JPS5916914A - Cooling construction of furnace wall of blast furnace constituted of two layers cooling zone - Google Patents

Cooling construction of furnace wall of blast furnace constituted of two layers cooling zone

Info

Publication number
JPS5916914A
JPS5916914A JP12212582A JP12212582A JPS5916914A JP S5916914 A JPS5916914 A JP S5916914A JP 12212582 A JP12212582 A JP 12212582A JP 12212582 A JP12212582 A JP 12212582A JP S5916914 A JPS5916914 A JP S5916914A
Authority
JP
Japan
Prior art keywords
cooling
furnace
cooling zone
board
refractory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12212582A
Other languages
Japanese (ja)
Inventor
Ryoji Yamamoto
亮二 山本
Genji Nakatani
中谷 源治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP12212582A priority Critical patent/JPS5916914A/en
Publication of JPS5916914A publication Critical patent/JPS5916914A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/10Cooling; Devices therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Blast Furnaces (AREA)

Abstract

PURPOSE:To regulate the falling down and chemical erosion of refractory and to achieve the safety long life of furnace wall, by combining the stave-cooling system on the outside of furnace side into the lateral rectangular cooling board connection system. CONSTITUTION:A cooling board 11 is made from cast iron, etc., of which the inside is, in a casting manner, arranged with a cooling tube 12, situated at almost central part of furnace wall thickness, each cooling board being surrounded in circumferential direction of furnace body by lateral connection, and such ring shape boards 11 are, by a suitable interval, arranged in direction of height. Longitudinal row cooling staves 16 are, by a suitable interval, arranged in circumferential direction of furnace body near peripheral shell 17 of this cooling zone on the inside of furnace side and they construct the cooling zone on the outside of furnace side. This two layers cooling zone is constructed by working unshaped refractories 14, etc. in surroundings of the stave 16 and board 11 fixed to the shelf 17. Thus, the refractory 14 is wholly cooled and strongly held with the board 11, and its falling down can be protected by reducing its wearing. Even though the board 11 is exposed after several years operation, the cooling zone on shelf side is in a good condition and the shell is not heated at a high temperature.

Description

【発明の詳細な説明】 この発明は高炉の炉体なかんずく炉胸、炉腹、朝顔等の
炉壁の冷却構造に関する。    ゛周知のように高炉
炉体の耐火物ライニングと鉄皮を高温から守るために炉
体の冷却が行われており、高炉の使用寿命はを1とんど
この冷却の優劣によってきまるので、冷却構造は高炉の
炉体構造において最も重要な部分である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cooling structure for the furnace body of a blast furnace, especially the furnace wall such as the furnace chest, the furnace belly, and the morning glory.゛As is well known, the furnace body is cooled to protect the refractory lining and steel shell of the blast furnace body from high temperatures. The structure is the most important part of the blast furnace body structure.

高炉炉体の冷却方式は、炉体内部の炉壁面J大物を冷却
するものと、炉体の外部の鉄皮を冷却するものとあるが
、炉壁の冷却は従来は殆んど冷却面方式かステープクー
リング方式の何れかである。
There are two methods for cooling the blast furnace body: one is to cool the large objects on the furnace wall surface inside the furnace body, and the other is to cool the steel shell outside the furnace body. Conventionally, most furnace walls have been cooled by the cooling surface method. or a staple cooling method.

前者の冷却面方式は例えば実公昭52−40164に示
す如きもので、第1図(、)平断面図、同(b)中央縦
断面図のような扁平形状の銅または調合金製の冷却面を
多数、鉄皮の開口部に先端部を炉内に向けて水平に挿入
しボルト締めするもので、第1図・において側板1およ
び複数の隔壁2.2’、2’によって複数の冷却水路3
.3’、6′が構成され、給水口4.4′から冷却水が
供給され前記水路を循環して排水口5.5′から炉外に
排出される。6.6′は鉄皮に固着するだめのボルト孔
である。冷却函は例えば厚さ80.中400、長さ1,
000鵡の大きさで3〜5個を1組として給排水管を連
結する。
The former cooling surface method is as shown in Japanese Utility Model Publication No. 52-40164, for example, which uses a flat cooling surface made of copper or prepared alloy as shown in Fig. 1(a), a plan sectional view, and Fig. 1(b), a central vertical sectional view. A large number of bolts are inserted horizontally into the opening of the steel shell with the tips facing into the furnace and tightened with bolts. 3
.. 3' and 6' are constructed, and cooling water is supplied from a water supply port 4.4', circulates through the water channel, and is discharged to the outside of the furnace from a drain port 5.5'. 6.6' is a bolt hole for fixing to the iron shell. For example, the thickness of the cooling box is 80mm. Medium 400, length 1,
The water supply and drainage pipes are connected as a set of 3 to 5 parrots with a size of 1,000 parrots.

冷却函方式は一般にこのような棚状の冷却函を鉄皮の内
側に千鳥状に多数配列し、鉄皮にポル)4たは溶接によ
って水平に固着しその周囲を高炉炉壁用耐火煉瓦で構築
した冷却構造である。
The cooling box method generally consists of arranging a large number of shelf-shaped cooling boxes inside the steel shell in a staggered manner, and fixing them horizontally to the steel shell by poles or welding, and surrounding them with refractory bricks for blast furnace walls. This is the cooling structure constructed.

この冷却函方式は炉壁煉瓦を保持し易いこと、冷却函の
破損時にその取替えが可能なこと等の長所はあるが実績
において次のような欠点がみられる。
Although this cooling box system has advantages such as the ease of holding the furnace wall bricks and the ability to replace the cooling box when it is damaged, the following drawbacks have been observed in actual practice.

■冷却効果が冷却函の周辺に限定され、操業5〜6年で
炉壁耐火煉瓦の大半が損耗消失し、次いで冷却函の破損
と残存煉瓦の脱落が増加し、鉄皮に亀裂が発生して操業
困難となる危険が太きい。
■The cooling effect is limited to the area around the cooling box, and after 5 to 6 years of operation, most of the furnace wall refractory bricks wear out and disappear.Then, the cooling box becomes damaged and the remaining bricks fall off, causing cracks to occur in the steel shell. There is a high risk that operations will become difficult.

■炉操業後期には、冷却函の破損以前に露出した冷却函
によって炉内壁が凸凹になり操入物が乱され、捷た付着
物が生成し易くなるので炉況が不調になり易や。
■In the later stages of furnace operation, the inner wall of the furnace becomes uneven due to the exposed cooling box before the cooling box is damaged, disturbs the materials being fed, and makes it easier for broken deposits to form, which can lead to poor furnace conditions.

■一旦脱落しだ炉壁煉瓦の高炉操業中における補修は全
く不可能である。
■Once the furnace wall bricks have fallen off, it is completely impossible to repair them during blast furnace operation.

(Φ炉体のガスゾール対策かや\困難で炉の気密性の保
持に難点がある。
(Φ Countermeasures against gas sol in the furnace body are difficult and there are difficulties in maintaining the airtightness of the furnace.

一方後者のステープクーリング方式は第2図に示すよう
な鋳鉄製の縦長長方体の箱(ステープ゛)を用いるもの
で、(a)図はステープを炉外側から見た正面図、(b
)図は同側面図である。7は鋳込み耐火物、8は水冷用
鋳込みノシイプで、縦2m×横1m程度のステープを炉
壁の高さ方向に鉄皮の内側に(、)図に示すように10
数組連続したもので、(b)図のステープは(C)図の
A部に対応するものである。
On the other hand, the latter tape cooling method uses a vertically rectangular cast iron box (stape) as shown in Figure 2. Figure (a) is a front view of the staple as seen from outside the furnace, and (b)
) is the same side view. 7 is a cast-in refractory, 8 is a cast-in pipe for water cooling, and a staple of about 2 m long x 1 m wide is attached to the inside of the steel shell in the height direction of the furnace wall (10) as shown in the figure.
There are several consecutive sets of staples, and the staple in figure (b) corresponds to section A in figure (C).

給水は連結管9で縦方向に連結し、炉内の熱負荷によっ
て冷却水が自然に上方に循環し最上段で気水分離ドラム
10にはいって下部へ還流するもので、このような縦列
連結ステープが炉体の円周方向に多数列配設されている
The water supply is connected vertically through connecting pipes 9, and the cooling water naturally circulates upwards due to the heat load in the furnace, enters the steam-water separation drum 10 at the top stage, and returns to the bottom. Multiple rows of staples are arranged in the circumferential direction of the furnace body.

この方式は炉壁煉瓦の均一冷却の点では冷却函方式より
優れており、また冷却水の強制循環のためのポツプが不
要である、気密性の保持力;比較的容易である等の長所
があるが次のような欠点75X見られる。
This method is superior to the cooling box method in terms of uniform cooling of the furnace wall bricks, and has other advantages such as no need for a pot for forced circulation of cooling water, ability to maintain airtightness, and relative ease of use. However, the following drawbacks can be seen in 75X.

■炉壁耐大物の保持、脱落防止の機能が劣っているので
、操業1〜2年で耐火煉瓦が脱落消失すル例が多く、そ
の後は裸のステープで鉄皮を保護するとと\なり次いで
2〜3年でステープ自身が溶損し、鉄皮が露出すること
によって亀裂が発生し操業が困難となる。
■Since the ability to hold large objects on the furnace wall and prevent them from falling off is poor, there are many cases where the refractory bricks fall off and disappear after one or two years of operation, and after that, it becomes difficult to protect the steel shell with bare staples. In two to three years, the staple itself will erode and the iron skin will be exposed, causing cracks and making operation difficult.

(カフ−リンダステーブが破損した場合側々の交換が極
めて困難である。
(If the cuff cylinder stave is damaged, it is extremely difficult to replace both sides.

■冷却水の温度が高くなるので耐火ライニングや鉄皮自
身の温度も高くなる。
■As the temperature of the cooling water increases, the temperature of the refractory lining and the steel skin itself also increases.

■破損箇所の確認が極めて困難である。■It is extremely difficult to confirm the location of damage.

この発明は以上述べたような従来の冷却構造の欠点を改
良したもので、耐火物の支持構造を強イヒし、かつ冷却
効果を増大することによって、耐火物の脱落および化学
的侵蝕を抑制し、さらに耐火物の損耗が生じ又もその補
修が容易にでき、また冷却構造の炉壁内側が損耗しても
外側炉壁冷却帯で鉄皮を保護して高炉炉壁の安定長寿命
を図り得る冷却構造を提供することを目的とするもので
、その要旨は先ず冷却構造を炉内側冷却帯と鉄皮側冷却
帯の1,2層冷却帯構造とするものであって、炉内側冷
却帯は横長長方体の冷却盤を炉体の円周方向に連結して
設け、これを炉壁の高さ方向に多数段配設してそれ等の
周囲を耐火物で充填した構造であり、また鉄皮側冷却帯
は、前記炉内側冷却帯に尚接してその外周即ち鉄皮の内
側近くに強制水冷式のクーリングステープ、即ちステー
プを炉壁の高さ方向に連結したものを炉体の円周方向に
多数列配設してそれらの周囲を耐火物で充填し、ステー
プ内を貫通する水冷パイプにステープを数個宛に連結し
て強制給排水する構造としだ、内外2層の冷却帯からな
る高炉炉壁の冷却構造である。
This invention improves the drawbacks of the conventional cooling structure as described above, and suppresses falling off and chemical corrosion of the refractory by strengthening the support structure of the refractory and increasing the cooling effect. Furthermore, even if the refractory is worn out, it can be easily repaired, and even if the inside of the furnace wall of the cooling structure is damaged, the outer furnace wall cooling zone protects the steel shell, ensuring a stable and long life of the blast furnace wall. The purpose of this project is to provide a cooling structure in which the cooling structure has a one- and two-layer cooling zone structure consisting of an inner cooling zone and a shell side cooling zone. It has a structure in which oblong rectangular cooling plates are connected in the circumferential direction of the furnace body, and these are arranged in multiple stages in the height direction of the furnace wall, and the surroundings are filled with refractories. The shell-side cooling zone is a forced water-cooled cooling tape connected in the height direction of the furnace wall on the outer periphery of the furnace inner cooling zone, that is, near the inside of the furnace wall. A cooling zone with two layers, inside and outside, arranged in multiple rows in the circumferential direction and filled with refractories around them, and connected to a water-cooling pipe that penetrates through the inside of the tape to force water supply and drainage. This is a cooling structure for the blast furnace wall.

しかして仁の発明の目的をさらに効果的に達成するだめ
に、炉内側冷却帯は、横長長方体の冷却盤の外面即ち炉
内面側および上下面側もしくはさらに裏面にも、吸熱体
であるスタッドおよびフィンを固着してその周囲を不定
形耐火物で充填した構造のものと、横長長方体の冷却盤
の外面の上面に、耐火煉瓦移動防止および吸熱機能をも
った板状リブを冷却盤の長さ方向に沿って並列させて固
着し、その周囲を耐火煉瓦もしくは不定形耐火物で構築
する構造とするのが望せしい。
Therefore, in order to more effectively achieve the purpose of Jin's invention, the furnace inner cooling zone has a heat absorbing body on the outer surface of the oblong rectangular cooling plate, that is, on the inner surface of the furnace and on the upper and lower surfaces or even on the back surface. One has a structure in which the studs and fins are fixed and the surrounding area is filled with monolithic refractories, and the upper surface of the outer surface of the oblong rectangular cooling plate has plate-shaped ribs that prevent the movement of refractory bricks and have heat absorption functions for cooling. It is desirable to have a structure in which the boards are lined up and fixed along the length of the board, and the surrounding area is constructed with firebrick or monolithic refractory material.

以下この発明を実施例を示す図面にもとづいて説明する
と、第6図および第4図は炉内側冷却帯の構造が、横長
長方体の冷却盤の炉内面にスタッドを」二下面にフィン
を固着し、冷却盤の周囲を不定形耐火物の流し込みもし
くはガン吹付けで充填した構造のものを示す。
The present invention will be explained below based on drawings showing embodiments. Figs. 6 and 4 show that the structure of the cooling zone inside the furnace includes studs on the inside surface of the furnace of a cooling plate in the form of an oblong rectangular parallelepiped, and fins on the bottom surface. It shows a structure in which the cooling plate is fixed and the area around the cooling plate is filled with monolithic refractory material by pouring or gun spraying.

即ち第6図は第4図のA−A線縦断面を炉内側からみた
正面図、第4図は炉壁部を側面から見たもので第6図の
B−B@の縦断面図である。第4図の炉壁の左側半分が
炉内側冷却帯、右側半分が鉄皮側冷却帯で両者は一体と
なっている。
That is, Fig. 6 is a front view of the vertical cross section taken along the line A-A in Fig. 4 as seen from the inside of the furnace, and Fig. 4 is a longitudinal cross-sectional view taken along line B-B@ in Fig. 6, which is a side view of the furnace wall. be. The left half of the furnace wall in Figure 4 is the furnace inner cooling zone, and the right half is the shell side cooling zone, and the two are integrated.

両図において11は横長長方体の冷却盤で、鋳鉄製、#
鋼製もしくは鋳鋼製で内部に冷却管12を鋳込み、外部
から圧力ポンプ等で強制的に冷却水を循環させる冷却式
で、その一つの冷却盤の大きさは横2,000×高さ2
00×厚さ250am程度で、各冷却盤が炉壁厚さのほ
ぼ中央部に位置し横長に連結して炉体の円周方向に彎曲
して囲らされておりこの様なリング状の連結した冷却盤
を高さ方向に400〜600u間隔で設ける。冷却盤1
1の炉内側の外面に鋼鉄製等のスタンl°15を例へば
縦方向50fflll横方向2001+111の間隔で
溶接またはネジ込みで固着する。その先端形状は、不定
形耐火物14を接着し易くし同時に吸熱体としての冷却
効果を増加するだめY字型、V型等にするのが好ましい
。15は冷却盤11の上下面に溶接した多数のフィンで
スタッド16と同じ機能を持つ。
In both figures, 11 is an oblong rectangular cooling plate, made of cast iron, #
It is a cooling type that is made of steel or cast steel and has a cooling pipe 12 cast inside and forcibly circulates cooling water from the outside using a pressure pump, etc., and the size of one cooling plate is 2,000 width x 2 height.
00 x thickness of approximately 250 am, each cooling plate is located approximately at the center of the thickness of the furnace wall, and is connected horizontally and curved in the circumferential direction of the furnace body to form a ring-shaped connection. Cooling plates are installed at intervals of 400 to 600 u in the height direction. Cooling plate 1
Stans l°15 made of steel or the like are fixed to the outer surface of the inside of the furnace 1 by welding or screwing, for example, at intervals of 50 ffllll in the vertical direction and 2001+111 in the lateral direction. The tip shape is preferably Y-shaped, V-shaped, etc. to facilitate adhesion of the monolithic refractory 14 and at the same time increase the cooling effect as a heat absorber. Numeral fins 15 are welded to the upper and lower surfaces of the cooling plate 11 and have the same function as the studs 16.

フィン15はさらに冷却盤11の裏側にも設けることが
できる。
The fins 15 can also be provided on the back side of the cooling plate 11.

以上の構成からなる炉内側冷却帯に当接しその外周に鉄
皮側冷却帯を設ける。即ち第4図において16は鋳鉄製
のクーリングステーブで高さ2,000巾1,000厚
さく奥行き)2501+Il++程度の大きさで、冷却
盤11および鉄皮17から適当間隔離して位置し、炉体
の高さ方向に10数個連結して鉄皮17に固着されてい
る。各クーリングステーブ・16には水冷管12′を鋳
込み、圧力ポンプ等で冷却水を強制的に循環させる強制
水冷式である。この様な縦列のクーリングステーブを炉
体の円周方向に例えば2.00011111間隔に配列
する。
A shell-side cooling zone is provided on the outer periphery of and in contact with the furnace-side cooling zone constructed as described above. That is, in Fig. 4, reference numeral 16 is a cast iron cooling stave, which has a height of 2,000 width, 1,000 mm thickness, and a depth of about 2501+Il++, and is located at an appropriate distance from the cooling plate 11 and the iron shell 17, and is located between the cooling plate 11 and the iron skin 17. More than ten pieces are connected in the height direction and fixed to the iron shell 17. A water cooling pipe 12' is cast into each cooling stave 16, and the cooling stave 16 is of a forced water cooling type in which cooling water is forcibly circulated using a pressure pump or the like. Such vertical cooling staves are arranged at intervals of, for example, 2.00011111 in the circumferential direction of the furnace body.

次にこの内外2層からなる冷却帯を構築するには、先ず
クーリングステーブ16および冷却盤11を鉄皮17に
ボルト・ナツト等で固着し、クーリングステーブの周囲
にキャスタプル不定形耐火物を流し込んで、鉄皮側冷却
帯を施工した後、冷却盤の周囲および炉内壁を適宜横段
毎に別けて前記不定形耐火物に接して順次不定形耐火物
の流し込みまたは吹付は施工することによって、下段か
ら順次冷却盤11の周囲全体を充填して炉内側冷却帯を
構築するのである。
Next, in order to construct this cooling zone consisting of two layers inside and outside, first, the cooling stave 16 and the cooling plate 11 are fixed to the steel shell 17 with bolts, nuts, etc., and caster pull monolithic refractories are poured around the cooling stave. After constructing the shell side cooling zone, the surroundings of the cooling plate and the furnace inner wall are divided into horizontal stages as appropriate, and monolithic refractories are sequentially poured or sprayed in contact with the monolithic refractories, thereby forming the lower tier. From then on, the entire periphery of the cooling plate 11 is sequentially filled to construct a cooling zone inside the reactor.

次に炉内側冷却帯を定形耐火煉瓦で構築する場合の実施
例を第5図、第6図に示す。第5図は、前記第4図に示
す炉壁側面図の炉内側冷却帯の不定形耐火物14を定形
煉瓦18でおき替えて構築した炉壁の部分側面図で、第
6図は第5図のC−C線縦断面を炉内側から見た正面図
である。両図において19は鋼板製のリブで、冷却盤1
1の一■−面に例えば約200喘間隔(lil11火煉
圧の111)に、奥行き240喘(冷却盤の奥行き)、
高さ10Qfi(耐火煉瓦の厚さ)程度の鉄板を並列し
て垂直に溶接で固着したもので、リブ19は冷却盤と耐
火煉瓦の双方に密着しているので耐火煉瓦を冷却する吸
熱体の機能を有すると同時に、耐火煉瓦の移動、脱落を
防止する機能を宿する。なおこの場合鉄皮側のクーリン
グステーブの周囲を同時に4・ツク煉瓦で構築すること
も、また不定形面」人物で充填するとともできる。
Next, FIGS. 5 and 6 show examples in which the cooling zone inside the furnace is constructed of shaped refractory bricks. FIG. 5 is a partial side view of a furnace wall constructed by replacing the monolithic refractories 14 in the cooling zone inside the furnace in the side view of the furnace wall shown in FIG. 4 with regular bricks 18, and FIG. FIG. 2 is a front view of a vertical cross section taken along the line CC in the figure, viewed from inside the furnace. In both figures, 19 is a rib made of steel plate, which is attached to the cooling plate 1.
For example, on one side of 1, about 200 mm apart (111 of lil11 fire pressure), 240 mm deep (depth of cooling plate),
Iron plates with a height of about 10Qfi (thickness of firebricks) are arranged in parallel and fixed vertically by welding.The ribs 19 are in close contact with both the cooling plate and the firebricks, so they act as heat absorbers to cool the firebricks. At the same time, it has the function of preventing the refractory bricks from moving or falling off. In this case, the area around the cooling stave on the iron shell side can be constructed with four-piece bricks at the same time, or it can be filled with irregularly shaped figures.

以上説明したようなこの発明の冷却構造によって高炉操
秦を行うと、先ず炉内側冷却帯における耐火物14また
は1Bは、冷却盤11の全容積の増大に加えてその外周
面に設けた多数のスタッド1131およびフィン15ま
たはリブ19による吸熱作用による冷却効果が耐火物全
体に及ぶと同時に、耐火物を保持する作用が強力である
から、その損耗の鈍化と同時に脱落を防止する。従って
炉内側冷動帯において先ず炉壁の損耗速度が減殺される
When blast furnace operation is performed using the cooling structure of the present invention as described above, first, the refractory 14 or 1B in the inner cooling zone increases the total volume of the cooling disk 11, and also increases the number of The cooling effect due to the heat absorption effect of the studs 1131 and the fins 15 or ribs 19 extends to the entire refractory, and at the same time, the action of holding the refractory is strong, slowing its wear and preventing it from falling off. Therefore, first, the wear rate of the furnace wall is reduced in the cooling zone inside the furnace.

6〜7年操業後炉内側耐火物が次第に損耗し冷却盤11
が露出しても、その外側の鉄皮側冷却帯は健在であるか
ら鉄皮が高温加熱されることはなく安全である。また耐
火物の損耗程度、および損耗位置は冷却水の温度上昇に
よって確認できるので、適当な時期に炉内側耐火物の吹
付は補修が可能である。さらに最近は補修用不定形耐火
物を炉外から炉壁損耗部に圧入する技術も実施されてい
るので、操業中でも炉内側耐火物を熱間補修することが
可能となった。
After 6 to 7 years of operation, the refractory inside the furnace gradually wore out and the cooling plate 11
Even if the iron skin is exposed, the cooling zone on the outer side of the iron skin is still intact, so the iron skin will not be heated to a high temperature and it is safe. Furthermore, since the degree and location of damage to the refractory can be confirmed by the temperature rise of the cooling water, the spraying of the refractory inside the furnace can be repaired at an appropriate time. Furthermore, recently, technology has been implemented in which repair monolithic refractories are press-fitted from outside the furnace into the damaged parts of the furnace wall, so it has become possible to hot repair the refractories inside the furnace even during operation.

従ってこの発明の2層冷却帯における鉄皮側ステーブ1
6は、直接高温の炉内内容物と接触する如き事態は起り
得ないのである。
Therefore, the steel shell side stave 1 in the two-layer cooling zone of this invention
6. Direct contact with the high-temperature contents of the furnace cannot occur.

以上説明した如くこの発明によって従来の冷却構造の欠
点は大部分改善され、従来の冷却構造における炉壁の使
用寿命が6〜7年の場合、同一高炉でこの発明の冷却構
造では10年以上の長寿命が予測できると同時に、鉄皮
を毀損する如き事態が完全に防止できるので長期間高炉
の安定操業が保証できるのでその工業的効果は極めて太
きい。
As explained above, this invention has largely improved the drawbacks of the conventional cooling structure, and while the conventional cooling structure has a furnace wall life of 6 to 7 years, the cooling structure of the present invention can last more than 10 years in the same blast furnace. Its industrial effects are extremely significant, since a long service life can be predicted, and at the same time, situations such as damage to the steel shell can be completely prevented, so stable operation of the blast furnace can be guaranteed for a long period of time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は従来の高炉炉体の冷却構造を示す
もので、第1図(、)は冷却面の平断面図、同(b)は
(a)の中央縦断面図、第2図はステーブクーリング方
式で、(a)はステーブを炉外側から見た正面図、(b
)は側面図で(c)図のA部分の拡大図。(c)はステ
ーブクーリング方式の全体側面図である。 第6図および第4図はこの発明の実施例を示すもので第
6図は炉内側冷却帯を示すもので第4図A−A線の縦断
正面図。第4図は炉壁の側面を示すもので第6図のB−
Bs!縦断側面図である。第5図は別の実施例を示す炉
壁の側面図で、第6図は第5図のC−C線縦断正面図で
ある。第6〜第6図において 11・・・冷却盤、12.12’・・・冷却管、  1
5・・・スタッド、14・・・不定形耐火物、 15・
・・フィン、16・・・クーリングステーブ、  17
・・・鉄皮、18・・・耐火煉瓦、  19・・・リプ
。 代理人弁理士  木 村 三 朗 13図 第 4y!J
Figures 1 and 2 show the cooling structure of a conventional blast furnace body. Figure 2 shows the stave cooling system, (a) is a front view of the stave seen from outside the furnace, (b)
) is a side view, and (c) is an enlarged view of part A in figure. (c) is an overall side view of the stave cooling system. 6 and 4 show an embodiment of the present invention, and FIG. 6 shows a cooling zone inside the furnace, and is a longitudinal sectional front view taken along line A-A in FIG. Figure 4 shows the side view of the furnace wall, and B- in Figure 6.
Bs! FIG. FIG. 5 is a side view of a furnace wall showing another embodiment, and FIG. 6 is a vertical sectional front view taken along the line CC in FIG. 5. 6 to 6, 11...Cooling plate, 12.12'...Cooling pipe, 1
5... Stud, 14... Monolithic refractory, 15.
...Fin, 16...Cooling stave, 17
...Iron skin, 18...Firebrick, 19...Rep. Representative Patent Attorney Sanro Kimura Figure 13 No. 4y! J

Claims (1)

【特許請求の範囲】 1、横長長方体の冷却盤を炉体の円周方向に連結しかつ
炉体の高さ方向に多数段配設してそれらの周囲を耐火物
で充填した炉内側冷却帯と1.該炉内側冷却帯の外周で
鉄皮の内側近くに強制水冷式のクーリングステープを設
置しそれらの周囲を耐火物で充填し九鉄皮側冷却帯とか
らなることを特徴とする2層冷却帯からなる高炉炉壁の
冷却構造。 2、冷却盤の外面に多数のスタッドおよびフィンを固着
し、その周囲を不定形耐火物で充顛した特許請求の範囲
第1項記載の2層冷却帯からなる高炉炉体の冷却構造。 6、冷却盤の上面長さ方向に沿って垂直に並列せしめた
多数の板状リブを固着し該冷却盤の周囲を耐火煉瓦で構
築した特許請求の範囲第1項記載の2層冷却帯からなる
高炉炉体の冷却構造。
[Scope of Claims] 1. Inside the furnace in which horizontally rectangular parallelepiped cooling plates are connected in the circumferential direction of the furnace body and arranged in multiple stages in the height direction of the furnace body, and the periphery of the cooling plates is filled with refractory material. Cooling zone and 1. A two-layer cooling zone characterized by a forced water cooling type cooling tape installed near the inside of the steel shell on the outer periphery of the furnace inner cooling zone, and the surroundings thereof being filled with refractory material, and a nine steel shell side cooling zone. The cooling structure of the blast furnace wall consists of: 2. A cooling structure for a blast furnace body comprising a two-layer cooling zone as claimed in claim 1, in which a large number of studs and fins are fixed to the outer surface of the cooling disk, and the periphery thereof is filled with a monolithic refractory. 6. From the two-layer cooling zone according to claim 1, in which a large number of plate-like ribs arranged vertically in parallel along the length direction of the upper surface of the cooling plate are fixed, and the cooling plate is surrounded by refractory bricks. The cooling structure of the blast furnace body.
JP12212582A 1982-07-15 1982-07-15 Cooling construction of furnace wall of blast furnace constituted of two layers cooling zone Pending JPS5916914A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12212582A JPS5916914A (en) 1982-07-15 1982-07-15 Cooling construction of furnace wall of blast furnace constituted of two layers cooling zone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12212582A JPS5916914A (en) 1982-07-15 1982-07-15 Cooling construction of furnace wall of blast furnace constituted of two layers cooling zone

Publications (1)

Publication Number Publication Date
JPS5916914A true JPS5916914A (en) 1984-01-28

Family

ID=14828232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12212582A Pending JPS5916914A (en) 1982-07-15 1982-07-15 Cooling construction of furnace wall of blast furnace constituted of two layers cooling zone

Country Status (1)

Country Link
JP (1) JPS5916914A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100825637B1 (en) * 2001-11-21 2008-04-25 주식회사 포스코 A cooler for the end of life type in furnace
US10571151B2 (en) 2014-11-12 2020-02-25 Samsung Electronics Co., Ltd. Duct type air conditioning device and method for assembling and disassembling the same
JP2020066771A (en) * 2018-10-24 2020-04-30 日本製鉄株式会社 Blast furnace cooling structure and blast furnace comprising same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100825637B1 (en) * 2001-11-21 2008-04-25 주식회사 포스코 A cooler for the end of life type in furnace
US10571151B2 (en) 2014-11-12 2020-02-25 Samsung Electronics Co., Ltd. Duct type air conditioning device and method for assembling and disassembling the same
US11326806B2 (en) 2014-11-12 2022-05-10 Samsung Electronics Co., Ltd. Duct type air conditioning device and method for assembling and disassembling the same
JP2020066771A (en) * 2018-10-24 2020-04-30 日本製鉄株式会社 Blast furnace cooling structure and blast furnace comprising same

Similar Documents

Publication Publication Date Title
WO2000046561A1 (en) Water-cooling panel for furnace wall and furnace cover of arc furnace
US3829595A (en) Electric direct-arc furnace
US9963754B2 (en) Long campaign life stave coolers for circular furnaces with containment shells
JP4989974B2 (en) Metallurgical container
KR101174678B1 (en) Metallurgical Processing Installation
US20210190430A1 (en) Water cooled box for a metal making furnace
JPS5916914A (en) Cooling construction of furnace wall of blast furnace constituted of two layers cooling zone
JP3796981B2 (en) Stave
KR20140012083A (en) Stave cooler for a metallurgical furnace
US6249538B1 (en) Cooling device with panels for electric arc furnace
JPS5916915A (en) Cooling construction of furnace body of blast furnace
US2859030A (en) Blast furnace spray cooling means with disposal shed
JPS5916913A (en) Cooling construction of furnace body of blast furnace
JP3633519B2 (en) Stave cooler for metallurgical furnace and its mounting method
JP4021948B2 (en) Blast furnace bottom cooling structure
CN213578775U (en) Water jacket of smoke outlet of side-blown converter
CN214496367U (en) Wall plate protection system for metallurgical furnace and metallurgical furnace wall plate body
JPS585916Y2 (en) refractory furnace wall
JPH0357161B2 (en)
SU1113413A1 (en) Apparatus for cooling furnace wall
JP2000292072A (en) Furnace wall of arc furnace and water-cooled panel for furnace cover
JPH0634362Y2 (en) Blast furnace wear ring liner for protection of hardware
JPS6011084Y2 (en) Blast furnace mouth structure
JPH047519Y2 (en)
EP3540350A1 (en) Water cooled box for a metal making furnace