JP3077691B1 - Blast furnace operation method - Google Patents
Blast furnace operation methodInfo
- Publication number
- JP3077691B1 JP3077691B1 JP11083394A JP8339499A JP3077691B1 JP 3077691 B1 JP3077691 B1 JP 3077691B1 JP 11083394 A JP11083394 A JP 11083394A JP 8339499 A JP8339499 A JP 8339499A JP 3077691 B1 JP3077691 B1 JP 3077691B1
- Authority
- JP
- Japan
- Prior art keywords
- furnace
- blast furnace
- gas
- blow
- gas energy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Manufacture Of Iron (AREA)
Abstract
【要約】
【課題】 長期に亘って吹抜けを起こさずに高炉を操業
すること。
【解決手段】 標準状態でのガス密度をρ0、標準状態
での炉頂ガス流量をV0、炉頂温度をT、標準状態温度
をT0、炉頂圧力をP、標準状態圧力をP0、炉口部面積
をSとした場合、高炉炉口部における炉内ガスエネルギ
ーEを下記式により算出し、その算出値が、高炉の操業
実績により実際に吹き抜けが発生した時の、予め求めて
おいた炉口ガスエネルギーの最低値E0 よりも小さくな
るように、高炉のコークス比、微粉炭比、送風条件、炉
頂圧力の少なくともいずれか一つを調整して操業する。
E=ρ0 (V0 /S)2 ×T/T0 ×P0 /P
【効果】 操業条件を変化させない時は勿論のこと、操
業条件を大きく変化させた場合でも、高炉炉頂部におけ
る装入物やガス流れを安定させることができ、長期的に
吹き抜けを起こさずに高炉を操業することができる。An object of the present invention is to operate a blast furnace without causing a stairwell for a long period of time. SOLUTION: The gas density in the standard state is ρ 0 , the furnace top gas flow rate in the standard state is V 0 , the furnace top temperature is T, the standard state temperature is T 0 , the furnace top pressure is P, and the standard state pressure is P. 0 , when the area of the furnace port is S, the gas energy E in the furnace at the furnace port of the blast furnace is calculated by the following equation, and the calculated value is obtained in advance when the blow-through actually occurs based on the operation results of the blast furnace. The operation is performed by adjusting at least one of the coke ratio, the pulverized coal ratio, the blowing conditions, and the furnace top pressure of the blast furnace so as to be smaller than the minimum value E 0 of the furnace port gas energy. E = ρ 0 (V 0 / S) 2 × T / T 0 × P 0 / P Effect When the operating conditions are not changed, and even when the operating conditions are largely changed, the equipment at the top of the blast furnace is not changed. The blast furnace can be operated without causing blow-through for a long period of time, because the flow of gas and gas can be stabilized.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、高炉炉口部での吹
抜けを防止し、安定して操業を行うことができる高炉操
業方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a blast furnace operating method capable of preventing a blow-by at a blast furnace opening and stably operating the blast furnace.
【0002】[0002]
【従来の技術】近年、高炉の炉命延長による炉体老朽
化、及び、高微粉炭吹込み操業による高炉内通気性の悪
化等により、安定操業を長期に継続することが困難にな
ってきている。特に、吹抜けが生じた場合には、炉命短
縮等の炉況不調に陥る危険性があり、吹抜けを起こさず
に長期に安定操業を継続することは、製鉄所の生産性及
び経済性の面より非常に重要な事項である。2. Description of the Related Art In recent years, it has become difficult to maintain stable operation for a long period of time due to deterioration of the furnace body due to extension of the life of the blast furnace and deterioration of air permeability in the blast furnace due to high pulverized coal injection operation. I have. In particular, if a stairwell occurs, there is a danger that the furnace condition will fall due to shortening of the life of the furnace, etc.Continuing stable operations for a long period of time without causing a stall will lead to the productivity and economic More very important matter.
【0003】吹抜けを防止する方法として、特公昭59
−10407号では、圧力損失レベルを測定計算して、
この圧力損失レベルが常に危険圧力損失レベル以下にあ
るように、送風量等を制御する通気制御方法が開示され
ている。また、特開平9−78111号では、装入物の
粒度分布と密度分布や、炉内ガスの流速分布を測定し
て、炉内装入物の流動化を防止するために、装入物の粒
度分布や熱風量等を調整する吹抜け防止方法が開示され
ている。As a method for preventing blow-by, Japanese Patent Publication No.
In -10407, the pressure drop level is measured and calculated,
There is disclosed a ventilation control method for controlling the air flow and the like so that the pressure loss level is always equal to or lower than the dangerous pressure loss level. In Japanese Patent Application Laid-Open No. 9-78111, the particle size distribution and density distribution of the charge and the flow velocity distribution of the gas in the furnace are measured. A blow-by prevention method for adjusting the distribution and the amount of hot air is disclosed.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、特公昭
59−10407号や特開平9−78111号に開示さ
れた方法は、吹抜けが起こる直前にその兆候を検知し、
送風量等を調整(通常は大幅に送風量を低下させる)し
て吹き抜けを防止するものであり、長期に亘って安定操
業を図るというよりも、緊急避難的な吹抜け防止方法で
ある。さらに、通常操業中に送風量を大幅に変更するこ
とは、高炉の炉況変動につながるものであり、長期に亘
って安定操業を行うのには好ましいものではない。However, the methods disclosed in Japanese Patent Publication No. 59-10407 and Japanese Patent Application Laid-Open No. Hei 9-78111 detect the sign just before a blow-by occurs,
This is a method of adjusting the blowing amount or the like (usually greatly reducing the blowing amount) to prevent blow-through, and is an emergency evacuation method for preventing blow-through, rather than achieving stable operation for a long time. Further, a large change in the amount of air blow during the normal operation leads to a change in the furnace condition of the blast furnace, which is not preferable for a long-term stable operation.
【0005】本発明は、上記した問題点に鑑みてなされ
たものであり、炉口部の炉内ガスエネルギーを、燃料
比、送風条件等を設計して、長期に亘って吹抜けを起こ
さずに高炉を操業することができる方法を提供すること
を目的としている。SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and is intended to reduce the in-furnace gas energy at the furnace opening by designing a fuel ratio, a blowing condition, and the like so as not to cause blow-by for a long period of time. It is intended to provide a method by which a blast furnace can be operated.
【0006】[0006]
【課題を解決するための手段】上記した目的を達成する
ために、本発明の高炉操業方法は、炉頂ガス量、炉頂ガ
ス温度、炉頂圧力から高炉炉口部の炉内ガスエネルギー
を算出し、その算出値が、高炉の操業実績により実際に
吹き抜けが発生した時の、予め求めておいた炉口ガスエ
ネルギーの最低値E0 よりも小さくなるように、高炉の
コークス比、微粉炭比、送風条件の少なくともいずれか
一つを調整するのである。そして、このようにすること
で、高炉炉口部における装入物やガス流れを安定させる
ことができることになる。In order to achieve the above-mentioned object, a method for operating a blast furnace according to the present invention comprises the steps of reducing the gas energy in the furnace at the mouth of the blast furnace from the amount of the top gas, the top gas temperature, and the top pressure. The coke ratio of the blast furnace and the pulverized coal are calculated so that the calculated value is smaller than the previously determined minimum value E 0 of the furnace port gas energy when the blow-through actually occurs due to the operation results of the blast furnace. At least one of the ratio and the blowing condition is adjusted. By doing so, the charge and the gas flow at the blast furnace mouth can be stabilized.
【0007】[0007]
【発明の実施の形態】高炉操業において、上部からの原
料荷重による力F1と、ガスによる下方からの押上げ力
F2を比較し、下方からの押上げ力F2が原料荷重によ
る力F1よりも小さければ、装入物は下方に向かって移
動し、操業は正常である。そして、両者が等しくなった
とき、装入物は移動を止め、反対に下方からの押上げ力
F2が原料荷重による力F2よりも大きくなった場合、
吹抜け(炉内の装入物がガスに運ばれて上方に移動する
こと)を起こし、操業不能にいたる。DESCRIPTION OF THE PREFERRED EMBODIMENTS In a blast furnace operation, a force F1 due to a raw material load from above and a pushing force F2 from below by gas are compared, and the pushing force F2 from below is smaller than the force F1 due to the raw material load. If, for example, the charge moves downward, the operation is normal. And when both become equal, the charge stops moving, and conversely, when the pushing force F2 from below becomes greater than the force F2 due to the raw material load,
A blow-through (upward movement of the charge in the furnace by the gas) causes operation failure.
【0008】従って、吹抜けは、操業中に高炉炉口部に
おける炉内ガスエネルギー(以下、「炉口ガスエネルギ
ー」という)Eと、高炉の操業実績により実際に吹き抜
けが発生した時の、予め求めておいた炉口ガスエネルギ
ーの最低値(以下、「吹抜け限界炉口エネルギー」とい
う)E0 を管理することで、事前にその兆候を予測でき
ることになる。Therefore, the blow-by is determined in advance when the blow-through actually occurs due to the gas energy in the furnace (hereinafter referred to as "furnace gas energy") E at the mouth of the blast furnace during operation and the actual operation of the blast furnace. By managing the minimum value (hereinafter, referred to as “blow-through limit furnace energy”) E 0 of the furnace gas energy set in advance, the sign can be predicted in advance.
【0009】本発明の高炉操業方法は、上記した知見に
基づいてなされたものであり、炉口ガスエネルギーEを
下記数式1により算出し、その算出値が、吹抜け限界炉
口エネルギーE0 より小さくなるように、高炉のコーク
ス比、微粉炭比、送風条件、炉頂圧力の少なくともいず
れか一つを調整して操業するものである。The method of operating a blast furnace according to the present invention is based on the above-mentioned knowledge, and calculates the furnace gas energy E by the following equation 1, and the calculated value is smaller than the blow-through limit furnace energy E 0. The operation is performed by adjusting at least one of the coke ratio, the pulverized coal ratio, the blowing conditions, and the furnace top pressure of the blast furnace.
【0010】[0010]
【数1】E=ρ0 (V0 /S)2 ×T/T0 ×P0 /P 但し、ρ0 :標準状態でのガス密度(kg/Nm3 ) V0 :標準状態での炉頂ガス流量(Nm3 /s) T:炉頂温度(K) T0 :標準状態温度(K)(=273) P:炉頂圧力(kg/cm2 ) P0 :標準状態圧力(kg/cm2 )(=1.03) S:炉口部面積(m2 )E = ρ 0 (V 0 / S) 2 × T / T 0 × P 0 / P where ρ 0 : gas density in standard condition (kg / Nm 3 ) V 0 : furnace in standard condition Top gas flow rate (Nm 3 / s) T: furnace top temperature (K) T 0 : standard state temperature (K) (= 273) P: furnace top pressure (kg / cm 2 ) P 0 : standard state pressure (kg / cm 2 ) (= 1.03) S: Furnace opening area (m 2 )
【0011】本発明の高炉操業方法において採用する吹
抜け限界炉口エネルギーE0 は、少なくとも1点、望ま
しくは多数のデータ中の最低値を採用することは言うま
でもない。It is needless to say that at least one point, preferably the lowest value among a large number of data, is used as the blow-through limit furnace energy E 0 employed in the blast furnace operating method of the present invention.
【0012】上記した本発明の高炉操業方法において、
炉口ガスエネルギーEを上記した数式1により算出する
方法について説明する。炉口ガスエネルギーEを算出す
るのに必要な炉頂ガス流量、炉頂ガス温度、炉頂圧力を
求めるのは、例えば次の方法による。In the blast furnace operating method of the present invention described above,
A method of calculating the furnace port gas energy E by the above-described formula 1 will be described. The furnace top gas flow rate, furnace top gas temperature, and furnace top pressure required to calculate the furnace port gas energy E are determined by, for example, the following method.
【0013】高炉を垂直方向に例えば5分割し、それぞ
れ上方から予熱帯、ガス還元帯、ソリューションロス
帯、融着帯、滴下帯とする。そして、これらのうち、予
熱帯では装入物中の水分の蒸発や石灰石の熱分解反応
が、ガス還元帯では酸化鉄の還元反応が、ソリューショ
ンロス帯ではソリューションロス反応が、融着帯では鉱
石や焼結鉱の溶解反応が、滴下帯では浸炭、Si,M
n,Pの還元反応が起こるものとする。The blast furnace is vertically divided into, for example, five sections, and a pre-tropical zone, a gas reduction zone, a solution loss zone, a fusion zone, and a dripping zone are formed from above. Among them, in the pre-tropical zone, the evaporation of water in the charge and the thermal decomposition reaction of limestone, the reduction reaction of iron oxide in the gas reduction zone, the solution loss reaction in the solution loss zone, and the ore in the cohesive zone. Reaction of sinter and ore, carburization, Si, M
It is assumed that a reduction reaction of n and P occurs.
【0014】このように、各段での反応を限定し、各段
での固体温度を前提条件として与えることにより、上段
における固体流量と反応による固体流量の変化量を加算
したものが、固体流量であり、下段におけるガス流量と
反応によるガス流量の変化量を加算したものが、ガス流
量である、という、質量バランス式より、総括反応量
と、各段におけるガス流量と、固体流量を求める。As described above, by limiting the reaction in each stage and giving the solid temperature in each stage as a precondition, the solid flow rate in the upper stage and the change in the solid flow rate due to the reaction are added to obtain the solid flow rate. From the mass balance equation, the sum of the gas flow rate in the lower stage and the amount of change in the gas flow rate due to the reaction is the gas flow rate. The total reaction amount, the gas flow rate in each stage, and the solid flow rate are obtained.
【0015】また、下段におけるガス温度とガス比熱と
ガス流量を乗算したものと、固体温度と固体比熱と固体
流量を乗算したものと、総括反応量と反応熱を乗算した
ものの3つを加算したものの入熱が、ガス温度とガス比
熱とガス流量を乗算したものと、下段における固体温度
と固体比熱と固体流量を乗算したものと、炉体熱放散の
3つを加算したものの出熱と等しい、という熱バランス
式より各段でのガス温度を求める。[0015] Further, three values obtained by multiplying the gas temperature, the gas specific heat, and the gas flow rate in the lower stage, multiplying the solid temperature, the solid specific heat, and the solid flow rate, and multiplying the total reaction amount and the reaction heat, are added. The heat input of the product is equal to the product of the product of the gas temperature, the specific heat of the gas, and the gas flow rate, the product of the solid temperature, the specific heat of the solid component, and the solid flow rate in the lower stage, and the heat output of the product obtained by adding the three values of the furnace body heat dissipation , The gas temperature at each stage is determined.
【0016】そして、上記した質量バランス式によって
求めた各段でのガス流量と、熱バランス式により求めた
各段でのガス温度のうちの、予熱帯でのガス温度、ガス
流量を、炉頂ガス温度、炉頂ガス流量とする。また、炉
頂圧力は設備能力や操業条件等により任意の圧力に設定
する。Then, the gas temperature and gas flow rate in the pre-tropical zone of the gas flow rate at each stage determined by the above-described mass balance equation and the gas temperature at each stage determined by the heat balance equation are determined by the furnace top. Gas temperature and furnace top gas flow rate. Further, the furnace top pressure is set to an arbitrary pressure depending on the facility capacity, operating conditions, and the like.
【0017】このようにして求めた炉頂ガス温度、炉頂
ガス流量、炉頂圧力を用いて、炉口ガスエネルギーEを
算出し、この算出した炉口ガスエネルギーEが、吹抜け
限界炉口エネルギーE0 よりも小さくなるように、コー
クス比、微粉炭比、送風条件すなわち熱風量や酸素吹込
み量、及び炉頂圧力を調整するのであるが、熱風量や酸
素吹込み量を増加させると、ガス流量は増加することに
なり、その結果、炉頂ガス温度は上昇し、炉頂ガス流量
は増加する。そして、最終的に炉口ガスエネルギーEが
上昇することになる。Using the thus obtained top gas temperature, top gas flow rate, and top pressure, a furnace port gas energy E is calculated, and the calculated furnace gas energy E is calculated as the blow-through limit furnace port energy. to be smaller than E 0, the coke ratio, pulverized coal ratio, blowing conditions i.e. hot air volume and oxygen flow amount, and furnace top the pressure is to adjust the, increasing the hot air volume and oxygen flow volume, The gas flow rate will increase, resulting in an increase in the top gas temperature and an increase in the top gas flow rate. Then, the furnace port gas energy E eventually increases.
【0018】また、微粉炭は滴下帯にて全量燃焼すると
仮定すると、微粉炭比を増加させると、熱風量、酸素吹
込み量を増加させた場合と同様に、炉口ガスエネルギー
Eは上昇することになる。Further, assuming that all the pulverized coal is burned in the dropping zone, when the pulverized coal ratio is increased, the furnace gas energy E increases as in the case where the amount of hot air and the amount of oxygen blown are increased. Will be.
【0019】また、コークス比を増加させると、固体流
量が増加し、炉頂ガス温度を低下させる。また、コーク
ス比の増加は、微粉炭比の減少につながる。その結果、
コークス比を増加させると、炉口ガスエネルギーEは低
下することになる。When the coke ratio is increased, the solids flow rate is increased and the furnace top gas temperature is lowered. Also, an increase in the coke ratio leads to a decrease in the pulverized coal ratio. as a result,
If the coke ratio is increased, the furnace gas energy E will decrease.
【0020】以上より、炉口ガスエネルギーEを低下さ
せる方法としては、次の3つの制御手段があることが判
る。その一つは、高炉内ガス流量を低下させることであ
る。例えば、高炉羽口から吹込む熱風量と酸素量におい
て酸素富化率を上昇させ、高炉に吹込むガス量を低下さ
せる方法である。熱風中の窒素は反応に寄与しないた
め、酸素富化率を上昇させることで、出銑量を下げるこ
となく炉内のガス量を低下させ、炉口ガスエネルギーE
を低下させることができる。From the above, it can be seen that there are the following three control means as a method of reducing the furnace port gas energy E. One of them is to reduce the gas flow rate in the blast furnace. For example, there is a method in which the oxygen enrichment rate is increased in the amount of hot air and the amount of oxygen blown from the tuyere of the blast furnace, and the amount of gas blown into the blast furnace is reduced. Since nitrogen in the hot air does not contribute to the reaction, increasing the oxygen enrichment rate reduces the amount of gas in the furnace without lowering the tapping rate, and reduces the furnace gas energy E
Can be reduced.
【0021】二つ目は、炉頂温度を低下させることであ
る。例えば出銑量当りの微粉炭使用量(以下、「微粉炭
比」という)を低下させ、コークス使用量(以下、「コ
ークス比」という)を上げることである。コークス比を
上げることで、出銑量当りの炉上部からの装入物量を増
加させ、熱流比(装入物の熱量/炉内ガスの熱量)を上
昇させて、炉頂温度を低下させることができる。その結
果、炉口ガスエネルギーEを低下させることができる。The second is to lower the furnace top temperature. For example, reducing the amount of pulverized coal used per tapping amount (hereinafter, referred to as “pulverized coal ratio”) and increasing the amount of coke used (hereinafter, referred to as “coke ratio”). Increasing the coke ratio to increase the amount of charge from the top of the furnace per tapping rate, and increasing the heat flow ratio (heat of charge / heat of gas in the furnace) to lower the furnace top temperature Can be. As a result, the furnace port gas energy E can be reduced.
【0022】三つ目は、炉頂圧力を上昇させることであ
る。炉頂圧力を上昇させることで、炉頂ガス流量を低下
させることができ、その結果、炉口ガスエネルギーEを
低下させることができる。Third, the furnace top pressure is increased. By raising the furnace top pressure, the furnace top gas flow rate can be reduced, and as a result, furnace port gas energy E can be reduced.
【0023】ところで、例えば高炉の炉口プロフィール
により、吹抜け限界炉口ガスエネルギーE0 の値は異な
る。また、同一炉口プロフィールの高炉においても、高
炉操業中に炉口部損傷、例えば炉口部の耐火物脱落によ
り、炉口部でのガス流れが不均一となり、吹抜け限界炉
口ガスエネルギーE0 の値は変化する。従って、炉口部
の形状が変化した時には、吹抜け限界炉口ガスエネルギ
ーE0 を再度求めることが必要になる。By the way, the value of the blow-through limit furnace port gas energy E 0 differs depending on, for example, the furnace port profile of the blast furnace. Even in the blast furnace having the same furnace port profile, the gas flow in the furnace port becomes uneven due to damage to the furnace port during operation of the blast furnace, for example, refractory falling off the furnace port, and the blow-through limit furnace gas energy E 0. Varies. Therefore, when the shape of the throat portion has changed, it is necessary to obtain the blow-limit furnace inlet gas energy E 0 again.
【0024】この場合、炉口プロフィールの変化を知る
指標として、例えば炉口耐火物温度がある。従って、上
記した本発明の高炉操業方法においては、高炉炉口炉壁
部の温度から炉口部耐火物の損傷程度を検知し、損傷程
度に応じて前記吹抜け限界炉口エネルギーE0 の値を修
正することが望ましい。In this case, for example, there is a furnace port refractory temperature as an index for knowing a change in the furnace port profile. Therefore, in the blast furnace operating method of the present invention described above, the degree of damage to the furnace mouth refractory is detected from the temperature of the blast furnace furnace wall, and the value of the blow-through limit furnace mouth energy E 0 is determined in accordance with the degree of damage. It is desirable to correct it.
【0025】この場合、例えば耐火物温度がΔT(℃)
上昇した場合、炉口耐火物が脱落したものと判断するの
である。炉口耐火物の脱落により、炉内に空間が生じ、
吹抜けしやすい状態になった場合、吹抜け限界炉口ガス
エネルギーE0 の値は減少する。従って、炉口耐火物が
脱落し、吹抜け限界炉口ガスエネルギーE0 が低下し
て、炉口ガスエネルギーEよりも小さくなった状態の操
業を継続すると吹抜けが発生することになる。In this case, for example, when the refractory temperature is ΔT (° C.)
If it rises, it is determined that the furnace refractory has fallen off. Due to the fall of the refractory at the furnace opening, a space is created in the furnace,
If it becomes blow easy state, the value of the blow-limit furnace inlet gas energy E 0 is reduced. Accordingly, if the furnace port refractories fall off and the blow-through limit furnace port gas energy E 0 decreases and the operation is continued in a state where the furnace port gas energy E becomes smaller than the furnace port gas energy E, blow-through occurs.
【0026】[0026]
【実施例】以下、本発明の高炉操業方法の効果を確認す
るために行った実験結果について説明する。内容積が2
700m3 、出銑比が2.0ton/m3 /日、炉頂圧
力が1.75kg/cm2 の高炉において、炉口ガスエ
ネルギーEと吹き抜けの関係を3ヶ月間調査すると、炉
口部が健全な期間では、図1に示すように、炉口ガスエ
ネルギーEが2.85kg/m/秒2 以上の時に、ま
た、炉口部が損傷した場合には、図示省略したが、炉口
ガスエネルギーEが2.55kg/m/秒2 以上の時
に、吹抜けが発生していることが判明した。従って、こ
の高炉での吹抜け限界炉口ガスエネルギーE0 を2.8
5kg/m/秒2 と、また、炉口損傷時(ΔTが100
℃を超える時)の吹抜け限界炉口ガスエネルギーE0 を
2.55kg/m/秒2 とした。DESCRIPTION OF THE PREFERRED EMBODIMENTS The results of experiments conducted to confirm the effects of the blast furnace operating method of the present invention will be described below. Internal volume is 2
In a blast furnace with 700 m 3 , tapping ratio of 2.0 ton / m 3 / day and furnace top pressure of 1.75 kg / cm 2 , the relationship between the furnace gas energy E and blow-through was investigated for three months. In the healthy period, as shown in FIG. 1, when the furnace mouth gas energy E is 2.85 kg / m / sec 2 or more, and when the furnace mouth portion is damaged, it is omitted from the drawing. When the energy E was 2.55 kg / m / sec 2 or more, it was found that blow-by occurred. Therefore, the blow-through limit furnace port gas energy E 0 in this blast furnace is 2.8.
And 5 kg / m / sec 2, also at throat injury ([Delta] T is 100
℃ blow limit furnace inlet gas energy E 0 when) exceeding was 2.55 kg / m / sec 2.
【0027】図2(a)に本発明の高炉操業方法を実施
する前の操業経緯を示す。内容積が2700m3 、出銑
比が2.0ton/m3 /日の高炉において、熱風量が
3900Nm3 /分、酸素吹込み量が6400Nm3 /
時間で操業していたところ、1日当たり100トンの増
産要請があり、熱風量を100Nm3 /分だけ増量して
操業を行ったところ、吹き抜けが頻発した。後に操業解
析を行ったところ、炉口ガスエネルギーEが吹抜け限界
炉口ガスエネルギーE0 (=2.85kg/m/秒2 )
よりも大きくなっていた。FIG. 2A shows the operation history before the blast furnace operation method of the present invention is carried out. Internal volume of 2700 m 3, in blast furnaces tapping ratio 2.0ton / m 3 / day, the hot air amount 3900Nm 3 / min, oxygen flow amount is 6400Nm 3 /
When the plant was operated for hours, there was a request for an increase in production of 100 tons per day. When the plant was operated with the amount of hot air increased by 100 Nm 3 / min, blow-through occurred frequently. When the operation analysis was performed later, the furnace port gas energy E was found to be lower than the blow-through limit furnace gas energy E 0 (= 2.85 kg / m / sec 2 ).
Was bigger than.
【0028】これに対して、内容積が2700m3 、出
銑比が2.0ton/m3 /日の高炉において、熱風量
が3850Nm3 /分、酸素吹込み量が6600Nm3
/時間、計算炉口ガスエネルギーが2.71kg/m/
秒2 での操業中に、1日当たり100トンの増産要請が
あり、熱風量を50Nm3 /分、酸素吹込み量を600
Nm3 /時間だけ増量して操業を設計したところ、前述
のモデル計算では計算炉口ガスエネルギーは2.84k
g/m/秒2 となった。On the other hand, in a blast furnace having an inner volume of 2700 m 3 and a tapping ratio of 2.0 ton / m 3 / day, the hot air volume is 3850 Nm 3 / min and the oxygen blowing volume is 6600 Nm 3.
/ Hour, calculated furnace gas energy is 2.71 kg / m /
During the operation at 2 seconds, there was a request to increase the production by 100 tons per day, the hot air flow rate was 50 Nm 3 / min, and the oxygen flow rate was 600
When the operation was designed with the amount increased by Nm 3 / hour, the calculated reactor gas energy was 2.84 k in the above-described model calculation.
It became g / m / sec 2.
【0029】従って、炉口ガスエネルギーは吹抜け限界
炉口ガスエネルギーE0 よりも小さい値を維持できると
判断し、熱風量を50Nm3 /分、酸素吹込み量を60
0Nm3 /時間だけ増量して操業を行い、以後は実績炉
口ガスエネルギーEをトレースして行ったところ、燃料
比の上昇に伴う炉頂ガス温度の上昇により、炉口ガスエ
ネルギーEは2.84kg/m/秒2 となった。この
時、吹抜け発生の可能性が大きいと判断し、熱風量を5
0Nm3 /分だけ減量して3850Nm3 /分に、一
方、酸素吹込み量は400Nm3 /時間だけ増量して7
600Nm3 /時間で操業を設計したところ、計算炉口
ガスエネルギーは2.73kg/m/秒2 となったの
で、以後はこの条件で操業を行ったところ、吹抜けは発
生しなかった。この経緯を図2(b)に示す。Therefore, it is determined that the furnace port gas energy can be maintained at a value smaller than the blow-through limit furnace port gas energy E 0 , and the hot air flow rate is 50 Nm 3 / min, and the oxygen blowing rate is 60.
The operation was performed by increasing the amount by 0 Nm 3 / hour, and thereafter, the actual furnace gas energy E was traced, and the furnace gas energy E was increased to 2. It became the 84kg / m / sec 2. At this time, it is determined that the possibility of blow-by is large, and
0 Nm 3 / min is reduced to 3850 Nm 3 / min, while the oxygen injection is increased by 400 Nm 3 / h to 7
When the operation was designed at 600 Nm 3 / hour, the calculated furnace gas energy was 2.73 kg / m / sec 2. Thereafter, when the operation was performed under these conditions, no blow-by occurred. This process is shown in FIG.
【0030】図3(a)は本発明の高炉操業方法を実施
する前の操業経緯の他の例を示すものである。内容積が
2700m3 、出銑比が2.0ton/m3 /日の高炉
において、熱風量が3900Nm3 /分、酸素吹込み量
が6400Nm3 /時間で操業していたところ、吹抜け
が連続発生した。その時、炉口耐火物の温度は300℃
から410℃まで上昇していた。その後の休風で炉口部
分を目視で確認したところ、炉口耐火物の損傷や脱落が
あった。後に操業解析を行ったところ、炉口ガスエネル
ギーEが炉口損傷時の吹抜け限界炉口ガスエネルギーE
0 (=2.55kg/m/秒2 )よりも大きくなってい
た。FIG. 3A shows another example of the operation history before the method of operating the blast furnace according to the present invention. In a blast furnace with an inner volume of 2700 m 3 and a tapping ratio of 2.0 ton / m 3 / day, the hot air flow was 3900 Nm 3 / min, and the oxygen blowing rate was 6400 Nm 3 / hour, and continuous blow-through occurred. did. At that time, the temperature of the furnace refractory was 300 ° C.
To 410 ° C. When the furnace mouth was visually inspected after the wind was shut off, the furnace mouth refractory was damaged or dropped off. When the operation analysis was performed later, the furnace gas energy E was found to be lower than the blow-through limit furnace gas energy E when the furnace port was damaged.
0 (= 2.55 kg / m / sec 2 ).
【0031】これに対して、内容積が2700m3 、出
銑比が2.0ton/m3 /日の高炉において、熱風量
が3850Nm3 /分、酸素吹込み量が6600Nm3
/時間、計算炉口ガスエネルギーが2.71kg/m/
秒2 で操業していたところ、炉口耐火物の温度が300
℃から410℃まで上昇したため、炉口耐火物の損傷、
脱落があったと判断した。従って、炉口損傷時における
吹抜け限界炉口ガスエネルギーE0 (=2.55kg/
m/秒2 )よりも計算炉口ガスエネルギーが小さくなる
関係を維持できるよう、熱風量が3700Nm3 /分、
酸素吹込み量が8500Nm3 /時間、計算炉口ガスエ
ネルギーが2.51kg/m/秒2 で操業したところ、
吹抜けは発生しなかった。この経緯を図3(b)に示
す。On the other hand, in a blast furnace having an inner volume of 2700 m 3 and a tapping ratio of 2.0 ton / m 3 / day, the amount of hot air is 3850 Nm 3 / min and the amount of oxygen blown is 6600 Nm 3.
/ Hour, calculated furnace gas energy is 2.71 kg / m /
After operating for 2 seconds, the furnace refractory temperature was 300
Temperature rise from 410 ℃ to 410 ℃.
It was determined that there was a dropout. Therefore, the blow-through limit furnace gas energy E 0 (= 2.55 kg /
m / sec 2 ), the hot air flow rate is 3700 Nm 3 / min.
When the operation was performed at an oxygen injection rate of 8500 Nm 3 / hour and a calculated furnace gas energy of 2.51 kg / m / sec 2 ,
No stairwell occurred. This process is shown in FIG.
【0032】図4(a)は本発明の高炉操業方法を実施
する前の操業経緯のさらに他の例を示すものである。内
容積が2700m3 、出銑比が2.0ton/m3 /日
の高炉において、コークス比が326kg/ton・p
ig、微粉炭比が180kg/ton・pigで操業し
ていた。コークス比を314kg/ton・pig、微
粉炭比を195kg/ton・pigに諸元変更して操
業を行ったところ、吹抜けが頻発した。後に操業解析を
行ったところ、炉口ガスエネルギーEが吹抜け限界炉口
ガスエネルギーE0 (=2.85kg/m/秒2 )より
も大きくなっていた。FIG. 4 (a) shows still another example of the operation history before the method of operating the blast furnace according to the present invention. In a blast furnace having an inner volume of 2700 m 3 and a tapping ratio of 2.0 ton / m 3 / day, a coke ratio of 326 kg / ton · p
ig, pulverized coal ratio was 180 kg / ton · pig. When the coke ratio was changed to 314 kg / ton-pig and the pulverized coal ratio was changed to 195 kg / ton-pig, the run-through occurred frequently. When the operation analysis was performed later, it was found that the furnace port gas energy E was larger than the blow-through limit furnace port gas energy E 0 (= 2.85 kg / m / sec 2 ).
【0033】これに対して、内容積が2700m3 、出
銑比が2.0ton/m3 /日の高炉において、コーク
ス比が326kg/ton・pig、微粉炭比が180
kg/ton・pig、計算炉口ガスエネルギーが2.
73kg/m/秒2 で操業していた。その後、コークス
比を318kg/ton・pig、微粉炭比を190k
g/ton・pigに諸元変更して操業を行うべく操業
設計を行ったところ、前述のモデル計算では、計算炉口
ガスエネルギーは2.83kg/m/秒2 となった。従
って、吹抜け限界炉口ガスエネルギーE0 (=2.85
kg/m/秒2)よりも計算炉口ガスエネルギーが小さ
くなる関係を維持できると判断し、コークス比が318
kg/ton・pig、微粉炭比が190kg/ton
・pigで操業を行い、以後は実績炉口ガスエネルギー
Eをトレースして行った。その結果、炉頂ガス温度の上
昇により、炉口ガスエネルギーEは2.85kg/m/
秒 2 となった。この時、吹抜け発生の可能性が大きいと
判断し、コークス比を321kg/ton・pig、微
粉炭比を185kg/ton・pigで操業設計したと
ころ、計算炉口ガスエネルギーは2.78kg/m/秒
2 となったので、以後はこの条件で操業を行ったとこ
ろ、吹抜けは発生しなかった。この経緯を図4(b)に
示す。On the other hand, the inner volume is 2700 mThree , Out
Pig ratio is 2.0 ton / mThree / Day in a blast furnace
326 kg / ton ・ pig, pulverized coal ratio is 180
kg / ton-pig, calculated furnace gas energy is 2.
73kg / m / secTwo Had been operating. Then coke
The ratio is 318 kg / ton ・ pig, and the pulverized coal ratio is 190 k.
Operation to change the specifications to g / ton ・ pig
As a result of the design, the model
Gas energy is 2.83 kg / m / secTwo It became. Obedience
The gas energy E0 (= 2.85
kg / m / secTwo) Calculation furnace gas energy is smaller than
And the coke ratio is 318.
kg / ton ・ pig, pulverized coal ratio is 190kg / ton
・ Pig operation, and then actual furnace gas energy
E was performed by tracing. As a result, the furnace gas temperature
As a result, the furnace port gas energy E was 2.85 kg / m /
Second Two It became. At this time, if the possibility of
Judge and set the coke ratio to 321kg / ton-pig, fine
Designed for operation with a pulverized coal ratio of 185 kg / ton ・ pig
At this time, the calculated furnace gas energy was 2.78 kg / m / sec.
Two Since then, operations have been carried out under these conditions.
Of course, no stairwell occurred. FIG. 4 (b) shows this process.
Show.
【0034】[0034]
【発明の効果】以上説明したように、本発明の高炉操業
方法によれば、操業条件を変化させない時は勿論のこ
と、操業条件を大きく変化させた場合でも、高炉炉頂部
における装入物やガス流れを安定させることができる。
従って、本発明の高炉操業方法によれば、長期的に吹き
抜けを起こさずに高炉を操業することができる。As described above, according to the blast furnace operating method of the present invention, not only when the operating conditions are not changed, but also when the operating conditions are largely changed, the charge at the top of the blast furnace does not change. The gas flow can be stabilized.
Therefore, according to the blast furnace operating method of the present invention, it is possible to operate the blast furnace without causing blow-by for a long time.
【図1】本発明の操業事例(ガスエネルギーと吹抜け頻
度の関係)を示す図である。FIG. 1 is a diagram showing an operation example (relation between gas energy and blow-by frequency) of the present invention.
【図2】増産時における高炉の操業経緯を示す図で、
(a)は本発明方法を実施しない場合、(b)は本発明
方法を実施した場合を示す図である。FIG. 2 is a diagram showing the operation history of a blast furnace at the time of increasing production.
(A) is a diagram showing a case where the method of the present invention is not performed, and (b) is a diagram showing a case where the method of the present invention is performed.
【図3】炉口損傷時における高炉の操業経緯を示す図
で、(a)は本発明方法を実施しない場合、(b)は本
発明方法を実施した場合を示す図である。3A and 3B are diagrams showing the operation history of a blast furnace at the time of furnace opening damage, wherein FIG. 3A shows a case where the method of the present invention is not performed, and FIG. 3B shows a case where the method of the present invention is performed.
【図4】コークス比を低減させて微粉炭比を増加させる
場合における高炉の操業経緯を示す図で、(a)は本発
明方法を実施しない場合、(b)は本発明方法を実施し
た場合を示す図である。FIGS. 4A and 4B are diagrams showing the operation history of a blast furnace when the pulverized coal ratio is increased by reducing the coke ratio, wherein FIG. 4A shows a case where the method of the present invention is not performed, and FIG. 4B shows a case where the method of the present invention is performed. FIG.
Claims (2)
Eを下記式により算出し、その算出値が、高炉の操業実
績により実際に吹き抜けが発生した時の、予め求めてお
いた炉口ガスエネルギーの最低値E0 よりも小さくなる
ように、高炉のコークス比、微粉炭比、送風条件、炉頂
圧力の少なくともいずれか一つを調整して操業すること
を特徴とする高炉操業方法。 E=ρ0 (V0 /S)2 ×T/T0 ×P0 /P 但し、ρ0 :標準状態でのガス密度(kg/Nm3 ) V0 :標準状態での炉頂ガス流量(Nm3 /s) T:炉頂温度(K) T0 :標準状態温度(K)(=273) P:炉頂圧力(kg/cm2 ) P0 :標準状態圧力(kg/cm2 )(=1.03) S:炉口部面積(m2 )1. The furnace gas energy E at the blast furnace furnace opening is calculated by the following equation, and the calculated value is the furnace gas energy previously determined when blow-through actually occurs based on the operation results of the blast furnace. A blast furnace operating method by adjusting at least one of a coke ratio, a pulverized coal ratio, a blowing condition, and a furnace top pressure of the blast furnace so as to be smaller than a minimum value E 0 of the blast furnace. E = ρ 0 (V 0 / S) 2 × T / T 0 × P 0 / P where ρ 0 : gas density in standard condition (kg / Nm 3 ) V 0 : furnace top gas flow rate in standard condition ( Nm 3 / s) T: Furnace top temperature (K) T 0 : Standard state temperature (K) (= 273) P: Furnace top pressure (kg / cm 2 ) P 0 : Standard state pressure (kg / cm 2 ) ( = 1.03) S: Furnace opening area (m 2 )
の損傷程度を検知し、損傷程度に応じて前記炉口ガスエ
ネルギーの最低値E0 の値を修正することを特徴とする
請求項1記載の高炉操業方法。2. The method according to claim 1, wherein the degree of damage of the refractory at the furnace mouth is detected from the temperature of the furnace wall of the blast furnace furnace, and the minimum value E 0 of the furnace gas energy is corrected according to the degree of damage. The blast furnace operating method according to claim 1, wherein
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11083394A JP3077691B1 (en) | 1999-03-26 | 1999-03-26 | Blast furnace operation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11083394A JP3077691B1 (en) | 1999-03-26 | 1999-03-26 | Blast furnace operation method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP3077691B1 true JP3077691B1 (en) | 2000-08-14 |
JP2000273509A JP2000273509A (en) | 2000-10-03 |
Family
ID=13801227
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11083394A Expired - Lifetime JP3077691B1 (en) | 1999-03-26 | 1999-03-26 | Blast furnace operation method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3077691B1 (en) |
-
1999
- 1999-03-26 JP JP11083394A patent/JP3077691B1/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2000273509A (en) | 2000-10-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5546675B1 (en) | Blast furnace operating method and hot metal manufacturing method | |
JP3077691B1 (en) | Blast furnace operation method | |
JP5381899B2 (en) | Blast furnace operation method | |
JP6977704B2 (en) | Oxygen blast furnace equipment and operation method of oxygen blast furnace | |
JP2001262208A (en) | Method for operating blast furnace | |
JP5256982B2 (en) | Operation method of vertical melting furnace | |
JPH1046215A (en) | Method for controlling furnace heat in blast furnace | |
JP5693768B2 (en) | Blast furnace operating method and hot metal manufacturing method | |
KR100862158B1 (en) | Apparatus ang method for controlling temperature to protect gas explosion of furnace top | |
JP7167652B2 (en) | Blast furnace operation method | |
TWI700372B (en) | Blast furnace facility and monitoring method for liquid level of slag of blast furnace | |
TW202300661A (en) | Oxygen blast furnace and oxygen blast furnace operation method | |
JP3722059B2 (en) | Operation method of smelting reduction furnace | |
JP3646674B2 (en) | Blast furnace operation method | |
KR100356156B1 (en) | A method for promoting combustibility in balst furnace | |
SU1682402A1 (en) | Method for control and regulation of distribution of the materials and gases on section of blast furnace | |
KR20000028284A (en) | Method for deciding ventilation inside melting furnace | |
KR20000042525A (en) | Method of operating melting furnace | |
EP2238269B1 (en) | Method for forecasting sharp drop of pressure of melter-gasifier and method for controlling the pressure in ironmaking process | |
JPH01268813A (en) | Method for controlling fluidized bed type smelting reduction furnace | |
KR20040056093A (en) | Method of reducing pressure peak in coal and fine iron ore based ironmaking process | |
Carmichael et al. | Recent Operation of Redcar No. 1 Blast Furnace | |
JPH0227406B2 (en) | TANZAIJUTENSOGATAYOJUKANGENRONOSOGYOHOHO | |
JPH0359966B2 (en) | ||
JP2002069517A (en) | Method for operating smelting reduction furnace |