JP3646674B2 - Blast furnace operation method - Google Patents

Blast furnace operation method Download PDF

Info

Publication number
JP3646674B2
JP3646674B2 JP2001193472A JP2001193472A JP3646674B2 JP 3646674 B2 JP3646674 B2 JP 3646674B2 JP 2001193472 A JP2001193472 A JP 2001193472A JP 2001193472 A JP2001193472 A JP 2001193472A JP 3646674 B2 JP3646674 B2 JP 3646674B2
Authority
JP
Japan
Prior art keywords
blast furnace
target value
furnace
operating
year
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001193472A
Other languages
Japanese (ja)
Other versions
JP2003013121A (en
Inventor
昌宏 柏田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2001193472A priority Critical patent/JP3646674B2/en
Publication of JP2003013121A publication Critical patent/JP2003013121A/en
Application granted granted Critical
Publication of JP3646674B2 publication Critical patent/JP3646674B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Iron (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高炉の操業方法に関する。より具体的には、本発明は、年間を通じて定めた高炉の出銑量の目標値に基づいて高炉を操業する際に、炉底の耐火レンガの損傷を抑制することができる高炉の操業方法に関するものである。
【0002】
【従来の技術】
従来、高炉の生産量は、粗鋼の生産動向および各社の販売計画等に基づいて、年度始めに年間生産量が決定され、続いて、メンテナンスのための計画休風を除いて、年間を通して通常日の出銑量は一定値として、通常日の平均出銑量が算出されて設定される。
【0003】
ところで、夏場は大気湿分が上昇するために燃料比が上昇し、送風原単位が悪化する。このため、一定値として設定された出銑量を夏場においても維持するためには、送風量を増加させる必要がある。また、酸素プラントの酸素供給能力は、夏場には、大気温度は上昇するために酸素発生能力が低下し、酸素が高炉で使用できない場合は送風量を増加せざるを得ない。
【0004】
しかしながら、送風量を増加させて高炉の操業を行うと、後述するように、炉芯コークスを浮上させて炉床の湯流れを変化させるため、炉底の熱負荷を増加させ、炉底の熱損傷を増加させてしまう。
【0005】
炉底の熱損傷を抑制するために、特開平1−11604 号公報には、高炉の融着帯高さおよび炉内の圧力損失を変化させ、炉芯コークスの浮き沈みの程度を炉芯沈降指数として指数化し、この炉芯沈降指数に基づいて炉底温度を制御する発明が提案されている。
【0006】
また、特開平6−145738号公報には、高炉の炉底レンガの温度を計測し、ある一定温度以上になった場合に、この部位の冷却水の温度を低下させることによって炉底レンガの前面に凝固層を形成して、炉底レンガを保護する発明が提案されている。
【0007】
【発明が解決しようとする課題】
しかしながら、これらの発明によっても一年間を通じて炉底の熱損傷を抑制することができない。
【0008】
すなわち、特開平1−11604 号公報により提案された発明には、フィードバック的に炉底温度の上昇時に操業諸元を変更させて炉底レンガの温度を制御する旨の記載はあるが、操業諸元の変更は季節変動的要因に基づくものではない。このため、この発明によっても一年間を通じて炉底の熱損傷を抑制することができない。
【0009】
また、特開平6−145738号公報により提案された発明を実施するには、設備の初期投資費が嵩んだり、冷却水温度を変化させて炉底に凝固層を形成するまでの時間差を要するという問題がある。このため、この発明によっても一年間を通じて炉底の熱損傷を抑制することができるものではない。
【0010】
本発明の目的は、年間を通じて定めた高炉の出銑量の目標値に基づいて高炉を操業する際に、炉底の耐火レンガの損傷を抑制することができる高炉の操業方法を提供することである。
【0011】
【課題を解決するための手段】
本発明は、年間を通じて高炉の出銑量の目標値を定め、この目標値に基づいて高炉を操業する際に、この目標値を、年間のうち大気湿分が上昇する時期は、大気湿分が低下する時期よりも低く設定することによって、炉底レンガの損耗を抑制することを特徴とする高炉の操業方法である。
【0012】
この本発明にかかる高炉の操業方法では、前記の目標値が、炉芯コークスの湯溜り深さ(以下、本明細書では「湯溜り指数」という)が予め定めた所定の範囲内となるように、設定されることが、例示される。
【0013】
これらの本発明にかかる高炉の操業方法では、前記の目標値が、四季に応じて2段階以上に細分化されることが、例示される。
これらの本発明にかかる高炉の操業方法では、2段階以上に細分化された目標値のうちで冬季に対応する目標値は、夏季に対応する目標値よりも、目標値の年間平均値の2%以上高くなるように、設定されることが、例示される。
【0014】
さらに、これらの本発明にかかる高炉の操業方法では、高炉の出銑比が1.9t/dm3以上であることが、例示される。
【0015】
【発明の実施の形態】
以下、本発明にかかる高炉の操業方法の実施の形態を、添付図面を参照しながら詳細に説明する。
【0016】
前述したように、従来の高炉の生産計画は、計画休風を除いた通常日の出銑量は年間を通して一定であるとして設定される。これに対し、実際の操業の際には、大気湿分や酸素プラント能力が年間を通じて一定でないために季節変動がある。このため、出銑量を年間を通じて一定に維持するためには、特に夏場は炉底レンガに対し負荷がかかる操業計画となっていた。
【0017】
そこで、本実施の形態では、略述すれば、予め夏場は高炉の最高出銑量が冬場に比較して低下することを織り込んだ生産計画を策定することにより、製鋼工程以下での対応が十分可能であり、かつ製品の出荷に影響を与えないことが可能である。
【0018】
図1は、炉底レンガに及ぼす熱負荷と炉芯コークスの浮き沈みとの関係を模式的に示す説明図であって、図1(a)は炉芯コークスが沈降する状況を示す説明図であり、図1(b)は炉芯コークスが浮上する状況を示す説明図である。
【0019】
図1(a) に示すように、炉芯コークス1が沈降して、炉芯コークスの下面2が出銑孔3の設置高さよりも下側にある場合、生成された銑鉄4は炉芯コークス充填層内を通り出銑孔3から排出される。この場合、炉底湯溜まり7には湯流れは発生せず、炉底レンガ6の温度は安定する。
【0020】
一方、図1(b)に示すように、炉芯コークス1が浮上して、炉芯コークスの下面2が出銑孔3の設置高さよりも上側にある場合、生成された銑鉄4は炉芯コークス充填層下面を通過し炉底の湯溜り7に達し、炉床面5での湯流れを発生させ、出銑孔3から排出される。この場合、炉床面5に湯流れが発生し、炉底レンガ6の温度が上昇する。
【0021】
ここで、高炉8の炉芯コークスの下端レベルと羽口レベルとの間の距離 (図1(a)および図1(b)における距離h)を湯溜り指数と定義する。すなわち、湯溜り指数hは、(1) 式で定義される。
【0022】
[数1]
湯溜り指数h=L+(W1+W2-wl-w2)/{(炉床断面積)x(1- コークスの空隙率)×(溶銑とスラグ の平均比重)} ・・・(1)
(1) 式において、Lは出銑孔3と羽口9との間の距離(m) を示し、W1は塊状帯(鉱石およびコークス)の重量を示す。また、W2は滴下帯(コークス)の重量を示し、w1は (送風による圧力損失) × (高炉の断面積) を示し、w2は (原料の壁面抵抗) × (高炉の全炉壁面積) を示す。
【0023】
この湯溜まり指数と炉底温度の関係を図2(a)にグラフで示す。また、図2(b)は、燃料比と大気湿分との関係をグラフで示す。さらに、図2(c)は湯溜り指数と燃料比との関係をグラフで示す。
【0024】
図2(a)にグラフで示すように、湯溜り指数が4.2 以下になると、炉底温度が急激に上昇することがわかる。したがって、炉底レンガの熱負荷を抑制するためには、湯溜り指数が4.2 以上であることが有効である。
【0025】
湯溜まり指数に影響を及ぼす高炉操業因子として燃料比や送風量などが挙げられる。まず、燃料比は図2(c) で示すように、燃料比が増加すると湯溜まり指数は低下、すなわち炉芯コークスは浮上する。
【0026】
これは燃料比の増加により高炉の融着帯レベルが上昇し、塊状帯長さが減少することにより(1) 式におけるW1が低下するためである。
次に送風量を増加させると、送風による圧力損失は大きくなるため、(1) 式におけるW1は大きくなり、湯溜まり指数は低下、すなわち炉芯コークスは浮上する。
【0027】
夏季は大気湿分が上昇するため、図2(b) に示すように高炉の燃料比は上昇する。このため、前節で述べた如く、湯溜まり指数が低下し (図2(c))、炉底温度が上昇するケースが多く見られる。
【0028】
一方、冬季は逆に大気湿分が低下し、燃料比が低下するため、湯溜まり指数が上昇し、炉底温度が安定化する。この季節による変動は、出銑比が低い場合は問題にならないが、出銑比が高い場合にはこの傾向が顕著になる。
【0029】
図3は、従来の実操業における年間出銑比(t/dm3) と湯溜り指数との関係を示すグラフである。図3に示すグラフから、これから出銑比1.9(t/dm3)以上では夏季に管理下限の湯溜り指数を下回るために操業の際には対応する必要があるが、逆に冬季ではまだ余裕があることがわかる。
【0030】
図4は、季節の変化による影響を調査するため、試験的に年間の出銑量を傾斜させ設定した場合を示すグラフである。ここで、出銑比レベルは1.95(t/dm3) である。
【0031】
図4に示すグラフにおいて、出銑量が一定である従来例(図4における○印)の場合や夏場には、夏季(2Q)における湯溜り指数が低下し(炉芯浮上)、炉底の温度が上昇する懸念がある。しかし、夏季には酸素プラント能力に余力がなく、酸素負荷増などで回避することは困難である。
【0032】
これに対し、本発明例(図4における●印) の場合や夏季(2Q)から冬季(4Q)に生産量を2%傾斜させて増加することによって、年間通じて所望の生産量を確保できるとともに湯溜り指数を管理値以上に保つことができる。これにより、炉底温度の上昇に基づく炉底レンガの損傷を抑制することができる。
【0033】
このように、本実施の形態によれば、冬季の余裕を利用して、夏季の炉底に及ぼす負荷を低減させ、これにより、年間を通じて出銑量を一定に保つとともに、炉底レンガ温度の上昇させる危険を最大限に低下させることができる。
【0034】
【実施例】
次に、本発明を実施例を参照しながら詳細に説明する。
図1〜図4を参照しながら説明した実施の形態に基づいて、高炉の操業を行って、操業時における炉底レンガの温度の変動状況を測定した。測定結果を図5にグラフで示す。
【0035】
図5にグラフで示すように、本発明によるテスト期間では、炉底温度の上昇頻度は著しく低減されるとともに、目標生産量を維持することができた。
(変形形態)
実施の形態および実施例の説明では、高炉の出銑量の目標値を、夏季および冬季の2段階に細分化して設定した場合を例にとった。しかし、本発明はこの形態に限定されるものではなく、3段階以上に細分化するようにしてもよい。
【0036】
【発明の効果】
以上詳細に説明したように、本発明により、年間を通じて定めた高炉の出銑量の目標値に基づいて高炉を操業する際に、炉底の耐火レンガの損傷を抑制することができる高炉の操業方法を提供できた。
【0037】
かかる効果を有する本発明の意義は、極めて著しい。
【図面の簡単な説明】
【図1】炉底レンガに及ぼす熱負荷と炉芯の浮き沈みとの関係を模式的に示す説明図であって、図1(a)は炉芯が沈降する状況を示す説明図であり、図1(b)は炉芯が浮上する状況を示す説明図である。
【図2】図2(a)は、湯溜まり指数と炉底温度との関係を示すグラフであり、図2(b)は、燃料比と大気湿分との関係を示すグラフであり、さらに、図2(c)は湯溜り指数と燃料比との関係を示すグラフである。
【図3】従来の実操業における年間出銑比(t/dm3) と湯溜り指数との関係を示すグラフである。
【図4】季節の変化による影響を調査するため、試験的に年間の出銑量を傾斜させ設定した場合を示すグラフである。
【図5】操業時における炉底レンガの温度の変動状況を測定した結果を示すグラフである。
【符号の説明】
1 炉芯コークス
2 炉芯コークスの下面
3 出銑孔
4 銑鉄
5 炉床面
6 炉底レンガ
7 炉底の湯溜り
8 高炉
9 羽口
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for operating a blast furnace. More specifically, the present invention relates to a method for operating a blast furnace capable of suppressing damage to a refractory brick at the bottom of the blast furnace when operating the blast furnace based on a target value of the amount of blast furnace output determined throughout the year. Is.
[0002]
[Prior art]
Conventionally, the production volume of the blast furnace is determined at the beginning of the year based on the production trends of crude steel and the sales plans of each company. The amount is set to a constant value by calculating the average amount of output on a normal day.
[0003]
By the way, in summer, the atmospheric ratio increases, so the fuel ratio rises and the basic unit of airflow deteriorates. For this reason, in order to maintain the amount of output set as a fixed value also in summer, it is necessary to increase the air flow rate. In addition, the oxygen supply capacity of the oxygen plant decreases in the summer due to an increase in the atmospheric temperature, and if the oxygen cannot be used in the blast furnace, the blast volume must be increased.
[0004]
However, when the blast furnace is operated by increasing the air flow rate, as will be described later, the core coke floats up and the hot water flow in the hearth is changed. Increases damage.
[0005]
In order to suppress thermal damage to the bottom of the furnace, Japanese Patent Application Laid-Open No. 1-11604 discloses that the height of the cohesive zone of the blast furnace and the pressure loss in the furnace are changed, and the degree of ups and downs of the core coke is determined. An invention has been proposed in which the furnace bottom temperature is controlled based on the core sedimentation index.
[0006]
JP-A-6-145738 discloses the temperature of the bottom brick of the blast furnace, and when it reaches a certain temperature or higher, the temperature of the cooling water in this part is lowered to reduce the front of the bottom brick. An invention is proposed in which a solidified layer is formed on the bottom to protect the bottom brick.
[0007]
[Problems to be solved by the invention]
However, even with these inventions, thermal damage to the furnace bottom cannot be suppressed throughout the year.
[0008]
In other words, the invention proposed in Japanese Patent Application Laid-Open No. 1-11604 has a description that the operation specifications are changed by feedback when the temperature of the bottom of the furnace is raised to control the temperature of the bottom of the brick. The original change is not based on seasonal factors. For this reason, even according to the present invention, thermal damage to the furnace bottom cannot be suppressed throughout the year.
[0009]
In order to implement the invention proposed in Japanese Patent Application Laid-Open No. 6-145738, the initial investment cost of equipment increases, and a time difference is required until the solidified layer is formed on the furnace bottom by changing the cooling water temperature. There is a problem. For this reason, even this invention cannot suppress the heat damage of the furnace bottom throughout the year.
[0010]
An object of the present invention is to provide a method of operating a blast furnace capable of suppressing damage to a refractory brick at the bottom of the blast furnace when operating the blast furnace based on a target value of the amount of blast furnace output determined throughout the year. is there.
[0011]
[Means for Solving the Problems]
The present invention defines a target value of the tapping of a blast furnace throughout the year, the time of operating the blast furnace on the basis of the target value, the target value, time to atmospheric moisture is increased of year, atmospheric moisture It is the operating method of the blast furnace characterized by suppressing wear of a furnace bottom brick by setting it lower than the time which falls .
[0012]
In the blast furnace operating method according to the present invention, the target value is set so that the hot water puddle depth of the core coke (hereinafter referred to as “hot puddle index” in this specification) falls within a predetermined range. It is exemplified that it is set.
[0013]
In these blast furnace operating methods according to the present invention, it is exemplified that the target value is subdivided into two or more stages according to the four seasons.
In these blast furnace operating methods according to the present invention, among the target values subdivided into two or more stages, the target value corresponding to the winter season is 2 times the annual average value of the target value rather than the target value corresponding to the summer season. It is exemplified that it is set to be higher than%.
[0014]
Furthermore, in these blast furnace operating methods according to the present invention, the output ratio of the blast furnace is exemplified to be 1.9 t / dm 3 or more.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of a method for operating a blast furnace according to the present invention will be described in detail with reference to the accompanying drawings.
[0016]
As described above, the conventional blast furnace production plan is set so that the normal sunrise dredging amount excluding the planned rest wind is constant throughout the year. On the other hand, during actual operation, there are seasonal fluctuations because the atmospheric moisture and oxygen plant capacity are not constant throughout the year. For this reason, in order to keep the amount of tuna constant throughout the year, it was an operation plan that puts a load on the bottom brick, especially in summer.
[0017]
Therefore, in the present embodiment, to be brief, in summer, the production plan that incorporates the fact that the maximum output of the blast furnace is lower than that in winter will be formulated in advance, so that the response below the steelmaking process is sufficient. It is possible and not affecting the shipment of the product.
[0018]
FIG. 1 is an explanatory diagram schematically showing the relationship between the thermal load on the bottom brick and the ups and downs of the core coke, and FIG. 1 (a) is an explanatory diagram showing the situation where the core coke sinks. FIG. 1 (b) is an explanatory view showing a situation where the core coke floats.
[0019]
As shown in FIG. 1 (a), when the core coke 1 sinks and the lower surface 2 of the core coke is below the installation height of the tap hole 3, the generated pig iron 4 is the core coke. It passes through the packed bed and is discharged from the tap hole 3. In this case, no hot water flow is generated in the furnace bottom hot water pool 7, and the temperature of the furnace bottom brick 6 is stabilized.
[0020]
On the other hand, as shown in FIG. 1 (b), when the core coke 1 floats and the lower surface 2 of the core coke is above the installation height of the tap hole 3, the generated pig iron 4 is It passes through the lower surface of the coke packed bed, reaches the hot water pool 7 at the bottom of the furnace, generates a hot water flow on the hearth surface 5, and is discharged from the tap hole 3. In this case, a hot water flow is generated on the hearth surface 5 and the temperature of the bottom brick 6 increases.
[0021]
Here, the distance between the lower end level and the tuyere level of the core coke of the blast furnace 8 (the distance h in FIGS. 1 (a) and 1 (b)) is defined as the sump index. That is, the hot water index h is defined by equation (1).
[0022]
[Equation 1]
Hot water index h = L + (W1 + W2-wl-w2) / {(furnace cross-sectional area) x (1- porosity of coke) x (average specific gravity of hot metal and slag)} (1)
In the formula (1), L indicates the distance (m) between the tap hole 3 and the tuyere 9, and W1 indicates the weight of the block (ore ore and coke). W2 indicates the weight of the dripping zone (coke), w1 indicates (pressure loss due to blowing) × (cross-sectional area of the blast furnace), and w2 indicates (wall resistance of the raw material) × (total furnace wall area of the blast furnace). Show.
[0023]
The relationship between the hot water index and the furnace bottom temperature is shown graphically in FIG. FIG. 2 (b) is a graph showing the relationship between the fuel ratio and atmospheric moisture. Further, FIG. 2 (c) shows the relationship between the hot water index and the fuel ratio in a graph.
[0024]
As shown in the graph of FIG. 2 (a), it can be seen that the bottom temperature rises rapidly when the sump index is 4.2 or less. Therefore, in order to suppress the thermal load on the bottom brick, it is effective that the sump index is 4.2 or more.
[0025]
Blast furnace operating factors that affect the hot water pool index include fuel ratio and blast volume. First, as shown in FIG. 2 (c), as the fuel ratio increases, the hot water sump index decreases, that is, the core coke rises.
[0026]
This is because the cohesive zone level of the blast furnace rises due to the increase in the fuel ratio, and W1 in equation (1) decreases due to the reduction of the length of the massive zone.
Next, when the air flow rate is increased, the pressure loss due to the air flow increases, so W1 in equation (1) increases, the hot water index decreases, that is, the core coke rises.
[0027]
Since the atmospheric moisture rises in summer, the fuel ratio of the blast furnace rises as shown in Fig. 2 (b). For this reason, as described in the previous section, there are many cases where the hot water sump index decreases (Fig. 2 (c)) and the furnace bottom temperature rises.
[0028]
On the other hand, in the winter, the atmospheric moisture decreases and the fuel ratio decreases, so the hot water index increases and the furnace bottom temperature stabilizes. This seasonal variation is not a problem when the output ratio is low, but this tendency becomes significant when the output ratio is high.
[0029]
FIG. 3 is a graph showing the relationship between the annual output ratio (t / dm 3 ) and the sump index in a conventional actual operation. From the graph shown in Fig. 3, if the output ratio is 1.9 (t / dm 3 ) or more from now on, it is necessary to cope with the operation since it falls below the lower limit of the puddle index in the summer. I understand that there is.
[0030]
FIG. 4 is a graph showing a case where the annual output amount is set to be inclined on a trial basis in order to investigate the influence of seasonal changes. Here, the output ratio level is 1.95 (t / dm 3 ).
[0031]
In the graph shown in FIG. 4, in the case of the conventional example (marked with a circle in FIG. 4) in which the amount of slag is constant or in the summer, the sump index in the summer (2Q) decreases (furnace core floating), There is a concern that the temperature will rise. However, there is no capacity in the oxygen plant capacity in the summer, and it is difficult to avoid it by increasing the oxygen load.
[0032]
On the other hand, in the case of the present invention example (● mark in FIG. 4) or by increasing the production amount by 2% from the summer (2Q) to the winter (4Q), the desired production can be secured throughout the year. At the same time, the puddle index can be kept above the control value. Thereby, damage to the bottom brick based on the rise in the bottom temperature can be suppressed.
[0033]
As described above, according to the present embodiment, the load on the furnace bottom in the summer is reduced by using the margin in the winter, thereby keeping the output amount constant throughout the year and the temperature of the bottom brick temperature. The risk of raising can be reduced to the maximum.
[0034]
【Example】
Next, the present invention will be described in detail with reference to examples.
Based on the embodiment described with reference to FIGS. 1 to 4, the blast furnace was operated, and the fluctuation state of the temperature of the bottom brick during the operation was measured. The measurement results are shown graphically in FIG.
[0035]
As shown in the graph of FIG. 5, in the test period according to the present invention, the rise frequency of the furnace bottom temperature was significantly reduced and the target production amount could be maintained.
(Deformation)
In the description of the embodiments and the examples, the target value of the amount of blast furnace output is set as an example by subdividing it into two stages of summer and winter. However, the present invention is not limited to this form, and may be subdivided into three or more stages.
[0036]
【The invention's effect】
As described above in detail, according to the present invention, when the blast furnace is operated based on the target value of the amount of blast furnace discharge determined throughout the year, the operation of the blast furnace can suppress damage to the refractory bricks at the bottom of the furnace. Could provide a way.
[0037]
The significance of the present invention having such an effect is extremely remarkable.
[Brief description of the drawings]
FIG. 1 is an explanatory view schematically showing a relationship between a thermal load exerted on a furnace bottom brick and ups and downs of a furnace core, and FIG. 1 (a) is an explanatory view showing a situation in which the furnace core sinks, 1 (b) is an explanatory diagram showing a situation where the core of the furnace rises.
[Fig. 2] Fig. 2 (a) is a graph showing the relationship between the hot water sump index and the furnace bottom temperature, Fig. 2 (b) is a graph showing the relationship between the fuel ratio and atmospheric moisture, FIG. 2 (c) is a graph showing the relationship between the hot water index and the fuel ratio.
FIG. 3 is a graph showing the relationship between the annual output ratio (t / dm 3 ) and the sump index in a conventional actual operation.
FIG. 4 is a graph showing a case where the annual output is set to be inclined on a trial basis in order to investigate the influence of seasonal changes.
FIG. 5 is a graph showing the results of measuring the temperature fluctuation state of the bottom brick during operation.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Furnace core coke 2 Lower surface of furnace core coke 3 Outlet hole 4 Pig iron 5 Furnace floor surface 6 Furnace bottom brick 7 Furnace bottom puddle 8 Blast furnace 9 tuyere

Claims (5)

年間を通じて高炉の出銑量の目標値を定め、該目標値に基づいて高炉を操業する際に、前記目標値を、年間のうち大気湿分が上昇する時期は、大気湿分が低下する時期よりも低く設定することによって、炉底レンガの損耗を抑制することを特徴とする高炉の操業方法。When the target value of the amount of blast furnace discharge is determined throughout the year and the blast furnace is operated based on the target value, the target value is the same as the period when the atmospheric moisture is reduced during the year. The operation method of the blast furnace characterized by suppressing wear of a furnace bottom brick by setting lower than this . 前記目標値は、炉芯コークスの湯溜り深さが予め定めた所定の範囲内となるように、設定される請求項1に記載された高炉の操業方法。  The blast furnace operating method according to claim 1, wherein the target value is set such that a depth of the hot water pool of the core coke falls within a predetermined range. 前記目標値は、四季に応じて2段階以上に細分化される請求項1または請求項2に記載された高炉の操業方法。  The method for operating a blast furnace according to claim 1 or 2, wherein the target value is subdivided into two or more stages according to the four seasons. 2段階以上に細分化された前記目標値のうちで冬季に対応する目標値は、夏季に対応する目標値よりも、前記目標値の年間平均値の2%以上高くなるように、設定される請求項3に記載された高炉の操業方法。  Of the target values subdivided into two or more stages, the target value corresponding to the winter season is set to be 2% or more higher than the target value corresponding to the summer season in terms of the annual average value of the target value. A method for operating a blast furnace according to claim 3. 前記高炉の出銑比は1.9t/dm3以上である請求項1から請求項4までのいずれか1項に記載された高炉の操業方法。The method for operating a blast furnace according to any one of claims 1 to 4, wherein the output ratio of the blast furnace is 1.9 t / dm 3 or more.
JP2001193472A 2001-06-26 2001-06-26 Blast furnace operation method Expired - Fee Related JP3646674B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001193472A JP3646674B2 (en) 2001-06-26 2001-06-26 Blast furnace operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001193472A JP3646674B2 (en) 2001-06-26 2001-06-26 Blast furnace operation method

Publications (2)

Publication Number Publication Date
JP2003013121A JP2003013121A (en) 2003-01-15
JP3646674B2 true JP3646674B2 (en) 2005-05-11

Family

ID=19031754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001193472A Expired - Fee Related JP3646674B2 (en) 2001-06-26 2001-06-26 Blast furnace operation method

Country Status (1)

Country Link
JP (1) JP3646674B2 (en)

Also Published As

Publication number Publication date
JP2003013121A (en) 2003-01-15

Similar Documents

Publication Publication Date Title
CN104781426B (en) The manufacture method of the operational approach and molten iron of blast furnace
CN102399926A (en) Furnace halt residue iron outlet method for middle and large-sized blast furnaces
JP3646674B2 (en) Blast furnace operation method
CN102719581A (en) Blast furnace tapping method for reducing molten iron circulation in hearth
JP5381899B2 (en) Blast furnace operation method
CN102414328A (en) Blast furnace operation method
Agrawal et al. Effect of hearth liquid level on the productivity of blast furnace
JP2001073014A (en) Lowered stock level operation in blast furnace
JP4739920B2 (en) Blast furnace operation method with small furnace heat fluctuation
JP3077691B1 (en) Blast furnace operation method
JP2010048528A (en) Control method of melting furnace
JPH01225711A (en) Method for operating blast furnace
JP2001262208A (en) Method for operating blast furnace
JP4598710B2 (en) Blast furnace brick wear prevention method
JPS5946283B2 (en) How to operate a blast furnace
JPH03162510A (en) Method for operating blast furnace
JPH09227911A (en) Operation of blast furnace
JP2001073016A (en) Operation of blast furnace
JPH09209008A (en) Method for protecting furnace bottom part of blast furnace
JPH0563522B2 (en)
Roy et al. Studies on influence of liquid level on blast furnace performance and monitoring of hearth drainage
SU1680791A1 (en) Method of control of silicomanganese melting in rectangular electric furnace
JP2001335818A (en) Method for cooling furnace bottom in blast furnace
JP2921374B2 (en) Blast furnace operation method
JP3707368B2 (en) Estimating method of blast furnace melting status

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050131

R150 Certificate of patent or registration of utility model

Ref document number: 3646674

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090218

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100218

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100218

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110218

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120218

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120218

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130218

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130218

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130218

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees