For this reason, the amount of wind reduction during the reduced scale operation increased, and it took 15 hours and a long time for the blast furnace to recover to the normal furnace condition after the wind break.
[0015]
【The invention's effect】
As described above, in the present invention, when the blast furnace is closed, hot air having an air volume adjusted according to the level of the charged raw material layer was blown into the furnace, and it was detected that the pressure in the furnace was stabilized at a low level. At the stage, the blowing condition is switched from the blowing amount designation to the blowing pressure designation. By this switching, the level of the charged raw material layer can be lowered to the vicinity of the furnace bellows in a relatively short time, and the increase in the amount of wind reduction and the duration of wind reduction accompanying the reduced operation / rest wind is suppressed. For this reason, the blast furnace after the resting of the wind recovers to the normal furnace condition in a short time, and the reduced scale operation with the reduced production amount becomes possible.
[Brief description of the drawings]
[Fig. 1] A graph showing the change in operation specifications of reduced scale operation that switches from air flow rate designation to air flow pressure designation in contrast to air flow rate designation reduced operation [Fig. 2] Switch from air flow rate designation to air pressure designation Blast furnace with shaft part with multiple pressure gauges embedded in the vertical direction to detect timing [Figure 3] Graph showing the effect of the relationship between stock line and pressure loss in the furnace on the blow-through

Claims (1)

高炉内の装入原料層を炉腹近傍まで降下させる減尺操業に際し、装入原料層のレベル低下に応じて調整した風量で熱風を炉内に吹き込み、シャフト部の上段,中段及び下段に設けた各圧力計で測定される円周方向に関する圧力の最大値と最小値との差が30g/cm以下で、且つ各段の圧力及び送風圧力の変動幅が20g/cm以内に安定した段階で、送風圧指定に切り替えて熱風を炉内に吹き込むことを特徴とする高炉の減尺操業方法。During scale-down operation in which the charged material layer in the blast furnace is lowered to the vicinity of the furnace, hot air is blown into the furnace with an air flow adjusted according to the lowering of the charged material layer level, and is provided in the upper, middle and lower stages of the shaft section. The difference between the maximum value and the minimum value in the circumferential direction measured by each pressure gauge was 30 g / cm 2 or less, and the fluctuation range of the pressure and blowing pressure of each stage was stabilized within 20 g / cm 2 . A reduced-scale operation method for a blast furnace, characterized in that hot air is blown into the furnace by switching to a specified blowing pressure at a stage.
JP24992399A 1999-09-03 1999-09-03 Reduced blast furnace operation method Expired - Fee Related JP4252684B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24992399A JP4252684B2 (en) 1999-09-03 1999-09-03 Reduced blast furnace operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24992399A JP4252684B2 (en) 1999-09-03 1999-09-03 Reduced blast furnace operation method

Publications (2)

Publication Number Publication Date
JP2001073015A JP2001073015A (en) 2001-03-21
JP4252684B2 true JP4252684B2 (en) 2009-04-08

Family

ID=17200203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24992399A Expired - Fee Related JP4252684B2 (en) 1999-09-03 1999-09-03 Reduced blast furnace operation method

Country Status (1)

Country Link
JP (1) JP4252684B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5381356B2 (en) * 2009-06-08 2014-01-08 新日鐵住金株式会社 Reduced blast furnace operation
JP5560726B2 (en) * 2010-01-18 2014-07-30 新日鐵住金株式会社 Blast furnace blow-off operation method
CN114891944B (en) * 2022-06-28 2023-10-24 重庆钢铁集团电子有限责任公司 Method for rapidly treating disintegrating materials by combining blast furnace control system with blast furnace trial rod

Also Published As

Publication number Publication date
JP2001073015A (en) 2001-03-21

Similar Documents

Publication Publication Date Title
JP4252684B2 (en) Reduced blast furnace operation method
WO1999023262A1 (en) Method of operating blast furnace
JP5560726B2 (en) Blast furnace blow-off operation method
JP7394610B2 (en) Method for preventing blow-through in smelting furnace operation
JP2004263258A (en) Method for operating blast furnace
JP4331879B2 (en) Blast furnace inner wall structure
JP4739920B2 (en) Blast furnace operation method with small furnace heat fluctuation
KR960006322B1 (en) Method for removing stuck material on furnace wall in blast-furnace
JPH1046215A (en) Method for controlling furnace heat in blast furnace
JP3879539B2 (en) Blast furnace operation method
KR101516622B1 (en) Methods for predicting the thickness of copper stave in blast furnace
JP2009235437A (en) Method for controlling blast furnace operation at blowing-stop time in large reduction of charged material level
JP5438486B2 (en) Coke dry fire extinguishing equipment
JP4328001B2 (en) Blast furnace operation method
JP2007254897A (en) Method for lowered level operation in blast furnace
JP3722059B2 (en) Operation method of smelting reduction furnace
JPS60243207A (en) Method for operating blast furnace
JP2023172090A (en) Blast furnace operating method
KR100368265B1 (en) Method for monitoring extreme cold of charging material in stave blast furnace
JPH09209008A (en) Method for protecting furnace bottom part of blast furnace
JP2694588B2 (en) Blast furnace operation method
JP3077691B1 (en) Blast furnace operation method
JP2003306708A (en) Method for stably operating blast furnace
JP3016948B2 (en) Blast furnace operation method
KR20000028284A (en) Method for deciding ventilation inside melting furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060831

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070409

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090122

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140130

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees