JPH09157716A - Structure for cooling furnace bottom of blast furnace - Google Patents

Structure for cooling furnace bottom of blast furnace

Info

Publication number
JPH09157716A
JPH09157716A JP33993495A JP33993495A JPH09157716A JP H09157716 A JPH09157716 A JP H09157716A JP 33993495 A JP33993495 A JP 33993495A JP 33993495 A JP33993495 A JP 33993495A JP H09157716 A JPH09157716 A JP H09157716A
Authority
JP
Japan
Prior art keywords
cooling
furnace
blast furnace
stave
furnace bottom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33993495A
Other languages
Japanese (ja)
Other versions
JP4021948B2 (en
Inventor
Hajime Otsuka
一 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP33993495A priority Critical patent/JP4021948B2/en
Publication of JPH09157716A publication Critical patent/JPH09157716A/en
Application granted granted Critical
Publication of JP4021948B2 publication Critical patent/JP4021948B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve the cooling capacity of a high heat loading part by making a state arranged between a carbon brick and a furnace shell in the wall part at a furnace bottom of a copper and also, to reduce the wearing of the furnace bottom of a blast furnace by optimizing the arranging range. SOLUTION: The cast iron-made stave 5a and the copper-made stave 5b are arrange din a castable refractory 2 between the carbon brick 4 and the furnace shell 1 in the sidewall part at the furnace bottom in the blast furnace. Cooling pipings 13 are arranged and cooled to the furnace bottom hearth part arranging refractory brick 12 in the inside of the carbon brick 4, and the wearing of the furnace bottom of the blast furnace is prevented to prolong the service life of the blast furnace lining. In the cooling structure in the furnace bottom of the blast furnace, the copper-made staves 5b are arranged in the range of 0-4m below an iron tapping hole 10 to execute the cooling strengthening at the high heat loading position, and the cast iron-made staves 5a are arranged at the other position to prevent the over-cooling.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高炉の炉底側壁部
の冷却において、高熱負荷部位の冷却強化を行うことに
より高炉炉底の長寿命化を図る高炉炉底の冷却構造に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a blast furnace bottom cooling structure for extending the life of a blast furnace bottom by strengthening the cooling of a high heat load portion in cooling the bottom wall of the blast furnace.

【0002】[0002]

【従来の技術】高炉炉底は高炉寿命を律する部位であ
り、炉底を構成するカーボンレンガの損耗防止は、高炉
の寿命延長のための最重要項目である。炉底側壁のカー
ボンレンガの損耗原因は、溶銑による浸食、熱応力によ
る脆化等が挙げられるが、その損耗防止には高熱負荷部
の冷却強化が最も有効である。高炉の炉底側壁部の冷却
方法については、ステーブによる冷却と鉄皮散水による
冷却とに大別される。図2に従来のステーブ冷却炉底の
炉底側壁縦断面図を示す。高炉炉内側よりカーボンレン
ガ4、スタンプ材3、ステーブ5、キャスタブル2、鉄
皮1で構成されている。
2. Description of the Related Art The bottom of a blast furnace controls the life of the blast furnace, and the prevention of wear of carbon bricks forming the bottom of the blast furnace is the most important item for extending the life of the blast furnace. The cause of wear of the carbon bricks on the side wall of the furnace bottom is erosion due to hot metal and brittleness due to thermal stress, and the most effective way to prevent such wear is to strengthen the cooling of the high heat load part. Cooling methods for the side wall of the bottom of the blast furnace are roughly classified into cooling with stave and cooling with iron shell water spray. FIG. 2 shows a vertical sectional view of a bottom wall of a conventional stave cooling furnace bottom. It is composed of a carbon brick 4, a stamp material 3, a stave 5, a castable 2, and a steel skin 1 from the inside of the blast furnace.

【0003】冷却はステーブパイプ6内を流れる冷却水
および鉄皮1からの熱放散により行われるが、抜熱量の
95%以上がステーブパイプ6内を流れる冷却水による
もので、炉底側壁の冷却能を向上させるためには、カー
ボンレンガ4からステーブ冷却水間の熱抵抗を低減させ
ることが有効である。このため、カーボンレンガ4とス
タンプ材3の熱伝導率(熱抵抗の逆数)を向上させる改
善が行われ、炉底側壁の冷却能は向上してきた。しか
し、ステーブ5については、その製造時の鋳込みの際に
ステーブパイプ6への侵炭を防止するために、ステーブ
パイプ6の表面にマーシャライト7を塗布しており、そ
の熱抵抗が大きいために、ステーブ5の熱抵抗が増大し
ていた。
Cooling is performed by cooling water flowing in the stave pipe 6 and heat dissipation from the iron shell 1. 95% or more of the heat removal amount is due to the cooling water flowing in the stave pipe 6, and cooling of the side wall of the furnace bottom is performed. In order to improve the performance, it is effective to reduce the thermal resistance between the carbon brick 4 and the stave cooling water. Therefore, improvements have been made to improve the thermal conductivity (reciprocal of thermal resistance) of the carbon brick 4 and the stamp material 3, and the cooling ability of the furnace bottom side wall has been improved. However, with respect to the stave 5, the marshalite 7 is applied to the surface of the stave pipe 6 in order to prevent carburization of the stave pipe 6 at the time of casting at the time of manufacturing, and the thermal resistance thereof is large. , The thermal resistance of the stave 5 was increasing.

【0004】この対策として、特開平6−158131
号公報のように、冷却パイプをスタンプ材3あるいはカ
ーボンレンガ4に直接接触させる発明も提案されてい
る。この方法では、鋳物からなるステーブ5の熱抵抗を
省略しているために、カーボンレンガ4から冷却水間の
熱抵抗を低減できるように思われる。しかし、この方式
では、冷却配管が従来のステーブ5のようにカーボンレ
ンガ4と面で接触していないために、操業時にカーボン
レンガ4が膨張すると、カーボンレンガ4と鉄皮1との
熱膨張差により、冷却配管が圧縮され冷却配管やカーボ
ンレンガ4の破損、あるいは冷却配管とカーボンレンガ
4との間に空隙を生じ、却って熱抵抗を増大させる等信
頼性に問題がある。
As a countermeasure against this, Japanese Patent Laid-Open No. 6-158131
There is also proposed an invention in which the cooling pipe is brought into direct contact with the stamp material 3 or the carbon brick 4 as in Japanese Patent Publication No. 2003-242242. In this method, since the thermal resistance of the stave 5 made of casting is omitted, it seems that the thermal resistance between the carbon brick 4 and the cooling water can be reduced. However, in this method, since the cooling pipe is not in surface contact with the carbon brick 4 unlike the conventional stave 5, when the carbon brick 4 expands during operation, the difference in thermal expansion between the carbon brick 4 and the iron shell 1 As a result, the cooling pipe is compressed and the cooling pipe and the carbon brick 4 are damaged, or a gap is created between the cooling pipe and the carbon brick 4, which rather causes an increase in heat resistance, which causes a problem in reliability.

【0005】すなわち、高炉操業時は、建設時と比較し
て、カーボンレンガ4と鉄皮1との熱膨張差が数十mm
以上生じ、この熱膨張差をスタンプ材3の収縮により吸
収していたが、特開平6−158131号公報の発明で
はこの点が考慮されておらず、冷却配管やカーボンレン
ガ4の破損、および熱抵抗増大の問題があった。一方、
炉底側壁部のカーボンレンガ4の浸食は、炉底の溶銑流
れの状態との関係も深く、炉底側壁の適正な冷却範囲を
選定することが、カーボンレンガ4の損耗を抑制するた
めに有効と考えられている。
That is, when the blast furnace is in operation, the difference in thermal expansion between the carbon brick 4 and the iron shell 1 is several tens of millimeters as compared with the time of construction.
The above-described occurrence occurred and this difference in thermal expansion was absorbed by the contraction of the stamp material 3, but this is not taken into consideration in the invention of Japanese Patent Laid-Open No. 6-158131, and the damage to the cooling pipe and the carbon brick 4 and the heat There was a problem of increased resistance. on the other hand,
Corrosion of the carbon bricks 4 on the side wall of the furnace bottom has a close relationship with the state of the hot metal flow on the furnace bottom, and selecting an appropriate cooling range for the side walls of the furnace bottom is effective for suppressing the wear of the carbon bricks 4. It is believed that.

【0006】図3に炉底側壁と炉底炉床の最小残存厚
(カーボンレンガ4の残存厚さ)の推移を示した。図3
中のハッチングの部分は、カーボンレンガ4の表面に存
在する付着物の厚さを示すが、図3中において、4年
目、5年目の時点のように炉底炉床部の付着物が厚い時
に、炉底側壁部のカーボンレンガ4の損耗が起こってい
る。すなわち、炉底炉床部が過度に冷却されると、炉底
炉床部に形成される付着物は炉底の溶銑流れを変化さ
せ、炉底側壁部の熱負荷を増加させ、却って炉底側壁部
の損耗を招く。従って、炉底側壁部高さ方向の適正な冷
却能の設定が必要となる。
FIG. 3 shows changes in the minimum remaining thickness (remaining thickness of the carbon brick 4) of the bottom wall of the hearth and the hearth of the hearth. FIG.
The hatched portion in the figure shows the thickness of the deposits existing on the surface of the carbon brick 4, but in Fig. 3, the deposits on the hearth floor are the same as those at the 4th and 5th years. When it is thick, the carbon bricks 4 on the side wall of the furnace bottom are worn. That is, when the hearth hearth is excessively cooled, the deposits formed on the hearth hearth change the hot metal flow of the hearth and increase the heat load on the side wall of the hearth. The side wall is worn. Therefore, it is necessary to set an appropriate cooling capacity in the height direction of the bottom wall of the furnace.

【0007】[0007]

【発明が解決しようとする課題】本発明は、高炉の炉底
側壁の冷却において、高熱負荷部の冷却能を向上し、か
つ、その範囲を適正化することによって、損耗の少ない
高炉炉底の冷却構造を提供することを目的とする。
DISCLOSURE OF THE INVENTION In the present invention, in cooling the side wall of the bottom of a blast furnace, by improving the cooling capacity of a high heat load part and optimizing its range, the bottom of the blast furnace bottom with less wear can be obtained. It is intended to provide a cooling structure.

【0008】[0008]

【課題を解決するための手段】本発明は、前記課題の解
決を図ったものでその要旨とするところは、高炉のカー
ボンレンガをステーブを用いて冷却する炉底側壁の冷却
構造において、炉底側壁部のカーボンレンガと鉄皮間に
設置するステーブを銅製とし、その設置範囲を高熱負荷
部の出銑口の下0〜4mの範囲の高炉炉底側壁に設置す
ることを特徴とするものである。
DISCLOSURE OF THE INVENTION The present invention is intended to solve the above problems, and its gist is to provide a cooling structure for a side wall of a furnace bottom for cooling carbon bricks of a blast furnace by using a stave. The stave to be installed between the carbon brick and the iron shell of the side wall is made of copper, and its installation range is installed on the side wall of the blast furnace bottom in the range of 0 to 4 m below the tap hole of the high heat load part. is there.

【0009】[0009]

【発明の実施の形態】図7(a〜c)に銅製ステーブの
構造を正面図、側面図、断面図として示す。冷却の方法
は従来の鋳鉄製ステーブと同様である。給排水パイプ1
4により供給される冷却水は、銅製ステーブ母材9の内
部(同図(b)のA−Aからみた矢視図(同図
(c)))に示す水路15を通り、母材9を冷却する。
図5に銅製ステーブ5bを炉底側壁に使用した場合の伝
熱計算結果を、図4に従来の鋳鉄ステーブ5aを同様に
使用した結果を示す。銅製ステーブ5bは、銅母材9を
直接穿孔して製造するため鋳鉄ステーブ5aのように熱
抵抗の大きいマーシャライト層7がなく、かつ銅母材9
の熱伝導率が鋳鉄母材8に比べて大きいため、ステーブ
全体の熱伝達係数を高くできる。カーボンレンガ4の残
存厚が0.5mの条件では、冷却能力(抜熱量)は、鋳
鉄ステーブ5aの21400kcal/m2 hに対し
て、銅製ステーブ5bでは23670kcal/m2
と11%も向上している。
BEST MODE FOR CARRYING OUT THE INVENTION FIGS. 7A to 7C show a structure of a copper stave as a front view, a side view, and a sectional view. The cooling method is the same as that of the conventional cast iron stave. Water supply and drainage pipe 1
The cooling water supplied by 4 passes through the water passage 15 shown in the inside of the copper stave base material 9 (the view from the arrow A-A in FIG. 2B (FIG. 2C)) to pass through the base material 9. Cooling.
FIG. 5 shows the heat transfer calculation result when the copper stave 5b is used for the furnace bottom side wall, and FIG. 4 shows the result when the conventional cast iron stave 5a is similarly used. Since the copper stave 5b is manufactured by directly punching the copper base material 9, the copper stave 5b does not have the marshalite layer 7 having a large heat resistance unlike the cast iron stave 5a, and the copper base material 9 is not formed.
Since the heat conductivity of is higher than that of the cast iron base material 8, the heat transfer coefficient of the entire stave can be increased. Under the conditions of the remaining thickness of the carbon brick 4 is 0.5 m, the cooling capacity (heat removal amount) for 21400kcal / m 2 h of cast iron staves 5a, the copper stave 5b 23670kcal / m 2 h
That is an improvement of 11%.

【0010】銅製ステーブ5bの配置位置については、
その冷却能が高いことから、炉底側壁の高熱負荷部に配
置する。図3で示したように炉底炉床部の過度の冷却は
炉底側壁部の損耗を招くために、冷却能の高い銅製ステ
ーブ5bを炉底側壁下部に使用すると炉底炉床を過度に
冷却することとなり好ましくない。高炉では炉底側壁の
高熱負荷部は出銑口から2m下の位置が実績的に一番多
く、高炉の炉底解体調査結果でも、最大浸食部は、出銑
口下0.5〜4mの範囲にあり、この部位の熱負荷が特
に高いことが判る。従って、銅製ステーブを配置する範
囲は出銑口の下0〜4mの範囲が好ましい。最大熱負荷
部が出銑口下0.5〜4mの範囲となる理由を解明する
ために、高炉炉底をシミュレートする水モデル実験を行
った。
Regarding the arrangement position of the copper stave 5b,
Since it has a high cooling capacity, it is placed in the high heat load part on the side wall of the furnace bottom. As shown in FIG. 3, excessive cooling of the hearth bottom part causes wear of the hearth side wall part. Therefore, if a copper stave 5b having a high cooling capacity is used in the bottom part of the hearth bottom wall, the hearth bottom part is excessively cooled. It is not preferable because it results in cooling. In the blast furnace, the high heat load part on the bottom wall of the blast furnace is actually located 2m below the taphole, and the erosion test results of the blast furnace bottom show that the maximum erosion area is 0.5 to 4m below the taphole. It is in the range, and it can be seen that the heat load on this part is particularly high. Therefore, the range in which the copper stave is arranged is preferably 0 to 4 m below the taphole. In order to clarify the reason that the maximum heat load part is in the range of 0.5 to 4 m below the taphole, a water model experiment simulating the bottom of the blast furnace was conducted.

【0011】一般に、高炉の炉底にはコークスが存在す
るが、このコークスは溶銑中に存在し、溶銑の浮力を受
けて炉底底面より浮上している。その浮上高さは、溶銑
の上面が出銑口10の位置となるため、出銑口10の下
の一定のレベルとなる。浮上するコークス層が存在する
条件下で溶銑流れがどのような分布をとるかを、シミュ
レートする水モデル実験を行った。図6にその実験結果
を示す。高炉炉底のように充填層(コークス)が浮上し
て存在する状態では、溶銑は抵抗の低い充填層下の空隙
部を優先的に流れるが、空隙部の高さ方向に溶銑流速は
変化し、下に行く程流速は低下し、底部は溶銑流れの緩
慢なデッドゾーンが形成されることが判明した。
Generally, coke exists at the bottom of the blast furnace, but this coke exists in the hot metal and floats above the bottom of the furnace bottom due to the buoyancy of the hot metal. The floating height is a constant level below the taphole 10 because the upper surface of the hot metal is located at the taphole 10. A water model experiment was conducted to simulate the distribution of hot metal flow in the presence of a floating coke layer. The experimental results are shown in FIG. In the state where the packed bed (coke) floats up like the bottom of the blast furnace, the hot metal preferentially flows through the void below the packed bed with low resistance, but the hot metal flow velocity changes in the height direction of the void. It was found that the flow velocity decreased as it went downward, and a slow dead zone of hot metal flow was formed at the bottom.

【0012】すなわち、溶銑流れの激しい部位は、出銑
口下の距離で決定され、かつ、炉底炉床部を過度に冷却
すると、溶銑流の供給、従って熱の供給の少ない炉底炉
床部への付着物の形成が促進されるという上記の実績と
一致した。従って、高熱負荷部位である出銑口の下0〜
4mの範囲に冷却能の優れた銅製ステーブを採用し、そ
の下部に従来の鋳鉄ステーブを配置すれば、炉底炉床部
の過度の冷却を起こすことなく、高熱負荷部の冷却強化
を行うことができ、炉底側壁の損耗を防止することがで
きる。
That is, the portion where the hot metal flow is intense is determined by the distance under the taphole, and when the hearth bottom is excessively cooled, the hot metal flow is supplied, and hence the heat is supplied less. It was in agreement with the above-mentioned results that the formation of deposits on the parts was promoted. Therefore, 0 to under the taphole, which is a high heat load part
By adopting a copper stave with excellent cooling capacity within a range of 4 m and arranging a conventional cast iron stave below it, it is possible to strengthen the cooling of the high heat load part without causing excessive cooling of the hearth floor. It is possible to prevent wear on the side wall of the furnace bottom.

【0013】[0013]

【実施例】以下、本発明の実施例を図面に基づき説明す
る。図1は、本発明を示す高炉の炉底の縦断面である。
出銑口10から出銑口10の下4mの範囲まで銅製ステ
ーブ5bを配置し、出銑口10の上および出銑口10の
4mより下には従来の鋳鉄ステーブ5aを配置した。図
1は、大型高炉の例であり、小型高炉では、炉床径が小
さい分、高熱負荷部が大型高炉に比べて上部になる。こ
のことは、炉底部での溶銑流れの相似を考えれば理解で
きることであり、1000m3 級の高炉では、銅製ステ
ーブ5bの配置位置は、出銑口10から出銑口10の下
2mの範囲となる。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a vertical cross section of the bottom of a blast furnace showing the present invention.
Copper staves 5b were arranged from the taphole 10 to a range of 4 m below the taphole 10, and conventional cast iron staves 5a were arranged above the taphole 10 and below 4 m of the taphole 10. FIG. 1 is an example of a large blast furnace. In the small blast furnace, the high heat load part is located above the large blast furnace because the hearth diameter is small. This can be understood by considering the similarities of the hot metal flow at the bottom of the furnace, and in the 1000 m 3 class blast furnace, the position of the copper stave 5b is within the range from the tap hole 10 to 2 m below the tap hole 10. Become.

【0014】炉底側壁部のステーブ5a,5bの鉄皮1
への固定方法、鉄皮1と炉底側壁部のステーブ5a,5
b間のキャスタブル2の充填方法、炉底側壁部のステー
ブ5a,5bとカーボンレンガ4とのスタンプ材3の充
填方法、カーボンレンガ4および炉底炉床部の耐火レン
ガ12のレンガ積み構造および炉底炉床部冷却配管13
については、従来からの方法で行うことができる。操業
時のカーボンレンガ4の熱膨張分はスタンプ材3が吸収
し、かつ、発生する力はステーブ面全体で受けるため、
特開平6−158131号公報のような集中的な力の発
生はなく、ステーブパイプ6やカーボンレンガ4の破損
はない。また、炉底側壁部のステーブ5a,5bは、ス
タンプ材3と面接触をしており、ステーブ5とスタンプ
材3との間の空隙発生による熱抵抗の増加はなく、従来
の炉底構造と同様な信頼性が得られる。
Iron shell 1 of staves 5a and 5b on the side wall of the furnace bottom
Fixing method to the iron shell 1 and staves 5a, 5 on the side wall of the furnace bottom
filling method of the castable 2 between the b, filling method of the stamp material 3 of the stave 5a, 5b of the furnace bottom side wall and the carbon brick 4, the brick stacking structure of the carbon brick 4 and the refractory brick 12 of the furnace bottom hearth, and the furnace Bottom hearth cooling pipe 13
Can be performed by a conventional method. The stamp material 3 absorbs the thermal expansion of the carbon bricks 4 during operation, and the generated force is received by the entire stave surface.
There is no concentrated generation of force as in Japanese Patent Laid-Open No. 6-158131, and the stave pipe 6 and carbon brick 4 are not damaged. Further, the staves 5a and 5b on the side wall of the furnace bottom are in surface contact with the stamp material 3, and there is no increase in thermal resistance due to the generation of voids between the staves 5 and the stamp material 3. Similar reliability is obtained.

【0015】[0015]

【発明の効果】以上述べたように本発明の効果を列挙す
ると、以下のようになる。高炉の炉底側壁の高熱負荷部
に、冷却能力の優れた銅製ステーブを配置位置すること
により、炉底炉床部の過度の冷却を起こすことなく、高
炉の炉底側壁の高熱負荷部の冷却強化が可能となり、高
炉炉底寿命延長ができる。本構造は、従来の冷却構造と
同様に、カーボンレンガ4の熱膨張をスタンプ材3で吸
収するので、ステーブ5に過度の力が加わらないことか
ら、ステーブパイプ6やカーボンレンガ4の破損の心配
がなく、かつ、ステーブ5とスタンプ材3との間の空隙
発生による熱抵抗の増加はなく、信頼性の高い炉底冷却
構造が得られた。
The effects of the present invention are listed as follows. By placing copper stave with excellent cooling capacity in the high heat load part of the bottom wall of the blast furnace, it is possible to cool the high heat load part of the bottom wall of the blast furnace without causing excessive cooling of the hearth. It can be strengthened and the life of the bottom of the blast furnace can be extended. Since this structure absorbs the thermal expansion of the carbon bricks 4 by the stamp material 3 like the conventional cooling structure, an excessive force is not applied to the stave 5, so there is a risk of damage to the stave pipe 6 or the carbon brick 4. In addition, there was no increase in thermal resistance due to the generation of voids between the stave 5 and the stamp material 3, and a highly reliable furnace bottom cooling structure was obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を示す高炉の炉底の縦断面図FIG. 1 is a vertical cross-sectional view of the bottom of a blast furnace showing the present invention.

【図2】従来のステーブ冷却炉底の炉底側壁縦断面図FIG. 2 is a vertical sectional view of a bottom wall of a conventional stave cooling furnace bottom.

【図3】高炉の炉底側壁と炉底炉床の最小残存厚の推移
[Fig. 3] Transition diagram of the minimum remaining thickness of the bottom wall and bottom wall of the blast furnace

【図4】従来の鋳鉄ステーブを炉底側壁に使用した場合
の伝熱計算結果の計算例を示す図
FIG. 4 is a diagram showing a calculation example of heat transfer calculation results when a conventional cast iron stave is used for the side wall of the furnace bottom.

【図5】本発明の銅製ステーブを炉底側壁に使用した場
合の伝熱計算結果の計算例を示す図
FIG. 5 is a diagram showing a calculation example of heat transfer calculation results when the copper stave of the present invention is used for the furnace bottom side wall.

【図6】高炉炉底をシミュレートした高炉炉底部溶銑流
れの水モデル実験結果を示す図
FIG. 6 is a diagram showing the results of a water model experiment of the hot metal flow at the bottom of the blast furnace, which simulates the bottom of the blast furnace.

【図7】(a)(b)(c)は、銅製ステーブの構造を
示す図
7 (a), (b) and (c) are views showing the structure of a copper stave.

【符号の説明】[Explanation of symbols]

1 鉄皮 2 キャスタブル 3 スタンプ材 4 カーボンレンガ 5 ステーブ 5a 鋳鉄製ステーブ 5b 銅製ステーブ 6 ステーブパイプ 7 マーシャライト層 8 鋳鉄製ステーブ母材 9 銅製ステーブ母材 10 出銑口 12 炉底炉床部の耐火レンガ 13 炉底炉床部冷却配管 14 冷却水の給排水パイプ 15 銅製ステーブ母材内に穿孔された冷却水の水路 1 Iron Peel 2 Castable 3 Stamping Material 4 Carbon Brick 5 Stave 5a Cast Iron Stave 5b Copper Stave 6 Stave Pipe 7 Marshallite Layer 8 Cast Iron Stave Base Material 9 Copper Stave Base Material 10 Taphole 12 Fire Resistance of the Hearth Hearth Brick 13 Hearth floor cooling pipe 14 Cooling water supply / drain pipe 15 Cooling water channel perforated in copper stave base metal

