JP4021948B2 - Blast furnace bottom cooling structure - Google Patents

Blast furnace bottom cooling structure Download PDF

Info

Publication number
JP4021948B2
JP4021948B2 JP33993495A JP33993495A JP4021948B2 JP 4021948 B2 JP4021948 B2 JP 4021948B2 JP 33993495 A JP33993495 A JP 33993495A JP 33993495 A JP33993495 A JP 33993495A JP 4021948 B2 JP4021948 B2 JP 4021948B2
Authority
JP
Japan
Prior art keywords
stave
cooling
blast furnace
furnace
carbon brick
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33993495A
Other languages
Japanese (ja)
Other versions
JPH09157716A (en
Inventor
一 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP33993495A priority Critical patent/JP4021948B2/en
Publication of JPH09157716A publication Critical patent/JPH09157716A/en
Application granted granted Critical
Publication of JP4021948B2 publication Critical patent/JP4021948B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、高炉の炉底側壁部の冷却において、高熱負荷部位の冷却強化を行うことにより高炉炉底の長寿命化を図る高炉炉底の冷却構造に関する。
【0002】
【従来の技術】
高炉炉底は高炉寿命を律する部位であり、炉底を構成するカーボンレンガの損耗防止は、高炉の寿命延長のための最重要項目である。炉底側壁のカーボンレンガの損耗原因は、溶銑による浸食、熱応力による脆化等が挙げられるが、その損耗防止には高熱負荷部の冷却強化が最も有効である。
高炉の炉底側壁部の冷却方法については、ステーブによる冷却と鉄皮散水による冷却とに大別される。図2に従来のステーブ冷却炉底の炉底側壁縦断面図を示す。高炉炉内側よりカーボンレンガ4、スタンプ材3、ステーブ5、キャスタブル2、鉄皮1で構成されている。
【0003】
冷却はステーブパイプ6内を流れる冷却水および鉄皮1からの熱放散により行われるが、抜熱量の95%以上がステーブパイプ6内を流れる冷却水によるもので、炉底側壁の冷却能を向上させるためには、カーボンレンガ4からステーブ冷却水間の熱抵抗を低減させることが有効である。
このため、カーボンレンガ4とスタンプ材3の熱伝導率(熱抵抗の逆数)を向上させる改善が行われ、炉底側壁の冷却能は向上してきた。しかし、ステーブ5については、その製造時の鋳込みの際にステーブパイプ6への侵炭を防止するために、ステーブパイプ6の表面にマーシャライト7を塗布しており、その熱抵抗が大きいために、ステーブ5の熱抵抗が増大していた。
【0004】
この対策として、特開平6−158131号公報のように、冷却パイプをスタンプ材3あるいはカーボンレンガ4に直接接触させる発明も提案されている。この方法では、鋳物からなるステーブ5の熱抵抗を省略しているために、カーボンレンガ4から冷却水間の熱抵抗を低減できるように思われる。しかし、この方式では、冷却配管が従来のステーブ5のようにカーボンレンガ4と面で接触していないために、操業時にカーボンレンガ4が膨張すると、カーボンレンガ4と鉄皮1との熱膨張差により、冷却配管が圧縮され冷却配管やカーボンレンガ4の破損、あるいは冷却配管とカーボンレンガ4との間に空隙を生じ、却って熱抵抗を増大させる等信頼性に問題がある。
【0005】
すなわち、高炉操業時は、建設時と比較して、カーボンレンガ4と鉄皮1との熱膨張差が数十mm以上生じ、この熱膨張差をスタンプ材3の収縮により吸収していたが、特開平6−158131号公報の発明ではこの点が考慮されておらず、冷却配管やカーボンレンガ4の破損、および熱抵抗増大の問題があった。
一方、炉底側壁部のカーボンレンガ4の浸食は、炉底の溶銑流れの状態との関係も深く、炉底側壁の適正な冷却範囲を選定することが、カーボンレンガ4の損耗を抑制するために有効と考えられている。
【0006】
図3に炉底側壁と炉底炉床の最小残存厚(カーボンレンガ4の残存厚さ)の推移を示した。図3中のハッチングの部分は、カーボンレンガ4の表面に存在する付着物の厚さを示すが、図3中において、4年目、5年目の時点のように炉底炉床部の付着物が厚い時に、炉底側壁部のカーボンレンガ4の損耗が起こっている。すなわち、炉底炉床部が過度に冷却されると、炉底炉床部に形成される付着物は炉底の溶銑流れを変化させ、炉底側壁部の熱負荷を増加させ、却って炉底側壁部の損耗を招く。従って、炉底側壁部高さ方向の適正な冷却能の設定が必要となる。
【0007】
【発明が解決しようとする課題】
本発明は、高炉の炉底側壁の冷却において、高熱負荷部の冷却能を向上し、かつ、その範囲を適正化することによって、損耗の少ない高炉炉底の冷却構造を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明は、前記課題の解決を図ったものでその要旨とするところは、大型高炉のカーボンレンガをステーブを用いて冷却する炉底側壁の冷却構造において、出銑口から出銑口の下4mの高さの範囲における高炉炉底側壁部のカーボンレンガと鉄皮間に配置するステーブを銅製とし、出銑口の上および出銑口の4mより下の高さの範囲における高炉炉底側壁部のカーボンレンガと鉄皮間に配置するステーブを鋳鉄製とすることを特徴とするものである。
【0009】
【発明の実施の形態】
図7(a〜c)に銅製ステーブの構造を正面図、側面図、断面図として示す。冷却の方法は従来の鋳鉄製ステーブと同様である。給排水パイプ14により供給される冷却水は、銅製ステーブ母材9の内部(同図(b)のA−Aからみた矢視図(同図(c)))に示す水路15を通り、母材9を冷却する。
図5に銅製ステーブ5bを炉底側壁に使用した場合の伝熱計算結果を、図4に従来の鋳鉄ステーブ5aを同様に使用した結果を示す。
銅製ステーブ5bは、銅母材9を直接穿孔して製造するため鋳鉄ステーブ5aのように熱抵抗の大きいマーシャライト層7がなく、かつ銅母材9の熱伝導率が鋳鉄母材8に比べて大きいため、ステーブ全体の熱伝達係数を高くできる。カーボンレンガ4の残存厚が0.5mの条件では、冷却能力(抜熱量)は、鋳鉄ステーブ5aの21400kcal/m2 hに対して、銅製ステーブ5bでは23670kcal/m2 hと11%も向上している。
【0010】
銅製ステーブ5bの配置位置については、その冷却能が高いことから、炉底側壁の高熱負荷部に配置する。図3で示したように炉底炉床部の過度の冷却は炉底側壁部の損耗を招くために、冷却能の高い銅製ステーブ5bを炉底側壁下部に使用すると炉底炉床を過度に冷却することとなり好ましくない。
高炉では炉底側壁の高熱負荷部は出銑口から2m下の位置が実績的に一番多く、高炉の炉底解体調査結果でも、最大浸食部は、出銑口下0.5〜4mの範囲にあり、この部位の熱負荷が特に高いことが判る。従って、銅製ステーブを配置する範囲は出銑口の下0〜4mの範囲が好ましい。
最大熱負荷部が出銑口下0.5〜4mの範囲となる理由を解明するために、高炉炉底をシミュレートする水モデル実験を行った。
【0011】
一般に、高炉の炉底にはコークスが存在するが、このコークスは溶銑中に存在し、溶銑の浮力を受けて炉底底面より浮上している。その浮上高さは、溶銑の上面が出銑口10の位置となるため、出銑口10の下の一定のレベルとなる。浮上するコークス層が存在する条件下で溶銑流れがどのような分布をとるかを、シミュレートする水モデル実験を行った。
図6にその実験結果を示す。高炉炉底のように充填層(コークス)が浮上して存在する状態では、溶銑は抵抗の低い充填層下の空隙部を優先的に流れるが、空隙部の高さ方向に溶銑流速は変化し、下に行く程流速は低下し、底部は溶銑流れの緩慢なデッドゾーンが形成されることが判明した。
【0012】
すなわち、溶銑流れの激しい部位は、出銑口下の距離で決定され、かつ、炉底炉床部を過度に冷却すると、溶銑流の供給、従って熱の供給の少ない炉底炉床部への付着物の形成が促進されるという上記の実績と一致した。
従って、高熱負荷部位である出銑口の下0〜4mの範囲に冷却能の優れた銅製ステーブを採用し、その下部に従来の鋳鉄ステーブを配置すれば、炉底炉床部の過度の冷却を起こすことなく、高熱負荷部の冷却強化を行うことができ、炉底側壁の損耗を防止することができる。
【0013】
【実施例】
以下、本発明の実施例を図面に基づき説明する。
図1は、本発明を示す大型高炉の炉底の縦断面である。
出銑口10から出銑口10の下4mの範囲まで銅製ステーブ5bを配置し、出銑口10の上および出銑口10の4mより下には従来の鋳鉄ステーブ5aを配置した。
尚、本発明は大型高炉を対象としているが、参考までに、本発明に関連する小型高炉では、炉床径が小さい分、高熱負荷部が大型高炉に比べて上部になる。このことは、炉床底部の溶銑の流れの相似を考えれば理解できることであり、1000m級の高炉では、銅製ステーブの配置位置は、出銑口10から出銑口10の下2mの範囲となる。
【0014】
炉底側壁部のステーブ5a,5bの鉄皮1への固定方法、鉄皮1と炉底側壁部のステーブ5a,5b間のキャスタブル2の充填方法、炉底側壁部のステーブ5a,5bとカーボンレンガ4とのスタンプ材3の充填方法、カーボンレンガ4および炉底炉床部の耐火レンガ12のレンガ積み構造および炉底炉床部冷却配管13については、従来からの方法で行うことができる。
操業時のカーボンレンガ4の熱膨張分はスタンプ材3が吸収し、かつ、発生する力はステーブ面全体で受けるため、特開平6−158131号公報のような集中的な力の発生はなく、ステーブパイプ6やカーボンレンガ4の破損はない。また、炉底側壁部のステーブ5a,5bは、スタンプ材3と面接触をしており、ステーブ5とスタンプ材3との間の空隙発生による熱抵抗の増加はなく、従来の炉底構造と同様な信頼性が得られる。
【0015】
【発明の効果】
以上述べたように本発明の効果を列挙すると、以下のようになる。
高炉の炉底側壁の高熱負荷部に、冷却能力の優れた銅製ステーブを配置位置することにより、炉底炉床部の過度の冷却を起こすことなく、高炉の炉底側壁の高熱負荷部の冷却強化が可能となり、高炉炉底寿命延長ができる。
本構造は、従来の冷却構造と同様に、カーボンレンガ4の熱膨張をスタンプ材3で吸収するので、ステーブ5に過度の力が加わらないことから、ステーブパイプ6やカーボンレンガ4の破損の心配がなく、かつ、ステーブ5とスタンプ材3との間の空隙発生による熱抵抗の増加はなく、信頼性の高い炉底冷却構造が得られた。
【図面の簡単な説明】
【図1】本発明を示す高炉の炉底の縦断面図
【図2】従来のステーブ冷却炉底の炉底側壁縦断面図
【図3】高炉の炉底側壁と炉底炉床の最小残存厚の推移図
【図4】従来の鋳鉄ステーブを炉底側壁に使用した場合の伝熱計算結果の計算例を示す図
【図5】本発明の銅製ステーブを炉底側壁に使用した場合の伝熱計算結果の計算例を示す図
【図6】高炉炉底をシミュレートした高炉炉底部溶銑流れの水モデル実験結果を示す図
【図7】(a)(b)(c)は、銅製ステーブの構造を示す図
【符号の説明】
1 鉄皮
2 キャスタブル
3 スタンプ材
4 カーボンレンガ
5 ステーブ
5a 鋳鉄製ステーブ
5b 銅製ステーブ
6 ステーブパイプ
7 マーシャライト層
8 鋳鉄製ステーブ母材
9 銅製ステーブ母材
10 出銑口
12 炉底炉床部の耐火レンガ
13 炉底炉床部冷却配管
14 冷却水の給排水パイプ
15 銅製ステーブ母材内に穿孔された冷却水の水路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a blast furnace bottom cooling structure for extending the life of a blast furnace bottom by strengthening cooling of a high heat load site in cooling of the bottom wall of the blast furnace.
[0002]
[Prior art]
The bottom of the blast furnace is a part that regulates the life of the blast furnace, and prevention of wear of the carbon bricks constituting the furnace bottom is the most important item for extending the life of the blast furnace. The cause of wear of the carbon bricks on the bottom wall of the furnace includes erosion due to hot metal and embrittlement due to thermal stress. Cooling strengthening of the high heat load portion is the most effective for preventing such wear.
The cooling method of the bottom wall of the blast furnace is roughly divided into cooling by stave and cooling by iron skin sprinkling. FIG. 2 shows a vertical sectional view of the bottom wall of a conventional stave cooling furnace bottom. It consists of carbon brick 4, stamp material 3, stave 5, castable 2, and iron skin 1 from the inside of the blast furnace furnace.
[0003]
Cooling is performed by cooling water flowing through the stave pipe 6 and heat dissipation from the iron skin 1, but more than 95% of the heat removal is due to cooling water flowing through the stave pipe 6, improving the cooling capacity of the bottom wall of the furnace bottom. In order to achieve this, it is effective to reduce the thermal resistance between the carbon brick 4 and the stave cooling water.
For this reason, the improvement which improves the heat conductivity (reciprocal number of thermal resistance) of the carbon brick 4 and the stamp material 3 was performed, and the cooling capacity of the furnace bottom side wall has improved. However, for the stave 5, marshallite 7 is applied to the surface of the stave pipe 6 in order to prevent carburization of the stave pipe 6 during casting at the time of casting, and the thermal resistance is large. The thermal resistance of the stave 5 was increased.
[0004]
As a countermeasure against this, an invention has been proposed in which a cooling pipe is brought into direct contact with the stamp material 3 or the carbon brick 4 as disclosed in JP-A-6-158131. In this method, since the thermal resistance of the stave 5 made of a casting is omitted, it seems that the thermal resistance between the carbon brick 4 and the cooling water can be reduced. However, in this system, since the cooling pipe is not in contact with the carbon brick 4 on the surface unlike the conventional stave 5, if the carbon brick 4 expands during operation, the difference in thermal expansion between the carbon brick 4 and the iron skin 1. As a result, the cooling pipe is compressed and the cooling pipe or the carbon brick 4 is damaged, or a gap is formed between the cooling pipe and the carbon brick 4 to increase the heat resistance.
[0005]
That is, during the operation of the blast furnace, the thermal expansion difference between the carbon brick 4 and the iron skin 1 is several tens mm or more compared with the time of construction, and this thermal expansion difference was absorbed by the shrinkage of the stamp material 3. In the invention of Japanese Patent Laid-Open No. 6-158131, this point is not taken into consideration, and there is a problem that the cooling pipe and the carbon brick 4 are damaged and the thermal resistance is increased.
On the other hand, the erosion of the carbon brick 4 on the bottom wall of the furnace bottom is deeply related to the state of the hot metal flow on the bottom of the furnace, and selecting an appropriate cooling range for the bottom wall of the furnace suppresses the wear of the carbon brick 4. It is considered effective.
[0006]
FIG. 3 shows the transition of the minimum remaining thickness (remaining thickness of the carbon brick 4) of the bottom wall and the bottom of the hearth. The hatched portion in FIG. 3 shows the thickness of the deposits present on the surface of the carbon brick 4, but in FIG. 3, the bottom of the hearth bottom is attached as in the fourth and fifth years. When the kimono is thick, the carbon brick 4 on the side wall of the furnace bottom is worn. In other words, if the bottom of the hearth is excessively cooled, the deposits formed on the bottom of the hearth will change the hot metal flow at the bottom of the furnace and increase the heat load on the side wall of the hearth. This causes wear on the side wall. Accordingly, it is necessary to set an appropriate cooling capacity in the height direction of the furnace bottom side wall.
[0007]
[Problems to be solved by the invention]
It is an object of the present invention to provide a cooling structure for a blast furnace bottom with less wear by improving the cooling capacity of a high heat load portion and optimizing the range in cooling the bottom wall of the blast furnace. To do.
[0008]
[Means for Solving the Problems]
The present invention has been made to solve the above-mentioned problems. The gist of the present invention is that in the cooling structure of the bottom wall of the furnace bottom where the carbon brick of the large blast furnace is cooled by using a stave, 4 m below the exit opening. The stave placed between the carbon brick and the iron skin of the blast furnace bottom side wall in the range of the height is made of copper, and the blast furnace bottom side wall in the range below 4 m above the tap and the tap The stave disposed between the carbon brick and the iron skin is made of cast iron .
[0009]
DETAILED DESCRIPTION OF THE INVENTION
FIGS. 7A to 7C show the structure of the copper stave as a front view, a side view, and a cross-sectional view. The cooling method is the same as that of a conventional cast iron stave. The cooling water supplied by the water supply / drainage pipe 14 passes through the water channel 15 shown in the inside of the copper stave base material 9 (as viewed in the direction of the arrows A-A in FIG. 5B). 9 is cooled.
FIG. 5 shows the heat transfer calculation results when the copper stave 5b is used on the furnace bottom side wall, and FIG. 4 shows the results of using the conventional cast iron stave 5a in the same manner.
Since the copper stave 5b is manufactured by directly perforating the copper base material 9, there is no marshalite layer 7 having a large thermal resistance unlike the cast iron stave 5a, and the thermal conductivity of the copper base material 9 is higher than that of the cast iron base material 8. Therefore, the heat transfer coefficient of the entire stave can be increased. Under the condition that the remaining thickness of the carbon brick 4 is 0.5 m, the cooling capacity (heat removal amount) is improved by 11% to 23670 kcal / m 2 h in the copper stave 5b as compared with 21400 kcal / m 2 h in the cast iron stave 5a. ing.
[0010]
About the arrangement | positioning position of the copper stave 5b, since the cooling capability is high, it arrange | positions to the high heat load part of a furnace bottom side wall. As shown in FIG. 3, excessive cooling of the bottom of the furnace bottom causes wear of the bottom of the furnace bottom. If a copper stave 5b having a high cooling capacity is used at the bottom of the bottom of the furnace bottom, the bottom of the furnace bottom will be excessive. Cooling is not preferable.
In the blast furnace, the high heat load part on the bottom wall of the bottom of the furnace is the most frequently located 2m below the tapping outlet, and even in the blast furnace bottom demolition investigation results, the maximum erosion part is 0.5-4m below the tapping outlet. It can be seen that the heat load at this part is particularly high. Accordingly, the range in which the copper stave is arranged is preferably in the range of 0 to 4 m below the tap hole.
In order to elucidate the reason why the maximum heat load is in the range of 0.5 to 4 m below the taphole, a water model experiment was performed to simulate the blast furnace bottom.
[0011]
Generally, coke is present at the bottom of the blast furnace, but this coke is present in the hot metal and floats from the bottom of the furnace due to the buoyancy of the hot metal. The flying height is a certain level below the spout 10 because the top surface of the hot metal is located at the spout 10. A water model experiment was performed to simulate the distribution of hot metal flow under the condition that a coke layer that floats exists.
FIG. 6 shows the experimental results. In the state where the packed bed (coke) floats and exists like the bottom of the blast furnace furnace, the hot metal flows preferentially through the void under the packed bed with low resistance, but the hot metal flow velocity changes in the height direction of the void. It was found that the lower the flow velocity, the lower the dead zone of the molten iron flow.
[0012]
That is, the part where the hot metal flow is intense is determined by the distance below the outlet, and if the hearth hearth is excessively cooled, the hot metal flow is supplied to the hearth bottom with little heat supply. Consistent with the above results that the formation of deposits is promoted.
Therefore, if a copper stave with excellent cooling performance is used in the range of 0-4m below the taphole, which is a part of high heat load, and a conventional cast iron stave is placed below the copper stave, excessive cooling of the furnace bottom hearth The high heat load portion can be strengthened by cooling without causing the wear, and the wear of the furnace bottom side wall can be prevented.
[0013]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a longitudinal section of the bottom of a large blast furnace showing the present invention.
A copper stave 5b was arranged from the tap hole 10 to a range of 4 m below the tap hole 10, and a conventional cast iron stave 5 a was arranged above the tap hole 10 and below 4 m of the tap hole 10.
Although the present invention is intended for a large blast furnace, for reference, in a small blast furnace related to the present invention , the high heat load portion is at the top of the large blast furnace because the hearth diameter is small. This is to be able to understand given the similarity of hot metal flow hearth bottom, in the 1000 m 3 grade blast furnace, the arrangement position of the copper staves, and the area under 2m of taphole 10 Dezukuguchi 10 Become.
[0014]
Method of fixing the stave 5a, 5b of the furnace bottom side wall to the iron shell 1, filling method of the castable 2 between the iron shell 1 and the stave 5a, 5b of the furnace bottom side wall, the stave 5a, 5b of the furnace bottom side wall and carbon The filling method of the stamp material 3 with the brick 4, the brick stacking structure of the carbon brick 4 and the refractory brick 12 of the hearth bottom, and the hearth bottom cooling pipe 13 can be performed by a conventional method.
The thermal expansion of the carbon brick 4 during operation is absorbed by the stamp material 3 and the generated force is received by the entire stave surface, so there is no intensive force generation as in JP-A-6-158131, There is no damage to the stave pipe 6 or the carbon brick 4. Further, the stave 5a, 5b on the side wall of the furnace bottom is in surface contact with the stamp material 3, and there is no increase in thermal resistance due to the generation of a gap between the stave 5 and the stamp material 3, and the conventional furnace bottom structure Similar reliability is obtained.
[0015]
【The invention's effect】
As described above, the effects of the present invention are listed as follows.
By placing a copper stave with excellent cooling capacity at the high heat load section on the bottom wall of the blast furnace, cooling of the high heat load section on the bottom wall of the blast furnace without causing excessive cooling of the bottom furnace floor Strengthening is possible, and the blast furnace bottom life can be extended.
Like the conventional cooling structure, this structure absorbs the thermal expansion of the carbon brick 4 with the stamp material 3, so that excessive force is not applied to the stave 5, so that the stave pipe 6 and the carbon brick 4 may be damaged. There was no increase in thermal resistance due to the generation of a gap between the stave 5 and the stamp material 3, and a highly reliable bottom cooling structure was obtained.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of the bottom of a blast furnace showing the present invention. FIG. 2 is a longitudinal sectional view of a bottom wall of a conventional stave cooling furnace bottom. FIG. Fig. 4 shows a calculation example of heat transfer calculation results when a conventional cast iron stave is used on the furnace bottom side wall. Fig. 5 shows a transmission diagram when the copper stave of the present invention is used on the furnace bottom side wall. Fig. 6 is a diagram showing a calculation example of thermal calculation results. Fig. 6 is a diagram showing water model test results of the blast furnace bottom hot metal flow simulating the blast furnace bottom. Fig. 7 (a), (b) and (c) are copper staves. Diagram showing the structure
DESCRIPTION OF SYMBOLS 1 Iron skin 2 Castable 3 Stamp material 4 Carbon brick 5 Stave 5a Cast iron stave 5b Copper stave 6 Stave pipe 7 Marshallite layer 8 Cast iron stave base material 9 Copper stave base material 10 Outlet 12 Fire resistance of the bottom of the hearth Brick 13 Furnace bottom hearth cooling pipe 14 Cooling water supply / drain pipe 15 Cooling water channel drilled in copper stave base material

Claims (1)

大型高炉のカーボンレンガをステーブを用いて冷却する炉底側壁の冷却構造において、
出銑口から出銑口の下4mの高さの範囲における高炉炉底側壁部のカーボンレンガと鉄皮間に配置するステーブを銅製とし
出銑口の上および出銑口の4mより下の高さの範囲における高炉炉底側壁部のカーボンレンガと鉄皮間に配置するステーブを鋳鉄製とすることを特徴とする炉底側壁の冷却構造。
In the cooling structure of the bottom wall of the furnace bottom where the carbon brick of the large blast furnace is cooled using a stave,
The stave to be placed between the carbon brick and the iron skin of the blast furnace bottom side wall in the range of 4m below the exit is made of copper ,
Cooling of the bottom wall of the furnace bottom, characterized in that the stave disposed between the carbon brick and the iron skin of the bottom wall of the blast furnace furnace in the range of the height above the tap and the bottom of the tap is made of cast iron Construction.
JP33993495A 1995-12-05 1995-12-05 Blast furnace bottom cooling structure Expired - Fee Related JP4021948B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33993495A JP4021948B2 (en) 1995-12-05 1995-12-05 Blast furnace bottom cooling structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33993495A JP4021948B2 (en) 1995-12-05 1995-12-05 Blast furnace bottom cooling structure

Publications (2)

Publication Number Publication Date
JPH09157716A JPH09157716A (en) 1997-06-17
JP4021948B2 true JP4021948B2 (en) 2007-12-12

Family

ID=18332148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33993495A Expired - Fee Related JP4021948B2 (en) 1995-12-05 1995-12-05 Blast furnace bottom cooling structure

Country Status (1)

Country Link
JP (1) JP4021948B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19816867A1 (en) * 1998-04-16 1999-10-21 Schloemann Siemag Ag Blast furnace
KR100431872B1 (en) * 2000-12-22 2004-05-20 주식회사 포스코 structure for installing stave blast furnace
CN108424989A (en) * 2018-04-11 2018-08-21 邢台钢铁有限责任公司 A kind of blast furnace taphole region cooling structure

Also Published As

Publication number Publication date
JPH09157716A (en) 1997-06-17

Similar Documents

Publication Publication Date Title
JP5407460B2 (en) Internal water-cooled blast furnace tuyeres
US3379427A (en) Lining of the internal surface of a blast furnace
JP4021948B2 (en) Blast furnace bottom cooling structure
JP3796981B2 (en) Stave
JP4064387B2 (en) Furnace water cooling jacket
RU2281974C2 (en) Cooling member for cooling metallurgical furnace
JPS6336359B2 (en)
KR100590669B1 (en) Shaft furnace-use stave cooler
JP7294830B2 (en) A cooling structure for the outlet of a melting furnace and a method for manufacturing a metal plate block used in the cooling structure.
JP3635779B2 (en) Blast furnace wall cooling plate
JP4582558B2 (en) Refractory cooling device layout structure on the bottom wall of the blast furnace furnace
US3820770A (en) Sub hearth construction for metallurgical furnaces
RU2210599C2 (en) Iron making blast furnace and method of its functioning
US4418893A (en) Water-cooled refractory lined furnaces
JPH0357169B2 (en)
JPS6139280Y2 (en)
US2859030A (en) Blast furnace spray cooling means with disposal shed
JP3161267B2 (en) Blast furnace shaft furnace inner wall repair method and repair support block
CN201770678U (en) Coal gasifier water cooling wall
SU1086017A1 (en) Chilled lining of metallurgical furnace
JPH07224307A (en) Method for repairing piping and the like used for cooling of blast furnace
JPS5916914A (en) Cooling construction of furnace wall of blast furnace constituted of two layers cooling zone
JP2932977B2 (en) Stave cooler
US20030020212A1 (en) Blast furnace
KR20010034144A (en) Tapping launder for an iron smelt

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061005

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061005

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070605

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070613

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070815

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070925

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070928

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131005

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131005

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131005

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees