JP6977704B2 - Oxygen blast furnace equipment and operation method of oxygen blast furnace - Google Patents

Oxygen blast furnace equipment and operation method of oxygen blast furnace Download PDF

Info

Publication number
JP6977704B2
JP6977704B2 JP2018233116A JP2018233116A JP6977704B2 JP 6977704 B2 JP6977704 B2 JP 6977704B2 JP 2018233116 A JP2018233116 A JP 2018233116A JP 2018233116 A JP2018233116 A JP 2018233116A JP 6977704 B2 JP6977704 B2 JP 6977704B2
Authority
JP
Japan
Prior art keywords
oxygen
tuyere
blast furnace
air
facility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018233116A
Other languages
Japanese (ja)
Other versions
JP2020094240A (en
Inventor
純仁 小澤
功一 ▲高▼橋
祐哉 守田
雄基 川尻
泰平 野内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2018233116A priority Critical patent/JP6977704B2/en
Publication of JP2020094240A publication Critical patent/JP2020094240A/en
Application granted granted Critical
Publication of JP6977704B2 publication Critical patent/JP6977704B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Iron (AREA)
  • Blast Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Description

本発明は、酸素または酸素富化空気と、気体還元材および/または固体還元材とを羽口から高炉内に供給して操業する酸素高炉設備および当該酸素高炉設備を用いた酸素高炉の操業方法に関する。 The present invention is an oxygen blast furnace facility for operating by supplying oxygen or oxygen-enriched air and a gas reducing material and / or a solid reducing material into the blast furnace from a tuyere, and a method for operating an oxygen blast furnace using the oxygen blast furnace facility. Regarding.

酸素高炉は、羽口から酸素または酸素を50体積%以上含む酸素富化空気と、還元材である微粉炭と、を吹き込むことで空気を予熱した熱風送風を行う通常高炉と比較して、高炉内部での鉄鉱石の還元に作用しない炉内の窒素ガス量を低減し、これにより、高炉の生産性の向上を実現している。しかしながら、酸素高炉では羽口から純酸素を吹き込んで炉内滞留コークスと反応させるので、羽口先温度が異常に高温になるという課題がある。このため、酸素高炉の操業では、羽口先温度である羽口先の燃焼領域の温度を通常高炉と同等の2000℃以上2600℃以下程度に制御する必要がある。 The oxygen blast furnace is a blast furnace compared to a normal blast furnace that preheats the air by blowing oxygen or oxygen-enriched air containing 50% by volume or more of oxygen from the tuyere and pulverized coal as a reducing material. The amount of nitrogen gas in the furnace, which does not affect the reduction of iron ore inside, is reduced, which improves the productivity of the blast furnace. However, in an oxygen blast furnace, pure oxygen is blown from the tuyere to react with the coke staying in the furnace, so that there is a problem that the tuyere tip temperature becomes abnormally high. Therefore, in the operation of the oxygen blast furnace, it is necessary to control the temperature of the combustion region of the tuyere tip, which is the tuyere tip temperature, to about 2000 ° C. or higher and 2600 ° C. or lower, which is equivalent to that of a normal blast furnace.

特許文献1には、COを含む炉頂ガスを還流させて羽口から純酸素とともに吹き込むことで、羽口先温度を所定の温度範囲に制御する方法が開示されている。また、特許文献1には、羽口から常温の純酸素とともに冷却剤であるHOまたはCOを炉内に吹込み、羽口先温度を所定の温度範囲に制御しながら、窒素を含まない高炉ガスを発生させる方法も開示されている。 Patent Document 1 discloses a method of controlling the tuyere tip temperature within a predetermined temperature range by refluxing a furnace top gas containing CO 2 and blowing it together with pure oxygen from the tuyere. In Patent Document 1, while controlling blowing of H 2 O or CO 2 as the cooling agent with pure oxygen at room temperature from the tuyere in the furnace, the tuyere temperature within a predetermined temperature range, does not contain nitrogen A method for generating blast furnace gas is also disclosed.

特許文献2には、純酸素とともに羽口先温度を調整する重質油を羽口から吹き込む酸素高炉の操業方法が開示されている。また、特許文献3には、純酸素の一部に予熱酸素を用いることで、固体還元材である微粉炭の着火性の改善と羽口先温度の調整を両立する酸素高炉の操業方法が開示されている。 Patent Document 2 discloses an operation method of an oxygen blast furnace in which heavy oil for adjusting the tuyere temperature is blown from the tuyere together with pure oxygen. Further, Patent Document 3 discloses an operation method of an oxygen blast furnace that achieves both improvement of ignitability of pulverized coal, which is a solid reducing agent, and adjustment of tuyere temperature by using preheated oxygen as a part of pure oxygen. ing.

特開昭60−159104号公報Japanese Unexamined Patent Publication No. 60-159104 特開昭63−171807号公報Japanese Unexamined Patent Publication No. 63-171807 特開2016−222949号公報Japanese Unexamined Patent Publication No. 2016-22949

羽口先の温度が高温化するのは、酸素高炉に特有の問題であって、例えば、特許文献1では羽口から常温純酸素とともにHOやCOを吹き込んだときの吸熱反応を利用して羽口先温度を低下させている。これは、燃焼(酸化)とは逆反応(還元)の吸熱反応を利用して、異常に高温化した羽口先温度を低温化するものである。また、一般的に行われている羽口からの微粉炭吹込みの場合も、高炉でのコークス使用量の低減効果だけでなく、固体還元材としての吸熱反応を利用し、かつ、常温の微粉炭が昇温することにより羽口先温度を低下させている。 The temperature of the tuyere is higher temperatures is a particular problem in the oxygen blast furnace, for example, utilizing the endothermic reaction when blown of H 2 O and CO 2 with room temperature pure oxygen from Patent Document 1, tuyere The temperature of the tuyere is lowered. This is to lower the temperature of the tuyere, which has become abnormally high, by utilizing the endothermic reaction of the reverse reaction (reduction) of combustion (oxidation). Also, in the case of blowing pulverized coal from the tuyere, which is generally performed, not only the effect of reducing the amount of coke used in the blast furnace, but also the endothermic reaction as a solid reducing agent is used, and the pulverized powder at room temperature is used. The temperature of the tuyere is lowered by raising the temperature of the charcoal.

一方で、酸素高炉においても、通常高炉と同様に多くの操業トラブルが発生する可能性がある。例えば、炉頂ガス循環設備が停止した場合、冷却剤であるHOやCOが吹込めなくなるので羽口先温度は上昇し、例えば、純酸素とコークスのみの反応では3000℃以上にもなる。また、微粉炭吹込みにおいても、経路内において微粉炭詰りが発生した場合、微粉炭の冷却剤としての機能が低下するので羽口先温度は上昇する。酸素高炉は通常高炉よりも微粉炭の吹込み量が多いので羽口先温度への影響は特に大きくなる。 On the other hand, even in an oxygen blast furnace, many operational troubles may occur as in a normal blast furnace. For example, if the top gas circulation equipment is stopped, tuyere temperature since H 2 O and CO 2 as the cooling agent is not put spray rises, for example, for more than 3000 ° C. In the reaction of only pure oxygen and coke .. Further, even in the case of pulverized coal injection, if pulverized coal is clogged in the path, the function of the pulverized coal as a cooling agent is lowered, so that the tuyere temperature rises. Since the amount of pulverized coal blown into the oxygen blast furnace is larger than that of the normal blast furnace, the influence on the tuyere temperature is particularly large.

羽口先温度が上昇すると、SiOが還元されSiOガスとなって高炉を上昇し、冷却されて再度SiOとなるときに当該SiOが高炉内の原料同士を接着する。この接着により高炉内の原料の棚吊が発生しやすくなる。高炉内における原料の棚吊は、酸素高炉の操業を阻害する原因となる。また、羽口先温度が上昇すると、羽口への熱負荷も大きくなる。羽口への熱負荷は、羽口破損の原因となるので、羽口の寿命が短くなると共に、羽口交換作業による高炉操業のダウンタイムの増加に繋がり、生産性を悪化させる。 When tuyere temperature rises, becomes SiO gas SiO 2 is reduced by increasing the blast furnace, the SiO 2 to adhere the material to each other in the blast furnace when the SiO 2 again cooled. This adhesion makes it easier for raw materials to be suspended in the blast furnace. Suspension of raw materials in the blast furnace causes an obstacle to the operation of the oxygen blast furnace. In addition, as the tuyere temperature rises, the heat load on the tuyere also increases. Since the heat load on the tuyere causes damage to the tuyere, the life of the tuyere is shortened, and the downtime of the blast furnace operation due to the tuyere replacement work is increased, which deteriorates the productivity.

一方、羽口への酸素の供給を停止すれば、酸素とコークスとの反応は停止し羽口先温度は低下するが、羽口が閉塞する可能性が高くなる。羽口が閉塞する原因は、通常操業では羽口から酸素(気体)を炉内へ吹き込むことで、吹き込まれた気体がコークスを押しのけて羽口先に空間を形成しているが、酸素が吹き込まれなくなればコークスを押しのけられず、空間の形成が不可能になるからである。また、羽口先の空間が無くなると共に、羽口先温度も低下すると、スラグ固着などにより羽口が閉塞しやすい状態となる。羽口が閉塞すると再送風が困難となるので、酸素高炉では、冷却剤の供給が停止した場合に、羽口閉塞を回避しつつ羽口先温度を制御する設備や、当該設備を用いた酸素高炉の操業方法が求められていた。 On the other hand, if the supply of oxygen to the tuyere is stopped, the reaction between oxygen and coke is stopped and the tuyere tip temperature is lowered, but the tuyere is more likely to be blocked. The cause of the tuyere blockage is that in normal operation, oxygen (gas) is blown into the furnace from the tuyere, and the blown gas pushes the coke away to form a space at the tip of the tuyere, but oxygen is blown in. If it disappears, the coke cannot be pushed away and it becomes impossible to form a space. Further, when the space at the tip of the tuyere disappears and the temperature at the tip of the tuyere decreases, the tuyere tends to be blocked due to slag sticking or the like. If the tuyere is blocked, it becomes difficult to retransmit the wind. Therefore, in an oxygen blast furnace, equipment that controls the tuyere tip temperature while avoiding tuyere blockage when the supply of coolant is stopped, or an oxygen blast furnace using the equipment. There was a need for a method of operation.

本発明は、上述した課題を鑑みてなされたものであり、その目的は、冷却剤の供給が停止した場合でも羽口先温度の上昇を抑制しつつ羽口閉塞を回避できる、酸素高炉設備および酸素高炉の操業方法を提供することである。 The present invention has been made in view of the above-mentioned problems, and an object thereof is an oxygen blast furnace facility and oxygen capable of avoiding tuyere blockage while suppressing an increase in tuyere tip temperature even when the supply of a coolant is stopped. It is to provide a method of operating a blast furnace.

このような課題を解決するための本発明の特徴は、以下の通りである。
(1)酸素と、気体還元材および/または固体還元材と、を羽口から高炉内に供給して操業する酸素高炉設備であって、空気の圧力を高める圧縮機と、前記圧縮機によって圧力が高められた高圧空気を貯蔵する空気貯蔵設備と、気体還元材および/または固体還元材の流量を測定する流量計と、前記空気貯蔵設備から前記羽口への前記高圧空気の供給を制御する制御装置と、を有する、酸素高炉設備。
(2)酸素と、気体還元材および/または固体還元材と、を羽口から高炉内に供給して操業する酸素高炉設備であって、窒素の圧力を高める圧縮機と、前記圧縮機によって圧力が高められた高圧窒素を貯蔵する窒素貯蔵設備と、気体還元材および/または固体還元材の流量を測定する流量計と、前記窒素貯蔵設備から前記羽口への前記高圧窒素の供給を制御する制御装置と、を有する、酸素高炉設備。
(3)(1)に記載の酸素高炉設備を用いた酸素高炉の操業方法であって、前記気体還元材および/または固体還元材の流量が予め定められた流量以下になった場合に前記制御装置は、前記空気貯蔵設備から前記羽口に前記高圧空気を供給する、酸素高炉の操業方法。
(4)(1)に記載の酸素高炉設備を用いた酸素高炉の操業方法であって、前記酸素は、酸素を50体積%以上含む酸素富化空気であり、前記気体還元材および/または固体還元材の流量が予め定められた流量以下になった場合に前記制御装置は、前記空気貯蔵設備から前記羽口に前記高圧空気を供給して酸素を50体積%未満含む酸素富化空気に希釈する、酸素高炉の操業方法。
(5)(2)に記載の酸素高炉設備を用いた酸素高炉の操業方法であって、前記気体還元材および/または固体還元材の流量が予め定められた流量以下になった場合に前記制御装置は、前記窒素貯蔵設備から前記羽口に前記高圧窒素を供給する、酸素高炉の操業方法。
The features of the present invention for solving such a problem are as follows.
(1) An oxygen blast furnace facility that operates by supplying oxygen, a gas reducing material, and / or a solid reducing material from a tuyere into the blast furnace, and the pressure is increased by a compressor that increases the air pressure and the compressor. Controls the supply of the high pressure air from the air storage facility to the tuyere, an air storage facility for storing the enhanced high pressure air, a flow meter for measuring the flow rate of the gas reducing material and / or the solid reducing material. Oxygen blast furnace equipment, which has a control device.
(2) An oxygen blast furnace facility that operates by supplying oxygen, a gas reducing material, and / or a solid reducing material from a tuyere into the blast furnace, and the pressure is increased by a compressor that increases the pressure of nitrogen and the compressor. Controls the supply of the high pressure nitrogen from the nitrogen storage facility to the tuyere, a nitrogen storage facility for storing the enhanced high pressure nitrogen, a flow meter for measuring the flow rate of the gas reducing material and / or the solid reducing material. An oxygen blast furnace facility with a control device.
(3) In the method of operating an oxygen blast furnace using the oxygen blast furnace equipment according to (1), the control is performed when the flow rate of the gas reducing agent and / or the solid reducing material becomes equal to or less than a predetermined flow rate. The apparatus is an operating method of an oxygen blast furnace in which the high-pressure air is supplied from the air storage facility to the tuyere.
(4) The method for operating an oxygen blaster using the oxygen blaster facility according to (1), wherein the oxygen is oxygen-enriched air containing 50% by volume or more of oxygen, and is a gas reducing material and / or a solid. When the flow rate of the reducing material becomes equal to or lower than a predetermined flow rate, the control device supplies the high-pressure air from the air storage facility to the tuyere to dilute it with oxygen-enriched air containing less than 50% by volume of oxygen. How to operate an oxygen blast furnace.
(5) In the method of operating an oxygen blast furnace using the oxygen blast furnace equipment according to (2), the control is performed when the flow rate of the gas reducing agent and / or the solid reducing material becomes equal to or less than a predetermined flow rate. The apparatus is an operating method of an oxygen blast furnace in which the high-pressure nitrogen is supplied from the nitrogen storage facility to the tuyere.

本発明の酸素高炉設備を用いることで、冷却剤の供給が停止した場合に羽口閉塞を回避しつつ羽口先温度の上昇を抑制できる。このように、羽口先温度の上昇を抑制しつつ羽口閉塞を回避できるので、冷却剤の供給停止というトラブルが解消した後に酸素や冷却剤の供給を容易に再開でき、酸素高炉の安定操業への復帰が容易になる。 By using the oxygen blast furnace equipment of the present invention, it is possible to suppress an increase in the tuyere temperature while avoiding tuyere blockage when the supply of the cooling agent is stopped. In this way, it is possible to avoid the tuyere blockage while suppressing the rise in the tuyere temperature, so that the supply of oxygen and coolant can be easily resumed after the trouble of stopping the supply of the coolant is resolved, and the oxygen blast furnace can be operated stably. Will be easier to recover.

第1の実施形態に係る酸素高炉設備10を示す模式図である。It is a schematic diagram which shows the oxygen blast furnace equipment 10 which concerns on 1st Embodiment. 第2の実施形態に係る酸素高炉設備16を示す模式図である。It is a schematic diagram which shows the oxygen blast furnace equipment 16 which concerns on 2nd Embodiment. 第3の実施形態に係る酸素高炉設備18を示す模式図である。It is a schematic diagram which shows the oxygen blast furnace equipment 18 which concerns on 3rd Embodiment. 羽口設備14の断面模式図である。It is sectional drawing of the tuyere equipment 14. FIG. ラボ実験設備80の断面模式図である。It is sectional drawing of the laboratory experimental equipment 80. 羽口先温度の時間変化を示すグラフである。It is a graph which shows the time change of the tuyere temperature. 羽口先温度の時間変化を示すグラフである。It is a graph which shows the time change of the tuyere temperature.

本発明の実施形態を通じて本発明を説明する。図1は、第1の実施形態に係る酸素高炉設備10を示す模式図である。酸素高炉設備10は、高炉12と、酸素供給設備20と、微粉炭供給設備40と、空気供給設備50とを有する。酸素高炉設備10の高炉12においても、従来の熱風高炉と同じように炉頂から鉄鉱石や焼結鉱とともにコークスが装入される。高炉12の炉下部には羽口設備14が設けられており、当該羽口設備14から熱風に代えて常温の純酸素が高炉12内に供給される。 The present invention will be described through embodiments of the present invention. FIG. 1 is a schematic view showing an oxygen blast furnace facility 10 according to the first embodiment. The oxygen blast furnace facility 10 includes a blast furnace 12, an oxygen supply facility 20, a pulverized coal supply facility 40, and an air supply facility 50. In the blast furnace 12 of the oxygen blast furnace facility 10, coke is charged together with iron ore and sinter from the top of the furnace in the same manner as in the conventional hot air blast furnace. A tuyere facility 14 is provided in the lower part of the blast furnace 12, and pure oxygen at room temperature is supplied from the tuyere facility 14 to the blast furnace 12 instead of hot air.

酸素供給設備20は、常温の酸素を製造し、羽口設備14に酸素を供給する設備である。酸素供給設備20は、酸素製造装置22と、酸素配管24と、酸素圧縮機26と、高圧酸素配管28と、酸素貯蔵設備30と、酸素供給配管32とを有する。図1に示した例において、酸素製造装置22は、深冷分離法によって酸素を製造する設備であり、純酸素を製造する。酸素配管24は、酸素製造装置22と酸素圧縮機26とを接続する配管である。酸素圧縮機26は、酸素製造装置22によって製造された純酸素を圧縮する。本実施形態において、酸素圧縮機26は、純酸素の圧力を0.5MPa以上に圧縮する。 The oxygen supply facility 20 is a facility that produces oxygen at room temperature and supplies oxygen to the tuyere facility 14. The oxygen supply facility 20 includes an oxygen production device 22, an oxygen pipe 24, an oxygen compressor 26, a high-pressure oxygen pipe 28, an oxygen storage facility 30, and an oxygen supply pipe 32. In the example shown in FIG. 1, the oxygen production apparatus 22 is an equipment for producing oxygen by a deep cold separation method, and produces pure oxygen. The oxygen pipe 24 is a pipe that connects the oxygen production device 22 and the oxygen compressor 26. The oxygen compressor 26 compresses the pure oxygen produced by the oxygen producing apparatus 22. In the present embodiment, the oxygen compressor 26 compresses the pressure of pure oxygen to 0.5 MPa or more.

酸素貯蔵設備30は、圧縮された純酸素を貯蔵する設備である。このように、圧縮された純酸素を貯蔵する酸素貯蔵設備30を設けることによって、酸素圧縮機26と羽口設備14間における圧縮された酸素の貯蔵量を増やすことができる。このように、圧縮された酸素の貯蔵量を増やすことで、純酸素を高炉に吹き込むことによる圧力低下が抑制されるので安定して高炉12内に純酸素を供給できる。また、酸素貯蔵設備30を設けることで、酸素圧縮機26の装置規模を小さくできる。 The oxygen storage facility 30 is a facility for storing compressed pure oxygen. By providing the oxygen storage facility 30 for storing the compressed pure oxygen in this way, the amount of compressed oxygen stored between the oxygen compressor 26 and the tuyere facility 14 can be increased. By increasing the stored amount of compressed oxygen in this way, the pressure drop due to blowing pure oxygen into the blast furnace is suppressed, so that pure oxygen can be stably supplied into the blast furnace 12. Further, by providing the oxygen storage facility 30, the scale of the oxygen compressor 26 can be reduced.

酸素供給配管32は、酸素貯蔵設備30と羽口設備14とを接続する配管である。圧縮された純酸素は、酸素供給配管32および羽口設備14を経由して高炉12内に供給される。 The oxygen supply pipe 32 is a pipe that connects the oxygen storage facility 30 and the tuyere facility 14. The compressed pure oxygen is supplied into the blast furnace 12 via the oxygen supply pipe 32 and the tuyere equipment 14.

微粉炭供給設備40は、羽口設備14に微粉炭を供給する設備である。微粉炭供給設備40は、微粉炭配管42と微粉炭流量計44とを有する。微粉炭を微粉炭配管42に供給する設備は、一般的な熱風高炉に用いられている設備と同じ設備を用いてよい。本実施形態に係る微粉炭供給設備40では、微粉炭配管42に微粉炭流量計44が設けられている。微粉炭流量計44は、微粉炭配管42を流れる微粉炭の流量を測定する。なお、微粉炭流量計44として、超音波を用いた流量計、マイクロ波を用いた流量計または静電容量2電極方式の微粉炭流量計を用いてよい。なお、微粉炭は、固体還元材の一例であり、微粉炭に代えて、廃プラスチックを用いてもよい。 The pulverized coal supply facility 40 is a facility that supplies pulverized coal to the tuyere facility 14. The pulverized coal supply facility 40 has a pulverized coal pipe 42 and a pulverized coal flow meter 44. As the equipment for supplying the pulverized coal to the pulverized coal pipe 42, the same equipment as that used for a general hot air blast furnace may be used. In the pulverized coal supply facility 40 according to the present embodiment, the pulverized coal flow meter 44 is provided in the pulverized coal pipe 42. The pulverized coal flow meter 44 measures the flow rate of pulverized coal flowing through the pulverized coal pipe 42. As the pulverized coal flow meter 44, a flow meter using ultrasonic waves, a flow meter using microwaves, or a pulverized coal flow meter having a capacitance of two electrodes may be used. The pulverized coal is an example of a solid reducing material, and waste plastic may be used instead of the pulverized coal.

空気供給設備50は、微粉炭供給設備40から羽口設備14に供給される微粉炭の流量が予め定められた流量よりも少なくなった場合に、羽口設備14に空気を供給する設備である。微粉炭の流量が予め定められた流量よりも少なくなった場合に空気供給設備50から空気を供給することで羽口先温度の上昇を抑制できる。 The air supply facility 50 is a facility that supplies air to the tuyere facility 14 when the flow rate of the pulverized coal supplied from the pulverized coal supply facility 40 to the tuyere facility 14 becomes smaller than a predetermined flow rate. .. When the flow rate of the pulverized coal becomes smaller than the predetermined flow rate, the rise in the tuyere temperature can be suppressed by supplying air from the air supply facility 50.

空気供給設備50は、空気圧縮機52と、高圧空気配管54と、空気貯蔵設備56と、空気供給配管58と、制御装置90とを有する。空気圧縮機52は、常温の空気の圧力を高めて高圧空気とする。本実施形態において、空気圧縮機52は、空気の圧力を0.5MPa以上に圧縮させる。 The air supply facility 50 includes an air compressor 52, a high-pressure air pipe 54, an air storage facility 56, an air supply pipe 58, and a control device 90. The air compressor 52 increases the pressure of air at room temperature to obtain high-pressure air. In the present embodiment, the air compressor 52 compresses the air pressure to 0.5 MPa or more.

高圧空気配管54は、空気圧縮機52と空気貯蔵設備56とを接続する配管である。空気貯蔵設備56は、圧力が高められた高圧空気を貯蔵する設備である。このように、高圧空気を貯蔵する空気貯蔵設備56を設けることによって、空気圧縮機52と羽口設備14間における高圧空気の貯蔵量を増やすことができる。高圧空気の貯蔵量を増やすことで、空気を高炉に吹き込むことによる空気の圧力低下が小さくなるので、高炉12内への空気の供給が安定する。 The high-pressure air pipe 54 is a pipe that connects the air compressor 52 and the air storage facility 56. The air storage facility 56 is a facility for storing high-pressure air with increased pressure. By providing the air storage facility 56 for storing the high-pressure air in this way, the storage amount of the high-pressure air between the air compressor 52 and the tuyere facility 14 can be increased. By increasing the storage amount of the high-pressure air, the pressure drop of the air due to blowing the air into the blast furnace becomes small, so that the supply of air into the blast furnace 12 is stable.

空気供給配管58は、空気貯蔵設備56と羽口設備14とを接続する配管である。制御装置90は、制御装置90は、空気貯蔵設備56と羽口設備14とを接続する空気供給配管58に設けられ、空気貯蔵設備56から羽口設備14への高圧空気の供給量を制御する。制御装置90は、例えば、流量調整弁である。 The air supply pipe 58 is a pipe that connects the air storage facility 56 and the tuyere facility 14. The control device 90 is provided in the air supply pipe 58 connecting the air storage facility 56 and the tuyere facility 14, and controls the supply amount of high-pressure air from the air storage facility 56 to the tuyere facility 14. .. The control device 90 is, for example, a flow rate adjusting valve.

酸素高炉設備10では、羽口設備14から純酸素と微粉炭とを高炉12内に供給しながら酸素高炉の操業が実施される。微粉炭を高炉12内に供給することで、コークス使用量削減の効果だけでなく、固体還元材としての吸熱反応を利用し、かつ、常温の微粉炭が昇温するのに必要な顕熱により、羽口先温度の過度な昇温を抑制することができる。しかしながら、何らかの不具合により微粉炭の供給量が少なくなると、羽口先温度の上昇が抑制できなくなり、羽口先温度が上昇する。羽口先温度を低下させるために純酸素の供給を停止すると、酸素の供給によって押しのけられていた羽口先のコークスが羽口側に移動し、羽口先の空間が無くなると共に、羽口先温度も低下してくると、スラグ固着などにより羽口が閉塞しやすい状態となる。羽口閉塞が発生すると、微粉炭の供給停止というトラブルが解消した後に、純酸素や微粉炭の供給を再開することが困難になる。 In the oxygen blast furnace facility 10, the operation of the oxygen blast furnace is carried out while supplying pure oxygen and pulverized coal from the tuyere facility 14 into the blast furnace 12. By supplying the pulverized coal into the blast furnace 12, not only the effect of reducing the amount of coke used, but also the endothermic reaction as a solid reducing agent is utilized, and the sensible heat required to raise the temperature of the pulverized coal at room temperature is used. , It is possible to suppress an excessive increase in the tuyere temperature. However, if the supply amount of pulverized coal decreases due to some trouble, the increase in the tuyere temperature cannot be suppressed and the tuyere temperature rises. When the supply of pure oxygen is stopped to lower the tuyere temperature, the coke at the tuyere that has been pushed away by the oxygen supply moves to the tuyere side, the space at the tuyere disappears, and the tuyere temperature also drops. When it comes, the tuyere is likely to be blocked due to slag sticking. When the tuyere blockage occurs, it becomes difficult to restart the supply of pure oxygen and pulverized coal after the trouble of stopping the supply of pulverized coal is resolved.

これに対し、本実施形態では、微粉炭配管42に微粉炭流量計44を設け、微粉炭の流量が予め定められた流量以下になった場合に、制御装置90は、空気供給配管58を通じて空気貯蔵設備56から羽口設備14に高圧空気を供給する。高圧空気を供給することで、羽口設備14から供給される酸素濃度が低下するので、冷却剤として機能する微粉炭の供給量が少なくなったとしても羽口先温度の上昇は抑制される。また、羽口設備14への酸素の供給は継続されるので、羽口先温度の温度が低下し過ぎて羽口閉塞が発生することも抑制される。このように、羽口先温度の上昇を抑制しつつ羽口閉塞を回避できるので、微粉炭の供給停止というトラブルが解消した後に酸素や微粉炭の供給を再開することが容易になり、酸素高炉の安定操業への復帰が容易になる。 On the other hand, in the present embodiment, the pulverized coal flow meter 44 is provided in the pulverized coal pipe 42, and when the flow rate of the pulverized coal becomes equal to or less than a predetermined flow rate, the control device 90 airs through the air supply pipe 58. High-pressure air is supplied from the storage facility 56 to the tuyere facility 14. By supplying high-pressure air, the oxygen concentration supplied from the tuyere equipment 14 decreases, so that the increase in tuyere temperature is suppressed even if the supply amount of pulverized coal that functions as a cooling agent decreases. Further, since the supply of oxygen to the tuyere equipment 14 is continued, it is possible to prevent the tuyere tip temperature from being excessively lowered and the tuyere obstruction from occurring. In this way, it is possible to avoid the tuyere blockage while suppressing the rise in the tuyere temperature, so it becomes easy to restart the supply of oxygen and pulverized coal after the trouble of stopping the supply of pulverized coal is solved, and the oxygen blast furnace It will be easier to return to stable operation.

羽口保護の観点から微粉炭の吹込みが停止した後、なるべく早く高圧空気を供給することが好ましいが、羽口設備14からのガスの吹込み量が急激に増加させると、酸素高炉の操業が不安定になる。このため、高圧空気を供給とともに純酸素の供給量を減らして、羽口設備14からのガスの吹込み量を一定にすることが好ましい。これにより、酸素高炉の操業を安定に維持できる。 From the viewpoint of protecting the tuyere, it is preferable to supply high-pressure air as soon as possible after the injection of pulverized coal is stopped, but if the amount of gas blown from the tuyere equipment 14 increases sharply, the oxygen blast furnace will operate. Becomes unstable. Therefore, it is preferable to supply high-pressure air and reduce the supply amount of pure oxygen to keep the amount of gas blown from the tuyere equipment 14 constant. As a result, the operation of the oxygen blast furnace can be maintained stably.

なお、図1に示した酸素高炉設備10では微粉炭を冷却剤として用いる例を示したが、これに限らない。例えば、微粉炭に代えて、または、微粉炭とともに冷却剤として気体還元材を用いてもよい。気体還元材としては、例えば、都市ガス、プロパンガス、製鉄所内で発生する副生ガスを用いてよい。気体還元材を用いた場合においても、気体還元材を羽口設備14に供給する配管に流量計を設け、気体還元材の流量が予め定められた流量以下になった場合に、制御装置90は、空気貯蔵設備56から羽口設備14に高圧空気を供給する。これにより、羽口先温度の上昇を抑制しつつ羽口閉塞を回避できる。 In the oxygen blast furnace facility 10 shown in FIG. 1, an example in which pulverized coal is used as a cooling agent is shown, but the present invention is not limited to this. For example, a gas reducing agent may be used instead of the pulverized coal or as a cooling agent together with the pulverized coal. As the gas reducing agent, for example, city gas, propane gas, or by-product gas generated in a steel mill may be used. Even when the gas reducing material is used, a flow meter is provided in the pipe for supplying the gas reducing material to the tuyere equipment 14, and when the flow rate of the gas reducing material becomes equal to or less than a predetermined flow rate, the control device 90 is used. , High pressure air is supplied from the air storage facility 56 to the tuyere facility 14. As a result, it is possible to avoid the tuyere obstruction while suppressing the rise in the tuyere tip temperature.

また、図1に示した酸素高炉設備10では酸素貯蔵設備30を有する例を示したが、これに限られない。高圧酸素は、常時高炉12内に供給されるので、酸素貯蔵設備30を有さなくてもよい。一方、内部監視孔のガラス保護のために流される微量の空気を除く高圧空気は、微粉炭等の冷却剤の流量が予め定められた流量以下になった場合に限り高炉12内に供給される。このように、高圧空気は常時供給されるものではないので、所定容量の高圧空気を貯蔵できる空気貯蔵設備56を設けると、高圧空気が供給されない間に空気を圧縮させ、空気貯蔵設備56に蓄えることができるので、空気圧縮機52の装置規模を小さくできる。また、所定容量の空気貯蔵設備56を設けることで、空気を高炉に吹き込むことによる空気の圧力低下が小さくなるので、安定して高炉12内に空気を供給できる。なお、4000m級の高炉12を用いた場合において、空気貯蔵設備56の容量は、2500m以上5000m以下にすることが好ましい。 Further, the oxygen blast furnace facility 10 shown in FIG. 1 shows an example of having an oxygen storage facility 30, but the present invention is not limited to this. Since the high-pressure oxygen is always supplied into the blast furnace 12, it is not necessary to have the oxygen storage facility 30. On the other hand, the high-pressure air excluding a small amount of air flowing to protect the glass of the internal monitoring hole is supplied into the blast furnace 12 only when the flow rate of the cooling agent such as pulverized coal becomes equal to or less than the predetermined flow rate. .. As described above, since high-pressure air is not always supplied, if an air storage facility 56 capable of storing a predetermined capacity of high-pressure air is provided, the air is compressed while the high-pressure air is not supplied and stored in the air storage facility 56. Therefore, the scale of the air compressor 52 can be reduced. Further, by providing the air storage facility 56 having a predetermined capacity, the pressure drop of the air due to blowing the air into the blast furnace is reduced, so that the air can be stably supplied into the blast furnace 12. When a 4000 m 3rd class blast furnace 12 is used, the capacity of the air storage facility 56 is preferably 2500 m 3 or more and 5000 m 3 or less.

図2は、第2の実施形態に係る酸素高炉設備16を示す模式図である。酸素高炉設備16は、高炉12と、酸素供給設備21と、微粉炭供給設備40と、空気供給設備51とを有する。酸素高炉設備16では、当該羽口設備14から酸素を50体積%以上含む酸素富化空気が高炉12内に供給される。なお、図2の酸素高炉設備16において、図1に示した酸素高炉設備10と同じ要素には同じ参照番号を付して重複する説明を省略する。酸素高炉設備16は、酸素供給配管34および空気供給配管59を有する点において、図1に示した酸素高炉設備10と異なる。 FIG. 2 is a schematic view showing the oxygen blast furnace equipment 16 according to the second embodiment. The oxygen blast furnace facility 16 includes a blast furnace 12, an oxygen supply facility 21, a pulverized coal supply facility 40, and an air supply facility 51. In the oxygen blast furnace facility 16, oxygen-enriched air containing 50% by volume or more of oxygen is supplied into the blast furnace 12 from the tuyere facility 14. In the oxygen blast furnace equipment 16 of FIG. 2, the same reference numbers are assigned to the same elements as the oxygen blast furnace equipment 10 shown in FIG. 1, and duplicate description will be omitted. The oxygen blast furnace equipment 16 differs from the oxygen blast furnace equipment 10 shown in FIG. 1 in that it has an oxygen supply pipe 34 and an air supply pipe 59.

酸素供給配管34は、酸素貯蔵設備30と空気供給配管59とを接続する配管である。酸素貯蔵設備30に貯蔵された高圧酸素は、酸素供給配管34、空気供給配管59および羽口設備14を経由して高炉12内に供給される。 The oxygen supply pipe 34 is a pipe that connects the oxygen storage facility 30 and the air supply pipe 59. The high-pressure oxygen stored in the oxygen storage facility 30 is supplied into the blast furnace 12 via the oxygen supply pipe 34, the air supply pipe 59, and the tuyere equipment 14.

空気供給配管59は、空気供給配管58とは別に設けられた、空気貯蔵設備56と羽口設備14とを接続する配管である。空気供給配管59を通じて空気貯蔵設備56から所定量の高圧空気が供給され、純酸素は酸素を50体積%以上含む酸素富化空気に希釈される。酸素を50体積%以上含む酸素富化空気は、羽口設備14から高炉12内に供給される。 The air supply pipe 59 is a pipe that is provided separately from the air supply pipe 58 and connects the air storage facility 56 and the tuyere facility 14. A predetermined amount of high-pressure air is supplied from the air storage facility 56 through the air supply pipe 59, and the pure oxygen is diluted with oxygen-enriched air containing 50% by volume or more of oxygen. Oxygen-enriched air containing 50% by volume or more of oxygen is supplied from the tuyere equipment 14 into the blast furnace 12.

このような、酸素高炉設備16では、羽口設備14から酸素を50体積%以上含む酸素富化空気と微粉炭とを高炉12内に供給しながら酸素高炉の操業が実施される。微粉炭を羽口設備14から高炉12内に供給することで、高炉12でのコークス使用量削減の効果だけでなく、固体還元材の吸熱反応により羽口先温度の上昇が抑制される効果が得られる。しかしながら、何らかの不具合により微粉炭の供給量が少なくなると、羽口先温度を低温化できなくなるので酸素を50体積%以上含む酸素富化空気であっても羽口先温度が上昇する。この対応として、酸素を50体積%以上含む酸素富化空気の供給を停止すると、羽口先の空間がなくなるとともに羽口先温度が低下し過ぎて羽口が閉塞する。 In such an oxygen blast furnace facility 16, the operation of the oxygen blast furnace is carried out while supplying oxygen-enriched air containing 50% by volume or more of oxygen and pulverized coal into the blast furnace 12 from the tuyere facility 14. By supplying the pulverized coal from the tuyere equipment 14 into the blast furnace 12, not only the effect of reducing the amount of coke used in the blast furnace 12 but also the effect of suppressing the rise in the tuyere temperature due to the endothermic reaction of the solid reducing agent is obtained. Be done. However, if the supply amount of pulverized coal decreases due to some trouble, the tuyere temperature cannot be lowered, so that the tuyere temperature rises even in oxygen-enriched air containing 50% by volume or more of oxygen. As a countermeasure, when the supply of oxygen-enriched air containing 50% by volume or more of oxygen is stopped, the space at the tip of the tuyere disappears and the temperature at the tip of the tuyere drops too much, so that the tuyere is closed.

本実施形態では、微粉炭配管42に微粉炭流量計44を設け、微粉炭の流量が予め定められた流量以下になった場合に、制御装置90は、空気供給配管58を通じて、空気貯蔵設備56から羽口設備14に高圧空気を供給して酸素を50体積%未満含む酸素富化空気に希釈する。これにより、羽口設備14から供給される酸素負化空気の酸素濃度が低下するので、冷却剤として機能する微粉炭の供給量が少なくなったとしても羽口先温度の上昇は抑制される。また、羽口設備14への酸素の供給は継続されるので羽口先の空間が確保され、また、羽口先温度の温度が低下し過ぎることが抑制され、これにより、羽口閉塞の発生が抑制される。このように、羽口先温度の上昇を抑制しつつ羽口閉塞を回避できるので、微粉炭の供給停止というトラブルが解消した後に酸素や微粉炭の供給を再開することが容易になり、酸素高炉の安定操業への復帰が容易になる。 In the present embodiment, the pulverized coal flow meter 44 is provided in the pulverized coal pipe 42, and when the flow rate of the pulverized coal becomes equal to or less than a predetermined flow rate, the control device 90 passes the air supply pipe 58 to the air storage facility 56. High-pressure air is supplied to the tuyere equipment 14 to dilute it with oxygen-enriched air containing less than 50% by volume of oxygen. As a result, the oxygen concentration of the oxygen-negative air supplied from the tuyere equipment 14 decreases, so that the increase in the tuyere tip temperature is suppressed even if the supply amount of the pulverized coal functioning as a cooling agent decreases. Further, since the supply of oxygen to the tuyere equipment 14 is continued, the space at the tuyere tip is secured, and the tuyere tip temperature is suppressed from being lowered too much, thereby suppressing the occurrence of tuyere obstruction. Will be done. In this way, it is possible to avoid the tuyere blockage while suppressing the rise in the tuyere temperature, so it becomes easy to restart the supply of oxygen and pulverized coal after the trouble of stopping the supply of pulverized coal is solved, and the oxygen blast furnace It will be easier to return to stable operation.

図3は、第3の実施形態に係る酸素高炉設備18を示す模式図である。酸素高炉設備18は、高炉12と、酸素供給設備20と、微粉炭供給設備40と、窒素供給設備60とを有する。酸素高炉設備18では、当該羽口設備14から熱風に代えて常温の純酸素が高炉12内に供給される。なお、図3の酸素高炉設備18において、図1に示した酸素高炉設備10と同じ要素には同じ参照番号を付して重複する説明を省略する。酸素高炉設備18は、窒素供給設備60を有する点において、図1に示した酸素高炉設備10と異なる。 FIG. 3 is a schematic view showing the oxygen blast furnace equipment 18 according to the third embodiment. The oxygen blast furnace facility 18 includes a blast furnace 12, an oxygen supply facility 20, a pulverized coal supply facility 40, and a nitrogen supply facility 60. In the oxygen blast furnace equipment 18, pure oxygen at room temperature is supplied from the tuyere equipment 14 into the blast furnace 12 instead of hot air. In the oxygen blast furnace equipment 18 of FIG. 3, the same reference numbers are assigned to the same elements as the oxygen blast furnace equipment 10 shown in FIG. 1, and duplicate description will be omitted. The oxygen blast furnace facility 18 is different from the oxygen blast furnace facility 10 shown in FIG. 1 in that it has a nitrogen supply facility 60.

窒素供給設備60は、窒素圧縮機62と、高圧窒素配管64と、窒素貯蔵設備66と、窒素供給配管68と、制御装置90とを有する。窒素圧縮機62は、常温の窒素の圧力を高めて高圧窒素とする。なお、本実施形態において、窒素は、深冷分離法によって酸素を製造する酸素製造装置22により製造される窒素を用いることができる。また、窒素圧縮機62は、窒素の圧力を0.5MPa以上圧縮させる。 The nitrogen supply facility 60 includes a nitrogen compressor 62, a high-pressure nitrogen pipe 64, a nitrogen storage facility 66, a nitrogen supply pipe 68, and a control device 90. The nitrogen compressor 62 increases the pressure of nitrogen at room temperature to obtain high-pressure nitrogen. In the present embodiment, as the nitrogen, nitrogen produced by the oxygen production apparatus 22 that produces oxygen by the cold separation method can be used. Further, the nitrogen compressor 62 compresses the nitrogen pressure by 0.5 MPa or more.

高圧窒素配管64は、窒素圧縮機62と窒素貯蔵設備66とを接続する配管である。窒素貯蔵設備66は、圧力が高められた高圧窒素を貯蔵する設備である。このように、高圧窒素を貯蔵する窒素貯蔵設備66を設けることによって、窒素圧縮機62と羽口設備14間における高圧窒素の貯蔵量を増やすことができる。高圧窒素の貯蔵量を増やすことで、窒素を高炉12に吹き込むことによる窒素の圧力低下が小さくなるので、高炉12内への窒素の供給が安定する。 The high-pressure nitrogen pipe 64 is a pipe that connects the nitrogen compressor 62 and the nitrogen storage facility 66. The nitrogen storage facility 66 is a facility for storing high-pressure nitrogen at an increased pressure. By providing the nitrogen storage facility 66 for storing high-pressure nitrogen in this way, the amount of high-pressure nitrogen stored between the nitrogen compressor 62 and the tuyere facility 14 can be increased. By increasing the storage amount of high-pressure nitrogen, the decrease in nitrogen pressure due to blowing nitrogen into the blast furnace 12 becomes small, so that the supply of nitrogen into the blast furnace 12 is stable.

酸素高炉設備18では、羽口設備14から純酸素と微粉炭とを高炉12内に供給しながら酸素高炉の操業が実施される。しかしながら、何らかの不具合により微粉炭の供給量が少なくなると、羽口先温度を低温化できなり、羽口先温度が上昇する。一方、羽口先温度を低下させるために純酸素の供給を停止すると、羽口先の空間がなくなるとともに羽口先温度が低下し過ぎて羽口が閉塞する。 In the oxygen blast furnace facility 18, the operation of the oxygen blast furnace is carried out while supplying pure oxygen and pulverized coal from the tuyere facility 14 into the blast furnace 12. However, if the supply amount of pulverized coal decreases due to some trouble, the tuyere temperature cannot be lowered and the tuyere temperature rises. On the other hand, when the supply of pure oxygen is stopped in order to lower the tuyere temperature, the tuyere tip space is exhausted and the tuyere tip temperature is lowered too much to block the tuyere.

本実施形態では、微粉炭配管42に微粉炭流量計44を設け、微粉炭の流量が予め定められた流量以下になった場合に、制御装置90は、窒素供給配管68を通じて窒素貯蔵設備66から羽口設備14に高圧窒素を供給する。高圧窒素を供給することで、羽口設備14から供給される酸素濃度が低下するので、冷却剤として機能する微粉炭の供給量が少なくなったとしても羽口先温度の上昇は抑制される。また、羽口設備14への酸素の供給は継続されるので羽口先の空間が確保され、また、羽口先温度の温度が低下し過ぎることが抑制され、これにより、羽口閉塞の発生が抑制される。このように、羽口先温度の上昇を抑制しつつ羽口閉塞を回避できるので、微粉炭の供給停止というトラブルが解消した後に酸素や微粉炭の供給を再開することが容易になり、酸素高炉の安定操業への復帰が容易になる。 In the present embodiment, the pulverized coal flow meter 44 is provided in the pulverized coal pipe 42, and when the flow rate of the pulverized coal becomes equal to or less than a predetermined flow rate, the control device 90 is connected to the nitrogen storage facility 66 through the nitrogen supply pipe 68. High pressure nitrogen is supplied to the tuyere equipment 14. By supplying high-pressure nitrogen, the oxygen concentration supplied from the tuyere equipment 14 decreases, so that the increase in tuyere temperature is suppressed even if the supply amount of pulverized coal that functions as a cooling agent decreases. Further, since the supply of oxygen to the tuyere equipment 14 is continued, the space at the tuyere tip is secured, and the tuyere tip temperature is suppressed from being lowered too much, thereby suppressing the occurrence of tuyere obstruction. Will be done. In this way, it is possible to avoid the tuyere blockage while suppressing the rise in the tuyere temperature, so it becomes easy to restart the supply of oxygen and pulverized coal after the trouble of stopping the supply of pulverized coal is solved, and the oxygen blast furnace It will be easier to return to stable operation.

図4は、羽口設備14の断面模式図である。羽口設備14は、羽口70と、バーナー72とを有する。バーナー72は羽口70に内包されるように接続されている。羽口設備14が酸素高炉設備10、16に設けられる場合に、バーナー72には外側から、酸素供給配管32、微粉炭配管42、空気供給配管58の順に接続する。一方、羽口設備14が酸素高炉設備18に設けられる場合に、バーナー72には外側から、酸素供給配管32、微粉炭配管42、窒素供給配管68の順に接続する。なお、微粉炭とともに気体還元材を高炉12内に供給する場合には、気体還元材配管74は、酸素供給配管32と微粉炭配管42との間に接続する。 FIG. 4 is a schematic cross-sectional view of the tuyere equipment 14. The tuyere equipment 14 has a tuyere 70 and a burner 72. The burner 72 is connected so as to be included in the tuyere 70. When the tuyere equipment 14 is provided in the oxygen blast furnace equipments 10 and 16, the oxygen supply pipe 32, the pulverized coal pipe 42, and the air supply pipe 58 are connected to the burner 72 in this order from the outside. On the other hand, when the tuyere equipment 14 is provided in the oxygen blast furnace equipment 18, the oxygen supply pipe 32, the pulverized coal pipe 42, and the nitrogen supply pipe 68 are connected to the burner 72 in this order from the outside. When the gas reducing agent is supplied into the blast furnace 12 together with the pulverized coal, the gas reducing agent pipe 74 is connected between the oxygen supply pipe 32 and the pulverized coal pipe 42.

空気供給配管58または窒素供給配管68とバーナー72との接続部には内部監視窓が設けられており、内部監視窓を保護する目的で、少量の高圧空気や高圧窒素を流している。このような羽口設備14において、微粉炭の供給量が少なくなると羽口先温度が急激に上昇し、羽口70の熱負荷が大きくなる。羽口70の熱負荷が大きくなると、羽口破損の原因となり、羽口の寿命が短くなる。 An internal monitoring window is provided at the connection portion between the air supply pipe 58 or the nitrogen supply pipe 68 and the burner 72, and a small amount of high-pressure air or high-pressure nitrogen is flowed for the purpose of protecting the internal monitoring window. In such a tuyere facility 14, when the supply amount of pulverized coal decreases, the tuyere tip temperature rises sharply, and the heat load of the tuyere 70 increases. If the heat load of the tuyere 70 becomes large, it causes damage to the tuyere and shortens the life of the tuyere.

本実施形態に係る酸素高炉設備10、16、18では、微粉炭の流量が予め定められた流量以下になった場合、空気または窒素を羽口設備14に供給して羽口先温度の上昇を抑制している。これにより、羽口70の熱負荷の増大を抑制でき、羽口寿命の低下を抑制できる。 In the oxygen blast furnace facilities 10, 16 and 18 according to the present embodiment, when the flow rate of the pulverized coal becomes equal to or lower than a predetermined flow rate, air or nitrogen is supplied to the tuyere facility 14 to suppress an increase in the tuyere temperature. is doing. As a result, an increase in the heat load of the tuyere 70 can be suppressed, and a decrease in the tuyere life can be suppressed.

(実施例1)
次に酸素高炉設備10を用いた酸素高炉の操業方法の効果を、高炉の下部を模擬したラボ実験設備80を用いて確認した実施例1を説明する。図5は、ラボ実験設備80の断面模式図である。ラボ実験設備80は、実験炉84の炉壁82に図4に示した羽口設備14が設けられている。高炉12の下部を模擬し、実験炉84にコークスを充填した。実験炉84に充填したコークスの粒径の範囲は6〜15mmである。
(Example 1)
Next, Example 1 in which the effect of the operation method of the oxygen blast furnace using the oxygen blast furnace facility 10 was confirmed by using the laboratory experimental facility 80 simulating the lower part of the blast furnace will be described. FIG. 5 is a schematic cross-sectional view of the laboratory experimental equipment 80. In the laboratory experimental equipment 80, the tuyere equipment 14 shown in FIG. 4 is provided on the furnace wall 82 of the experimental furnace 84. The lower part of the blast furnace 12 was simulated, and the experimental furnace 84 was filled with coke. The particle size of the coke filled in the experimental furnace 84 is 6 to 15 mm.

酸素供給配管32から常温の純酸素45Nm/hと、微粉炭配管42から溶銑1t当たり330kgに相当する量の微粉炭と、を羽口設備14を通じて実験炉84に吹込んでコークスを燃焼させた。なお、内部監視孔のガラスを保護するために、通常時においても少量の空気を流した。羽口先温度は、バーナー72の中央部に設けられた内部監視孔の後方に設置された2色式放射温度計86(株式会社チノー社製、IR−FL)を用いて測定した。 Pure oxygen 45 Nm 3 / h at room temperature from the oxygen supply pipe 32 and pulverized coal in an amount equivalent to 330 kg per ton of hot metal from the pulverized coal pipe 42 were blown into the experimental furnace 84 through the tuyere equipment 14 to burn coke. .. In addition, in order to protect the glass of the internal monitoring hole, a small amount of air was flowed even during normal times. The tuyere temperature was measured using a two-color radiation thermometer 86 (IR-FL manufactured by Chino Corporation) installed behind the internal monitoring hole provided in the central portion of the burner 72.

図6は、羽口先温度の時間変化を示すグラフである。図6において、横軸は時間(秒)であり、縦軸は羽口先温度(℃)である。図6の(ア)の領域は、純酸素と微粉炭とを実験炉84に吹込んだ場合の羽口先温度の時間変化を示す。(ア)の領域では、純酸素を吹込んでいるものの冷却剤としての微粉炭を吹込んでいるので、羽口先温度は1500から2000℃になった。 FIG. 6 is a graph showing the time change of the tuyere temperature. In FIG. 6, the horizontal axis is time (seconds) and the vertical axis is tuyere temperature (° C.). The region (a) in FIG. 6 shows the time change of the tuyere temperature when pure oxygen and pulverized coal are blown into the experimental furnace 84. In the region (a), although pure oxygen was blown in, pulverized coal as a cooling agent was blown in, so the tuyere temperature became 1500 to 2000 ° C.

図6(イ)の領域では、微粉炭詰りを再現するために微粉炭の吹込みを意図的に停止させ、純酸素のみを実験炉84に吹込んだ。(イ)の領域では、冷却剤としての役割を担う微粉炭の吹込みが停止されたので、羽口先温度は上昇し、2000℃を超える場合もあった。 In the region of FIG. 6A, the blowing of the pulverized coal was intentionally stopped in order to reproduce the pulverized coal clogging, and only pure oxygen was blown into the experimental furnace 84. In the region (a), the blowing of the pulverized coal, which plays a role as a cooling agent, was stopped, so that the tuyere temperature rose and sometimes exceeded 2000 ° C.

図6(ウ)の領域では、空気供給配管58から空気を実験炉84に吹込み、酸素供給配管32からの純酸素の供給を停止した。空気の送風温度は、空気圧縮機出側の温度を想定して180℃とした。また、最終的には空気の送風量を純酸素の送風量と同じ45Nm/hにした。このように空気を送風することで、羽口先温度は1000〜1500℃に低下した。 In the region of FIG. 6 (c), air was blown into the experimental furnace 84 from the air supply pipe 58, and the supply of pure oxygen from the oxygen supply pipe 32 was stopped. The air blowing temperature was set to 180 ° C., assuming the temperature on the outlet side of the air compressor. Finally, the amount of air blown was set to 45 Nm 3 / h, which is the same as the amount of pure oxygen blown. By blowing air in this way, the tuyere tip temperature dropped to 1000-1500 ° C.

このように、冷却材となる微粉炭の吹込みが何らかの理由により停止し羽口先温度が上昇したとしても、当該微粉炭の吹込みが停止したことを微粉炭の流量計で測定し、その後、空気を吹込むことで羽口先温度の上昇を抑制できることが確認された。そして、制御装置90を用いて空気の吹込み量を制御し、純酸素と空気との吹込み量の比率を変えることで、純酸素をのみを吹込んだ場合の温度から、空気のみを吹込んだ場合の温度までの間に羽口先温度を制御できる。このように空気の吹込み量を制御することで、羽口先温度を制御できるので、これにより、羽口先温度の上昇を抑制しつつ羽口閉塞を回避できる。 In this way, even if the blowing of the pulverized coal as the coolant is stopped for some reason and the tuyere temperature rises, it is measured by the pulverized coal flow meter that the blowing of the pulverized coal has stopped, and then it is measured. It was confirmed that the rise in tuyere temperature can be suppressed by blowing air. Then, by controlling the amount of air blown using the control device 90 and changing the ratio of the amount of pure oxygen blown to the air, only the air is blown from the temperature when only the pure oxygen is blown. The tuyere temperature can be controlled up to the temperature when it is crowded. By controlling the amount of air blown in this way, the tuyere temperature can be controlled, so that it is possible to avoid tuyere obstruction while suppressing an increase in tuyere temperature.

(実施例2)
次に、酸素高炉設備18を用いた酸素高炉操業方法の効果を、同じラボ実験設備を用いて確認した実施例2を説明する。実施例2においても、酸素供給配管32から常温の純酸素45Nm/hと、微粉炭配管42から溶銑1t当たり330kgに相当する量の微粉炭と、を羽口設備14を通じて実験炉84に吹込んでコークスを燃焼させた。なお、内部監視孔のガラスを保護するために、通常時においても少量の窒素を流した。羽口先温度は、バーナー72の中央部に設けられた内部監視孔の後方に設置された2色式放射温度計86(株式会社チノー社製、IR−FL)を用いて測定した。
(Example 2)
Next, Example 2 in which the effect of the oxygen blast furnace operating method using the oxygen blast furnace equipment 18 was confirmed using the same laboratory experimental equipment will be described. Also in Example 2, pure oxygen 45 Nm 3 / h at room temperature from the oxygen supply pipe 32 and pulverized coal in an amount equivalent to 330 kg per ton of hot metal from the pulverized coal pipe 42 are blown into the experimental furnace 84 through the tuyere equipment 14. Then I burned the coke. In addition, in order to protect the glass of the internal monitoring hole, a small amount of nitrogen was flowed even during normal times. The tuyere temperature was measured using a two-color radiation thermometer 86 (IR-FL manufactured by Chino Corporation) installed behind the internal monitoring hole provided in the central portion of the burner 72.

図7は、羽口先温度の時間変化を示すグラフである。図7において、横軸は時間(秒)であり、縦軸は羽口先温度(℃)である。図7の(ア)の領域は、純酸素と微粉炭とを実験炉84に吹込んだ場合の羽口先温度の時間変化を示す。(ア)の領域では、純酸素を吹込んでいるものの冷却剤としての微粉炭を吹込んでいるので、羽口先温度は1500から2000℃になった。 FIG. 7 is a graph showing the time change of the tuyere temperature. In FIG. 7, the horizontal axis is time (seconds) and the vertical axis is tuyere temperature (° C.). The region (a) in FIG. 7 shows the time change of the tuyere temperature when pure oxygen and pulverized coal are blown into the experimental furnace 84. In the region (a), although pure oxygen was blown in, pulverized coal as a cooling agent was blown in, so the tuyere temperature became 1500 to 2000 ° C.

図7の(イ)の領域では、微粉炭詰りを再現するために微粉炭の吹込みを意図的に停止させ、純酸素のみを実験炉84に吹込んだ。(イ)の領域では、冷却剤としての役割を担う微粉炭の吹込みが停止されたので、羽口先温度は上昇し、2500℃を超える場合もあった。 In the region (a) of FIG. 7, the blowing of the pulverized coal was intentionally stopped in order to reproduce the pulverized coal clogging, and only pure oxygen was blown into the experimental furnace 84. In the region (a), the blowing of the pulverized coal, which plays a role as a cooling agent, was stopped, so that the tuyere temperature increased and sometimes exceeded 2500 ° C.

図7の(ウ)の領域では、窒素供給配管68からの窒素を実験炉84に吹込み、酸素供給配管32からの純酸素の供給を停止した。窒素の送風温度は、窒素圧縮機出側の温度を想定して180℃とした。また、最終的には窒素の送風量を純酸素と同じ45Nm/hにした。このように窒素を送風することで、羽口先温度は1500℃以下に低下した。なお、本実施例で温度測定に使用したIR−FLは880℃以下の温度が測定できない。このため、図7の(ウ)の温度が880℃以下の部分は平らな波形となっている。実施例1,2では、実験炉であるため熱損失が大きいので、羽口先温度のレベルは実機高炉とは異なるが、微粉炭詰りにより羽口先温度の上昇を抑制できることが確認できた。 In the region (c) of FIG. 7, nitrogen from the nitrogen supply pipe 68 was blown into the experimental furnace 84, and the supply of pure oxygen from the oxygen supply pipe 32 was stopped. The blowing temperature of nitrogen was set to 180 ° C. assuming the temperature on the outlet side of the nitrogen compressor. Finally, the amount of nitrogen blown was set to 45 Nm 3 / h, which is the same as that of pure oxygen. By blowing nitrogen in this way, the tuyere tip temperature was lowered to 1500 ° C. or lower. The IR-FL used for temperature measurement in this embodiment cannot measure a temperature of 880 ° C. or lower. Therefore, the portion of FIG. 7 (c) where the temperature is 880 ° C. or lower has a flat waveform. In Examples 1 and 2, since the furnace is an experimental furnace, the heat loss is large, so that the level of the tuyere temperature is different from that of the actual blast furnace, but it was confirmed that the tuyere temperature can be suppressed from rising due to pulverized coal clogging.

(実施例3)
次に、酸素高炉設備18を用いた酸素高炉操業方法の効果を、小型の試験高炉を用いて確認した実施例3を説明する。炉本体は、内容積3.9m、炉床径0.95mφ、炉口径0.7mφ、炉高5.1mで、羽口は3本である。基本の試験条件は出銑量12t/d、コークス使用量352kg/t−溶銑、微粉炭使用量320kg/t−溶銑、酸素使用量383Nm/t−溶銑である。微粉炭の吹込みを行わず酸素送風のみを行った場合は、炉内での棚吊が発生した。この棚吊は、羽口先温度の上昇に起因したSiOよる高炉内での原料同士の接着が原因と考えられる。また、基本の試験条件において、微粉炭の吹込みトラブルが発生し、酸素送風を停止した場合は、羽口閉塞が発生した。
(Example 3)
Next, Example 3 in which the effect of the oxygen blast furnace operating method using the oxygen blast furnace equipment 18 is confirmed using a small test blast furnace will be described. The main body of the furnace has an internal volume of 3.9 m 3 , a hearth diameter of 0.95 mφ, a furnace diameter of 0.7 mφ, a furnace height of 5.1 m, and three tuyere. The basic test conditions are a hot metal output of 12 t / d, a coke usage of 352 kg / t-hot metal, a pulverized coal usage of 320 kg / t- hot metal, and an oxygen usage of 383 Nm 3 / t- hot metal. When only oxygen was blown without blowing pulverized coal, shelving in the furnace occurred. It is considered that this shelf suspension is caused by the adhesion between the raw materials in the blast furnace due to SiO 2 caused by the rise in the tuyere temperature. In addition, under the basic test conditions, when a trouble of blowing pulverized coal occurred and oxygen blowing was stopped, tuyere obstruction occurred.

次に、微粉炭の吹込みトラブルが発生した時に、酸素送風量を低下させつつ空気を送風した。最終的には酸素送風をゼロとし、空気を基本試験条件における酸素使用量と同じ383Nm/t−溶銑とした。これにより、羽口閉塞は発生しなかった。微粉炭の設備のトラブルが解消した後に、微粉炭の吹込みを開始するとともに、酸素送風量を増加させつつ、空気送風量を低下させ、問題なく、基本の試験条件に復帰させることができた。 Next, when a trouble of blowing pulverized coal occurred, air was blown while reducing the amount of oxygen blown. Finally, the oxygen blast was set to zero, and the air was set to 383 Nm 3 / t-hot metal, which is the same as the amount of oxygen used under the basic test conditions. As a result, tuyere obstruction did not occur. After the trouble of the pulverized coal equipment was solved, the pulverized coal was started to be blown, and the amount of oxygen blown was increased while the amount of air blown was reduced, and the basic test conditions could be restored without any problem. ..

このように、冷却材となる微粉炭の吹込みが何らかの理由により停止し羽口先温度が上昇したとしても、当該微粉炭の吹込みが停止したことを微粉炭の流量計で測定し、その後、窒素を吹込むことで羽口先温度の上昇を抑制できることが確認された。そして、制御装置90を用いて窒素の吹込み量を制御し、純酸素と窒素との吹込み量の比率を変えることで、純酸素をのみを吹込んだ場合の温度から、窒素のみを吹込んだ場合の温度までの間に羽口先温度を制御できる。このように空気の吹込み量を制御することで、羽口先温度を制御できるので、これにより、羽口先温度の上昇を抑制しつつ羽口閉塞を回避できる。 In this way, even if the blowing of the pulverized coal as the coolant stops for some reason and the tuyere temperature rises, it is measured by the flow meter of the pulverized coal that the blowing of the pulverized coal has stopped, and then it is measured. It was confirmed that the rise in tuyere temperature could be suppressed by blowing nitrogen. Then, by controlling the amount of nitrogen blown by using the control device 90 and changing the ratio of the blown amount of pure oxygen and nitrogen, only nitrogen is blown from the temperature when only pure oxygen is blown. The tuyere temperature can be controlled up to the temperature when it is crowded. By controlling the amount of air blown in this way, the tuyere temperature can be controlled, so that it is possible to avoid tuyere obstruction while suppressing an increase in tuyere temperature.

また、実施例1、2では純酸素を吹込んだ例を示したが、純酸素に代えて酸素を50体積%以上含む酸素富化空気と微粉炭を吹込んで酸素高炉の操業を実施した場合においても同様に、空気または窒素を吹込むことで羽口先温度の上昇を抑制しつつ羽口閉塞を回避できる。さらに、実施例1、2では、微粉炭詰りを想定した例を示したが、微粉炭に代えて廃プラスチックを吹込んだ場合であっても同様に効果が得られ、微粉炭に代えて、気体還元材(都市ガス、プロパンガス、製鉄所内で発生する副生ガス)を吹込んだ場合であっても同様の効果が得られる。 Further, in Examples 1 and 2, an example in which pure oxygen was blown was shown, but when oxygen-enriched air containing 50% by volume or more of oxygen and pulverized coal were blown in place of pure oxygen to operate the oxygen blast furnace. Similarly, by blowing air or nitrogen, it is possible to avoid the tuyere obstruction while suppressing the rise in the tuyere tip temperature. Further, in Examples 1 and 2, an example assuming clogging with pulverized coal was shown, but the same effect can be obtained even when waste plastic is blown in place of pulverized coal, and instead of pulverized coal, The same effect can be obtained even when a gas reducing material (city gas, propane gas, by-product gas generated in a steel mill) is blown.

10 酸素高炉設備
12 高炉
14 羽口設備
16 酸素高炉設備
18 酸素高炉設備
20 酸素供給設備
21 酸素供給設備
22 酸素製造装置
24 酸素配管
26 酸素圧縮機
28 高圧酸素配管
30 酸素貯蔵設備
32 酸素供給配管
34 酸素供給配管
40 微粉炭供給設備
42 微粉炭配管
44 微粉炭流量計
50 空気供給設備
51 空気供給設備
52 空気圧縮機
54 高圧空気配管
56 空気貯蔵設備
58 空気供給配管
59 空気供給配管
60 窒素供給設備
62 窒素圧縮機
64 高圧窒素配管
66 窒素貯蔵設備
68 窒素供給配管
70 羽口
72 バーナー
74 気体還元材配管
80 ラボ実験設備
82 炉壁
84 実験炉
86 2色式放射温度計
90 制御装置
10 Oxygen blaster equipment 12 blaster 14 tuyere equipment 16 oxygen blaster equipment 18 oxygen blaster equipment 20 oxygen supply equipment 21 oxygen supply equipment 22 oxygen production equipment 24 oxygen piping 26 oxygen compressor 28 high pressure oxygen piping 30 oxygen storage equipment 32 oxygen supply piping 34 Oxygen supply pipe 40 pulverized coal supply equipment 42 pulverized coal pipe 44 pulverized coal flow meter 50 air supply equipment 51 air supply equipment 52 air compressor 54 high pressure air pipe 56 air storage equipment 58 air supply pipe 59 air supply pipe 60 nitrogen supply equipment 62 Nitrogen Compressor 64 High Pressure Nitrogen Piping 66 Nitrogen Storage Equipment 68 Nitrogen Supply Piping 70 Taguchi 72 Burner 74 Gas Reduction Material Piping 80 Lab Experimental Equipment 82 Furnace Wall 84 Experimental Furnace 86 Two-color Radiation Thermometer 90 Control Device

Claims (4)

酸素と、気体還元材および/または固体還元材と、を羽口から高炉内に供給して操業する酸素高炉設備であって、
空気の圧力を高める圧縮機と、
前記圧縮機によって圧力が高められた高圧空気を貯蔵する空気貯蔵設備と、
気体還元材および/または固体還元材の流量を測定する流量計と、
前記空気貯蔵設備から前記羽口への前記高圧空気の供給及び前記酸素の供給を制御する制御装置と、
を有し、
前記制御装置は、前記気体還元材および/または固体還元材の流量が予め定められた流量以下になった場合に、前記空気貯蔵設備から前記羽口に前記高圧空気を供給するとともに、前記羽口への前記酸素の供給量を減らすように制御する酸素高炉設備。
An oxygen blast furnace facility that supplies oxygen, a gas reducing agent, and / or a solid reducing agent from the tuyere into the blast furnace for operation.
With a compressor that increases the pressure of the air,
An air storage facility that stores high-pressure air whose pressure has been increased by the compressor,
A flow meter that measures the flow rate of the gas reducing agent and / or the solid reducing agent,
A control device that controls the supply of the high-pressure air and the oxygen from the air storage facility to the tuyere.
Have a,
When the flow rate of the gas reducing material and / or the solid reducing material becomes equal to or lower than a predetermined flow rate, the control device supplies the high-pressure air from the air storage facility to the tuyere and the tuyere. Oxygen blast furnace equipment that controls to reduce the supply of the oxygen to.
前記酸素は、酸素を50体積%以上含む酸素富化空気であり、 The oxygen is oxygen-enriched air containing 50% by volume or more of oxygen.
前記制御装置は、前記気体還元材および/または固体還元材の流量が予め定められた流量以下になった場合に、前記空気貯蔵設備から前記羽口に前記高圧空気を供給して酸素を50体積%未満含む酸素富化空気に希釈する請求項1に記載の酸素高炉設備。 When the flow rate of the gas reducing material and / or the solid reducing material becomes equal to or lower than a predetermined flow rate, the control device supplies the high-pressure air from the air storage facility to the tuyere to supply oxygen by 50 volumes. The oxygen blast furnace facility according to claim 1, which is diluted with oxygen-enriched air containing less than%.
酸素と、気体還元材および/または固体還元材と、を羽口から高炉内に供給して操業する酸素高炉設備であって、
窒素の圧力を高める圧縮機と、
前記圧縮機によって圧力が高められた高圧窒素を貯蔵する窒素貯蔵設備と、
気体還元材および/または固体還元材の流量を測定する流量計と、
前記窒素貯蔵設備から前記羽口への前記高圧窒素の供給及び前記酸素の供給を制御する制御装置と、
を有し、
前記制御装置は、前記気体還元材および/または固体還元材の流量が予め定められた流量以下になった場合に、前記窒素貯蔵設備から前記羽口に前記高圧窒素を供給するとともに、前記羽口への前記酸素の供給量を減らすように制御する酸素高炉設備。
An oxygen blast furnace facility that supplies oxygen, a gas reducing agent, and / or a solid reducing agent from the tuyere into the blast furnace for operation.
A compressor that increases the pressure of nitrogen,
A nitrogen storage facility that stores high-pressure nitrogen whose pressure has been increased by the compressor,
A flow meter that measures the flow rate of the gas reducing agent and / or the solid reducing agent,
A control device that controls the supply of the high-pressure nitrogen and the oxygen from the nitrogen storage facility to the tuyere.
Have a,
When the flow rate of the gas reducing material and / or the solid reducing material becomes equal to or lower than a predetermined flow rate, the control device supplies the high-pressure nitrogen from the nitrogen storage facility to the tuyere and the tuyere. Oxygen blast furnace equipment that controls to reduce the supply of the oxygen to.
請求項1〜3のいずれか1項に記載の酸素高炉設備を用いた酸素高炉の操業方法。A method for operating an oxygen blast furnace using the oxygen blast furnace equipment according to any one of claims 1 to 3.
JP2018233116A 2018-12-13 2018-12-13 Oxygen blast furnace equipment and operation method of oxygen blast furnace Active JP6977704B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018233116A JP6977704B2 (en) 2018-12-13 2018-12-13 Oxygen blast furnace equipment and operation method of oxygen blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018233116A JP6977704B2 (en) 2018-12-13 2018-12-13 Oxygen blast furnace equipment and operation method of oxygen blast furnace

Publications (2)

Publication Number Publication Date
JP2020094240A JP2020094240A (en) 2020-06-18
JP6977704B2 true JP6977704B2 (en) 2021-12-08

Family

ID=71084606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018233116A Active JP6977704B2 (en) 2018-12-13 2018-12-13 Oxygen blast furnace equipment and operation method of oxygen blast furnace

Country Status (1)

Country Link
JP (1) JP6977704B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112941258B (en) * 2021-02-09 2022-08-23 武汉钢铁有限公司 Method for controlling oxygen content in process of lowering stock line of blast furnace recovered coal gas
CN113188338A (en) * 2021-05-18 2021-07-30 云南驰宏锌锗股份有限公司 Metallurgical stove gas safety, spray gun interlocking control protection system

Also Published As

Publication number Publication date
JP2020094240A (en) 2020-06-18

Similar Documents

Publication Publication Date Title
JP6977704B2 (en) Oxygen blast furnace equipment and operation method of oxygen blast furnace
JP5546675B1 (en) Blast furnace operating method and hot metal manufacturing method
JP4743332B2 (en) Blast furnace operation method
JP2020200494A (en) Operation method of oxygen blast furnace
JP2007270190A (en) Operation method of blast furnace after having lowered stock level and stopped blasting
JP4770316B2 (en) Blast furnace tuyere and blast furnace bottom situation evaluation method
JP5724654B2 (en) Apparatus and method for injecting reducing material into blast furnace
JP5277636B2 (en) How to operate a vertical furnace
JP2001262208A (en) Method for operating blast furnace
JP5779839B2 (en) Blast furnace operation method
JP4739920B2 (en) Blast furnace operation method with small furnace heat fluctuation
JP2013224474A (en) Method of blowing-down of blast furnace with lowering stock
JP3077691B1 (en) Blast furnace operation method
KR101225116B1 (en) Device and method for controlling by-product gas generated from steelwork
JP7167652B2 (en) Blast furnace operation method
KR20170013126A (en) Apparatus for injection the pulverized coal of melting furnace and this method
JP2010048528A (en) Control method of melting furnace
KR101277237B1 (en) Method for discriminating center gas flow in blast furnace and apparatus thereof
JP2921392B2 (en) Blast furnace operation method
JP3879539B2 (en) Blast furnace operation method
JP5381356B2 (en) Reduced blast furnace operation
JP5693768B2 (en) Blast furnace operating method and hot metal manufacturing method
KR100815885B1 (en) Method for controlling temperature of molten iron
UA127749C2 (en) Method for protecting an inner wall of a shaft furnace
JP2007284725A (en) Blast furnace operation method

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211025

R150 Certificate of patent or registration of utility model

Ref document number: 6977704

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150