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 高炉のカーボンレンガをステーブを用い
て冷却する炉底側壁の冷却構造において、炉底側壁部の
カーボンレンガと鉄皮間に設置するステーブを銅製とす
ることを特徴とする高炉炉底の冷却構造。
1. A blast furnace furnace characterized in that in a furnace bottom side wall cooling structure for cooling carbon bricks of a blast furnace by using staves, the stave installed between the carbon bricks of the furnace bottom side wall and the iron shell is made of copper. Cooling structure on the bottom.
【請求項2】 出銑口の下0〜4mの範囲の高炉炉底側
壁に設置するステーブを銅製とすることを特徴とする請
求項1記載の高炉炉底の冷却構造。
2. The cooling structure for the bottom of a blast furnace according to claim 1, wherein the stave installed on the side wall of the bottom of the blast furnace in the range of 0 to 4 m below the tap hole is made of copper.
JP33993495A 1995-12-05 1995-12-05 Blast furnace bottom cooling structure Expired - Fee Related JP4021948B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33993495A JP4021948B2 (en) 1995-12-05 1995-12-05 Blast furnace bottom cooling structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33993495A JP4021948B2 (en) 1995-12-05 1995-12-05 Blast furnace bottom cooling structure

Publications (2)

Publication Number Publication Date
JPH09157716A true JPH09157716A (en) 1997-06-17
JP4021948B2 JP4021948B2 (en) 2007-12-12

Family

ID=18332148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33993495A Expired - Fee Related JP4021948B2 (en) 1995-12-05 1995-12-05 Blast furnace bottom cooling structure

Country Status (1)

Country Link
JP (1) JP4021948B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0950722A1 (en) * 1998-04-16 1999-10-20 SMS Schloemann-Siemag AG Blast furnace cooling
KR100431872B1 (en) * 2000-12-22 2004-05-20 주식회사 포스코 structure for installing stave blast furnace
CN108424989A (en) * 2018-04-11 2018-08-21 邢台钢铁有限责任公司 A kind of blast furnace taphole region cooling structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0950722A1 (en) * 1998-04-16 1999-10-20 SMS Schloemann-Siemag AG Blast furnace cooling
KR100431872B1 (en) * 2000-12-22 2004-05-20 주식회사 포스코 structure for installing stave blast furnace
CN108424989A (en) * 2018-04-11 2018-08-21 邢台钢铁有限责任公司 A kind of blast furnace taphole region cooling structure

Also Published As

Publication number Publication date
JP4021948B2 (en) 2007-12-12

Similar Documents

Publication Publication Date Title
KR101616120B1 (en) Cooling plate for a metallurgical furnace
EP1069389A1 (en) Water-cooling panel for furnace wall and furnace cover of arc furnace
EA007283B1 (en) Device for cooling of furnace lining
US6221312B1 (en) Refractory wall, metallurgical vessel comprising such a refractory wall and method in which such a refractory wall is applied
JP3796981B2 (en) Stave
JPH09157716A (en) Structure for cooling furnace bottom of blast furnace
US20130316295A1 (en) Stave cooler for a metallurgical furnace
JPH08246014A (en) Water-cooled molten slag trough for blast furnace
US4676487A (en) Cooling plate for metallurical furnaces
CN214470084U (en) Wall plate protection system for metallurgical furnace and metallurgical furnace wall plate body
CN101693931A (en) Cooling device at tuyere part of blast furnace
KR100590669B1 (en) Shaft furnace-use stave cooler
CN211367613U (en) Cooling wall structure
RU2729800C1 (en) Device for water cooling of blast furnace bottom
Van Larr et al. Blast furnace refractories and cooling systems-the Hoogovens solution
CN210892723U (en) Novel water cooling structure of metallurgical furnace
JP4582558B2 (en) Refractory cooling device layout structure on the bottom wall of the blast furnace furnace
JP3635779B2 (en) Blast furnace wall cooling plate
RU2263150C1 (en) Blast furnace
CN201381329Y (en) Blast furnace copper cooling stave
CN214496367U (en) Wall plate protection system for metallurgical furnace and metallurgical furnace wall plate body
CN201512546U (en) Cooling unit on blast-furnace tuyere
JPS6139280Y2 (en)
JP3161267B2 (en) Blast furnace shaft furnace inner wall repair method and repair support block
CN205258512U (en) Cooling device of thick furnace wall of casting blast furnace

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061005

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061005

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070605

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070613

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070815

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070925

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070928

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131005

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131005

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131005

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees