JPS59104408A - Detection of bonded zone by fusion of blast furnace - Google Patents

Detection of bonded zone by fusion of blast furnace

Info

Publication number
JPS59104408A
JPS59104408A JP21179882A JP21179882A JPS59104408A JP S59104408 A JPS59104408 A JP S59104408A JP 21179882 A JP21179882 A JP 21179882A JP 21179882 A JP21179882 A JP 21179882A JP S59104408 A JPS59104408 A JP S59104408A
Authority
JP
Japan
Prior art keywords
furnace
blast furnace
rod
fusion
shaped object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21179882A
Other languages
Japanese (ja)
Inventor
Masayuki Mizuguchi
水口 征之
Koji Koyama
小山 幸司
Keigo Imiya
井宮 敬悟
Yoshihide Nakai
中井 芳秀
Tamio Togo
東郷 民生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP21179882A priority Critical patent/JPS59104408A/en
Publication of JPS59104408A publication Critical patent/JPS59104408A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/24Test rods or other checking devices

Abstract

PURPOSE:To highly accurately measure the shape, position, etc. of bonded zone by fusion, by a method wherein the fusion-bonded zone formed in blast furnace is measured by inserting a rod-shaped object to penetrate through the inside of furnace from the furnace wall and by measuring the insertion resistance. CONSTITUTION:A rod-shaped object 13 is inserted into the blast furnace 1 from the nozzle part 8 of the penetrating hole provided through the furnace wall 19 of blast furnace 1 and one end thereof is connected to a traveling truck 11 running on the rail 10 arranged on a stand 18 with a driving chain. The rod shaped object 13 goes forward and backward synchronously with the traveling of truck 11 according to the advance and retreat of driving chain 12 driven with a driving device 20. A pulse transmitter 21 is continuously connected to the motor shaft 20a of this driving device 20 and the change of inserting speed of rod shaped object 13 and the distance from the furnace center at the position where change is generated are calculated with an arithmetic unit 22 by detecting the angular velocity of motor shaft 20a. The shape and position of fusion bonded zone is detected by recording said motion with a recorder 23.

Description

【発明の詳細な説明】 本発明は、高炉操業の安定化制御に資する為の融着帯検
知方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cohesive zone detection method that contributes to stabilizing control of blast furnace operation.

高炉には、鉄鉱石原料とコークスが交互に装入されてお
り、下方部より上昇してくる還元ガスによって還元され
ながら徐々に降下していく。還元によって組成変化を受
けた鉱石は、夫々の鉱石に固有の軟化溶融温度を示すが
、高炉内の温度は下方部ほど高温であるから、降下途中
の鉱石は、やがて該軟化溶融温度と同レベルの温度領域
に至る。
Iron ore raw materials and coke are alternately charged into the blast furnace, and they gradually descend while being reduced by the reducing gas that rises from the bottom. Ore that has undergone a compositional change due to reduction exhibits a softening and melting temperature unique to each ore, but since the temperature inside the blast furnace is higher in the lower part, the ore on its way down will eventually reach the same level as the softening and melting temperature. temperature range.

この場合において通常の鉱石は、塊状帯から一気に融体
化するのではなく、ある温度範囲に亘って軟化、溶融次
いで滴下という過程を通り、■に溶銑及び溶滓が形成さ
れる。即ち炉内のある部位には、軟化融着した鉱石層が
存在し、これらが存在する領域を軟化融着帯(以下単に
融着帯という)と呼ぶ。高炉内におけるこの様な融着帯
の形状は、従来は単に憶測する程度であったが、最近高
炉各社において実施された高炉解体調査によってかなり
正しく把握される様になってきており、その後実炉にお
ける操業中の融着帯形状も色々な手段で検出されつつあ
る。それによると、炉内融着帯形状は炉内高さ方向及び
水平断面方向で著しく大きな分布を呈しておりしかもこ
れらの分布は炉内状況と密接な関係を有するものである
ことが判明している。そして高炉の状況に応じて種々の
パターンを示すものであることも分かっているが、もっ
とも標準的なパターンを模式的に表わすと第1図の如く
である。即ち第1図において1は高炉であり、炉頂1a
から交互に装入された鉱石(ペレット及び焼結鉱等の区
別は問わない)3とコークス4は夫々層状に装入された
後、固形状のままで順次降下して行く。尚6はこの様な
塊状帯である。
In this case, ordinary ore does not melt all at once from a lumpy zone, but undergoes a process of softening, melting, and then dripping over a certain temperature range, and hot metal and slag are formed in (2). That is, a softened and fused ore layer exists in a certain part of the furnace, and the area where these layers exist is called a softened and fused zone (hereinafter simply referred to as a fused zone). The shape of such a cohesive zone inside a blast furnace was previously only a matter of speculation, but it has come to be understood fairly accurately through blast furnace dismantling surveys conducted by blast furnace companies recently, and since then it has been understood quite accurately in blast furnaces. The shape of the cohesive zone during operation is also being detected by various means. According to this study, it was found that the shape of the cohesive zone inside the furnace exhibits a significantly large distribution in the height direction and horizontal cross-sectional direction inside the furnace, and that these distributions are closely related to the conditions inside the furnace. There is. Although it is known that various patterns are shown depending on the conditions of the blast furnace, the most standard pattern is shown schematically in FIG. That is, in Fig. 1, 1 is a blast furnace, and the furnace top 1a
Ore 3 (regardless of the distinction between pellets, sintered ore, etc.) and coke 4 are charged alternately in layers and then descend one after another while remaining solid. Note that 6 is such a massive band.

そしてシャフト部1bから下方にかけては、融着帯7が
層状且つ山状に形成され、内包された炉心コークス層5
の空隙をぬって溶銑及び溶滓が滴下していく。他方羽口
2からは熱風が吹き込まれ矢印の如く上昇するが、融着
帯7は、その物理的性状の本質からして空隙率が極めて
小さいものであるから、通気性は頗る悪く、炉内では上
昇ガスの抵抗板になっている。従って炉心コークス層5
内を通過上昇してきた還元ガスは、第1図の矢印で示す
如く、融着帯7に到達した時点で高さ方向と水平方向に
分配され、上方に向うガスは融着帯7の層に沿って炉心
コークス層5内を上昇し、水平方向に向うガスは融着帯
7ではさまれたコークススリット7′内を通って塊状帯
6側に出る。即ち融着帯7は上昇ガスの分配機能を示し
、その形成状態、特に分布によって炉内ガスの分散度合
いが大きく影響される。例えば融着帯7が炉腹部におい
て炉心側に張り出して存在するときは、炉頂におけるガ
ス流は主として周辺流になるし、融着帯7が炉壁側に片
寄って存在するときは前記ガス流は主として中心流を形
成する。そして周辺流が形成されたときは塊状帯6にお
ける還元が周辺部で冗進し、他方中心流が形成されたと
きはその逆になるが、これらは直接的に次の融着帯形成
に影響するだけでなく、炉全体における還元プロセスの
主要な支配因子になっている。
Further, from the shaft portion 1b downward, a cohesive zone 7 is formed in a layered and mountain-like manner, and a core coke layer 5 contained therein is formed.
Hot metal and slag drip through the gaps. On the other hand, hot air is blown from the tuyere 2 and rises as shown by the arrow, but the porosity of the cohesive zone 7 is extremely small due to its physical nature, so ventilation is extremely poor and the inside of the furnace is In this case, it becomes a resistance plate for the rising gas. Therefore, the core coke layer 5
As shown by the arrow in Figure 1, the reducing gas that has passed through and ascended is distributed in the height direction and horizontal direction when it reaches the cohesive zone 7, and the upward gas is distributed in the layer of the cohesive zone 7. The gas rising in the core coke layer 5 along the horizontal direction passes through the coke slit 7' sandwiched between the cohesive zones 7 and exits to the lump zone 6 side. That is, the cohesive zone 7 exhibits a distribution function for rising gas, and the degree of dispersion of the gas in the furnace is greatly influenced by its formation state, particularly its distribution. For example, when the cohesive zone 7 is present in the furnace abdomen extending toward the core side, the gas flow at the top of the furnace is mainly a peripheral flow, and when the cohesive zone 7 is present biased toward the furnace wall side, the gas flow mainly forms a central flow. When a peripheral flow is formed, the reduction in the lumpy zone 6 is accelerated at the periphery, while when a central flow is formed, the opposite is true, but these directly influence the formation of the next cohesive zone. Not only that, but it is also the main controlling factor for the reduction process in the entire furnace.

以上の様なところから、融着帯形状は高炉内における円
滑な荷下りや効果的なガス分布に重大な影響を及ぼすこ
とが分かり、高炉の円滑操業を維持し高い生産性を発揮
する為には、炉内融着帯形状を適正に維持することが必
要であることを知った。しかしその為には、まず操炉中
における現時点での融着帯形状を可及的に精度よく把握
しなければならない。これらについて、特開昭49−7
2115、同51−25415、実開昭51−3010
4、同51−28304、更には特開昭56−9840
7等の提案がなされ、推定計算或は実炉における動的な
解析による把握がこころみられているが、いずれも特に
確立された手段とはいい難い。
From the above, it is clear that the shape of the cohesive zone has a significant effect on smooth unloading and effective gas distribution in the blast furnace, and in order to maintain smooth operation of the blast furnace and achieve high productivity. found that it is necessary to properly maintain the shape of the cohesive zone in the furnace. However, in order to do so, it is first necessary to understand the current shape of the cohesive zone as accurately as possible during reactor operation. Regarding these, JP-A-49-7
2115, 51-25415, Utsukai 51-3010
4, 51-28304, and JP-A-56-9840
7 and other proposals have been made, and attempts are being made to understand the situation through estimation calculations or dynamic analysis in actual reactors, but none of these methods can be said to be particularly established.

本発明はこの様な事情に着目してなされたものであって
、実炉における融着帯の位置及び形状を可及的速やかに
且つ正確に測定し得る方法を確立すべくなされたもので
あって、その構成を述べると、高炉操業において、棒状
物を炉壁から炉内へ貫通挿入し、挿入抵抗を測定するこ
とによって高炉内に形成されている融着帯を測定するこ
とを要旨とするものである。
The present invention has been made in view of these circumstances, and is intended to establish a method that can measure the position and shape of the cohesive zone in an actual furnace as quickly and accurately as possible. To explain its structure, the gist is to measure the cohesive zone formed inside the blast furnace by inserting a rod-shaped object from the furnace wall into the furnace and measuring the insertion resistance during blast furnace operation. It is something.

以下本発明の構成及び作用効果を具体的に説明するが、
後述の実施例は一具体例にすぎず、もとより前・後記の
趣旨に徴して種々設計を変更することはいずれも本発明
の技術的範囲に含まれる。
The structure and effects of the present invention will be specifically explained below.
The embodiment described below is only one specific example, and various changes in design in accordance with the spirit described above and below are within the technical scope of the present invention.

第2図は本発明の融着帯検知方法を例示する説明図であ
る。図は高炉1の炉壁19に設けた貫通孔のノズル部8
から棒状体18が高炉1内へ挿入された状態を示してい
る。棒状体13の一端は、架台18上に設けられたレー
ル10上を駆動チェーン12によって移動する走行台車
11に連結されてあって、該走行台車11の往復進によ
って棒状体13が高炉1の炉心方向へ進退する。上記駆
動チェーン12は駆動装置20(一般にエアモータ、油
圧、電動モータ等を使用)とその駆動を伝える駆動伝達
装置24によって駆動される。そしてこの駆動チェーン
12は上記駆動伝達装置24及び複数個設けたスプロケ
ットホイール9によって前記走行台車11を矢印方向へ
引張るので、走行台車11に連結された棒状体13は高
炉1内へ向かって進行する。同図中の遮断弁14及び1
5、シール装置16等は該棒状体13を高炉内へ挿入す
る前後及び測定中に操作する装置であり、以下簡単にそ
れらの作用について説明する。棒状体13を高炉1内へ
挿入するに当っては、遮断弁15を開放状態とし、駆動
装置20を作動して駆動チェーン12を駆動させると、
該駆動チェーン12に引張られて走行台車11が走行レ
ール10上を走行する。走行台車11に連結した棒状体
13は走行台車11と共に駆動をはじめ、開放された遮
断弁15よりガイドパイプ17中に挿入され閉じた遮断
弁14まで達する。ここで遮断弁14を開放する。開放
してもシール装置16により炉内ガスは外部に流れない
構造となっている。かくして炉内ガス等の漏出を防止し
つつ棒状体13を高炉内部へスムーズに進行させること
ができる。
FIG. 2 is an explanatory diagram illustrating the cohesive zone detection method of the present invention. The figure shows a nozzle part 8 of a through hole provided in the furnace wall 19 of the blast furnace 1.
The rod-shaped body 18 is shown inserted into the blast furnace 1 from above. One end of the rod-shaped body 13 is connected to a traveling truck 11 that moves on a rail 10 provided on a pedestal 18 by a drive chain 12, and as the traveling truck 11 moves back and forth, the rod-shaped body 13 moves into the core of the blast furnace 1. Move forward or backward in the direction. The drive chain 12 is driven by a drive device 20 (generally using an air motor, hydraulic pressure, electric motor, etc.) and a drive transmission device 24 that transmits the drive. The drive chain 12 pulls the traveling carriage 11 in the direction of the arrow by the drive transmission device 24 and the plurality of sprocket wheels 9, so that the rod-shaped body 13 connected to the traveling carriage 11 moves toward the inside of the blast furnace 1. . Shutoff valves 14 and 1 in the same figure
5. The sealing device 16 and the like are devices that are operated before and after inserting the rod-shaped body 13 into the blast furnace and during measurement, and their functions will be briefly explained below. When inserting the rod-shaped body 13 into the blast furnace 1, the shutoff valve 15 is opened and the drive device 20 is activated to drive the drive chain 12.
The carriage 11 is pulled by the drive chain 12 and runs on the running rail 10. The rod-like body 13 connected to the traveling truck 11 starts to be driven together with the traveling truck 11, and is inserted into the guide pipe 17 through the opened shut-off valve 15 and reaches the closed shut-off valve 14. At this point, the shutoff valve 14 is opened. Even if the furnace is opened, the sealing device 16 prevents the gas inside the furnace from flowing to the outside. In this way, the rod-shaped body 13 can be smoothly advanced into the blast furnace while preventing leakage of furnace gas and the like.

ところで棒状体13の炉内への挿入抵抗は、第1図とそ
れらの説明より明らかな通り、挿入位置により相当変化
すると推定される。即ち装入物は前記の如く徐々に降下
しているので、棒状体挿入位置が定められていてもその
時々により鉱石とコークスの塊状帯6に当る場合と融着
帯7に当る場合があり、棒状体18の進入したその位置
の状況によって棒状体18に与える挿入抵抗が著しく異
なり、それに応じて棒状体18の挿入速度が変化するこ
とになる。そこで本発明では駆動装置20のモータ軸2
0aにパルス発信器21を連設し、モータ軸20aの角
速度(又は回転数)を検出し、演算装置22によって棒
状体18の挿入速度の変化と、該変化を生じた地点の炉
心からの距離(角速度(又は回転数)が低下するに至る
までの棒状体13の進入距離が求められる)を整理演算
させ、演算装置22に連設した記録計23に記録させる
様に構成している。尚演算装置22内では検出された回
転数を積分し、抵抗が増大するに至るまで、並びに抵抗
が増大した状態(棒状体13の先端が炉心に突入すれば
再び抵抗が少なくなる)での夫夫の挿入深さを計算し炉
巾方向に見た軟化融着帯の位置(炉壁からの距離)及び
巾長さが記録計28に記録される。
By the way, the insertion resistance of the rod-shaped body 13 into the furnace is estimated to vary considerably depending on the insertion position, as is clear from FIG. 1 and the explanation thereof. That is, since the charge is gradually descending as described above, even if the bar insertion position is determined, it may hit the lumpy zone 6 of ore and coke or the cohesive zone 7 depending on the time. The insertion resistance applied to the rod 18 varies significantly depending on the position at which the rod 18 enters, and the insertion speed of the rod 18 changes accordingly. Therefore, in the present invention, the motor shaft 2 of the drive device 20
A pulse transmitter 21 is connected to 0a to detect the angular velocity (or rotational speed) of the motor shaft 20a, and the arithmetic unit 22 calculates changes in the insertion speed of the rod-shaped body 18 and the distance from the core to the point where the change occurs. (The approach distance of the rod-like body 13 until the angular velocity (or rotational speed) decreases is determined) is calculated and recorded in a recorder 23 connected to the calculation device 22. The detected rotational speed is integrated in the arithmetic unit 22, and the rotation speed is integrated until the resistance increases, and when the resistance increases (when the tip of the rod-shaped body 13 enters the core, the resistance decreases again). The insertion depth of the husband is calculated, and the position (distance from the furnace wall) and width of the softened cohesive zone viewed in the furnace width direction are recorded on the recorder 28.

上記実施例では炉内へ貫通挿入する器材として棒状体を
用いたが、これの代りに最近大型高炉で用いる温度・圧
力・ガス分析用のゾンデやランス等を用いてもよいし、
高温の高炉中へ挿入可能な棒状体様のものであれば何を
用いてもよい。
In the above embodiment, a rod-shaped body was used as the device inserted into the furnace, but instead of this, a sonde, a lance, etc. for temperature, pressure, and gas analysis, which are recently used in large blast furnaces, may be used.
Any rod-like material that can be inserted into a high-temperature blast furnace may be used.

第3図は実施例における測定結果の説明図で、演算装置
を用いて得た棒状体の挿入速度を炉壁から炉心方向への
深度の関係を示す図である。第3図において(a)図は
高炉融着帯の最上方位置における測定結果を、又(b)
図は下方部の位置での測定結果を示したもので、縦軸は
駆動軸20aの角速度(又は回転数)を棒状体13の挿
入速度に換算した値、横軸は炉壁から炉心への距離を示
す。第1図と関連づけながら(a)図を見ると、高炉1
へ挿入された棒状体が鉱石3とコークス4が積み重ねら
れた塊状帯6を通過する間は挿入抵抗もさほど大きくは
なくそのまま同じ速度で炉心へむかって進行するが、融
着帯(最上部)7に至ると半溶融の粘性の大きい鉱石層
に入って挿入抵抗が急激に増大するため挿入速度は急激
に低下する。ついで融着帯7を過ぎると再び塊状帯6中
へ進入して挿入抵抗が前と同じ水準まで減少する為、挿
入速度は再び元と同じ速度で推移することが理解される
FIG. 3 is an explanatory diagram of the measurement results in the example, and is a diagram showing the relationship between the insertion speed of the rod-shaped body obtained using a calculation device and the depth from the reactor wall in the direction of the reactor core. In Figure 3, (a) shows the measurement results at the uppermost position of the blast furnace cohesive zone, and (b)
The figure shows the measurement results at the lower position, where the vertical axis is the value obtained by converting the angular velocity (or rotational speed) of the drive shaft 20a into the insertion speed of the rod-shaped body 13, and the horizontal axis is the value obtained by converting the angular velocity (or rotation speed) of the drive shaft 20a into the insertion speed of the rod-shaped body 13. Show distance. Looking at Figure (a) in relation to Figure 1, we see that blast furnace 1
While the inserted rod passes through the lumpy zone 6 where ore 3 and coke 4 are piled up, the insertion resistance is not so great and the rod advances toward the core at the same speed, but the cohesive zone (top) When it reaches 7, it enters a semi-molten ore layer with high viscosity and the insertion resistance increases rapidly, so the insertion speed decreases rapidly. It is understood that after passing through the cohesive zone 7, the insertion speed once again enters the lumpy zone 6 and the insertion resistance decreases to the same level as before, so that the insertion speed remains the same as before.

次に(b)図の下段の位置測定結果では、燃焼するコー
クス層5と融着帯7は炉壁付近まで広がっており、又棒
状体を挿入した炉壁近辺から既に塊状帯6は高温のため
粘性が増加しているので挿入抵抗は上段より大きく挿入
速度はや々低い。しかも融着帯の近づくにつれて抵抗が
増大する為挿入速度は徐々に下降し、融着帯に至って挿
入抵抗の急激な増大により挿入速度は大巾に低下して炉
心方向へ進行する。次に融着帯7を過ぎて炉心コークス
層5に到ると、挿入抵抗は漸減し、炉心付近ではほゞ無
抵抗のまゝ挿入が進行する為、(b)図の挿入速度は融
着帯を過ぎた点から急上昇をはじめて無抵抗の点に至り
最高速度になって平衡状態で推移することがわかる。
Next, in the position measurement results shown in the lower part of the figure (b), the burning coke layer 5 and cohesive zone 7 have spread to the vicinity of the furnace wall, and the lumpy zone 6 has already reached the high temperature near the furnace wall where the rod was inserted. Therefore, the viscosity has increased, so the insertion resistance is greater than the upper stage, and the insertion speed is somewhat lower. Furthermore, as the resistance increases as the cohesive zone approaches, the insertion speed gradually decreases, and as the insertion resistance rapidly increases when the cohesive zone is reached, the insertion speed decreases significantly and the insertion speed advances toward the core. Next, after passing through the cohesive zone 7 and reaching the core coke layer 5, the insertion resistance gradually decreases, and the insertion progresses with almost no resistance near the core, so the insertion speed in Figure (b) is the same as that of the coke layer 5. It can be seen that the speed begins to rise rapidly after passing the belt, reaches the point of no resistance, reaches the maximum speed, and remains in an equilibrium state.

以上の様な測定を高炉の高さ方向並びに周方向数箇所で
行えば、融着帯の形状や位置を適確に把握することがで
きる。
By performing the above measurements at several locations in the height direction and circumferential direction of the blast furnace, the shape and position of the cohesive zone can be accurately determined.

本発明の構成は上記の通りであるから、炉内における融
着帯の形状乃至位置等を高精度で測定することができる
。従って高炉操業をより良い状態に誘導し、且つ保持す
ることが可能となった。
Since the configuration of the present invention is as described above, the shape, position, etc. of the cohesive zone in the furnace can be measured with high precision. Therefore, it has become possible to induce and maintain better blast furnace operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は高炉内における融着帯を示す模式図、第2図は
本発明の融着帯検知方法を例示する説明図、第3図は実
施例の測定結果の説明図である。 1・・・高炉 2・・・羽口 3・・・鉱石 4・・・コークス 5・・・炉心コークス層 6・・・塊状帯7・・・融着
帯 8・・・ノズル部 9・・・スプロケットホイール 10・・・走行レール  11・・・走行台車12・・
・駆動チェーン 13・・・棒状体14・・・遮断弁 
   15・・・遮断弁16・・・高圧空気配管 17
・・・ガイドパイプ18・・・架台     19・・
・炉壁20・・・駆動装置   21・・・パルス発信
器22・・・演算装置   28・・・記録計24・・
・駆動伝達装置
FIG. 1 is a schematic diagram showing a cohesive zone in a blast furnace, FIG. 2 is an explanatory diagram illustrating the cohesive zone detection method of the present invention, and FIG. 3 is an explanatory diagram of measurement results in an example. 1... Blast furnace 2... Tuyere 3... Ore 4... Coke 5... Core coke layer 6... Lump zone 7... Cohesive zone 8... Nozzle part 9...・Sprocket wheel 10...travel rail 11...travel trolley 12...
・Drive chain 13... Rod-shaped body 14... Shutoff valve
15...Shutoff valve 16...High pressure air piping 17
... Guide pipe 18 ... Frame 19 ...
・Furnace wall 20...Drive device 21...Pulse transmitter 22...Arithmetic device 28...Recorder 24...
・Drive transmission device

Claims (1)

【特許請求の範囲】[Claims] 高炉操業において、棒状物を炉壁から炉内へ貫通挿入し
、挿入抵抗を測定することによって高炉内に形成されて
いる融着帯を測定することを特徴とする高炉の融着帯検
知方法。
A method for detecting a cohesive zone in a blast furnace, characterized by measuring a cohesive zone formed in a blast furnace by penetrating and inserting a rod-shaped object into the furnace from a furnace wall and measuring insertion resistance during blast furnace operation.
JP21179882A 1982-12-01 1982-12-01 Detection of bonded zone by fusion of blast furnace Pending JPS59104408A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21179882A JPS59104408A (en) 1982-12-01 1982-12-01 Detection of bonded zone by fusion of blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21179882A JPS59104408A (en) 1982-12-01 1982-12-01 Detection of bonded zone by fusion of blast furnace

Publications (1)

Publication Number Publication Date
JPS59104408A true JPS59104408A (en) 1984-06-16

Family

ID=16611778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21179882A Pending JPS59104408A (en) 1982-12-01 1982-12-01 Detection of bonded zone by fusion of blast furnace

Country Status (1)

Country Link
JP (1) JPS59104408A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2606035A1 (en) * 1986-10-29 1988-05-06 Siderurgie Fse Inst Rech SUPPORT AND INTRODUCTION BENCH FOR A RECLINED ELONGATED PROBE AND ADAPTED PROBE
JPH04329811A (en) * 1991-05-02 1992-11-18 Nkk Corp Instrument for measuring furnace condition in blast furnace and method for sampling gas in furnace

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2606035A1 (en) * 1986-10-29 1988-05-06 Siderurgie Fse Inst Rech SUPPORT AND INTRODUCTION BENCH FOR A RECLINED ELONGATED PROBE AND ADAPTED PROBE
US4836509A (en) * 1986-10-29 1989-06-06 Institut De Recherches De La Siderurgie Francaise Support and introduction bench for an elongated rectilinear probe, and probe adapted to same
JPH04329811A (en) * 1991-05-02 1992-11-18 Nkk Corp Instrument for measuring furnace condition in blast furnace and method for sampling gas in furnace

Similar Documents

Publication Publication Date Title
JPS59104408A (en) Detection of bonded zone by fusion of blast furnace
JP2015086461A (en) Blast furnace operation method
CN104537177B (en) Cohesive zone softening face method for determining position and device in a kind of blast furnace
JP2727563B2 (en) Blast furnace operation method
JP2006342382A (en) Method for evaluating gas permeability of lower part in blast furnace, and blast furnace operating method
JPS5848355Y2 (en) Blast furnace softening cohesive zone measuring device
JPS6119712A (en) Detecting device of thickness of layer of charged burden
JPS6028678Y2 (en) Blast furnace furnace condition measuring device
JPH0826368B2 (en) A method for estimating the deviation of the filling state of the solid reducing agent layer in the core
GB1574834A (en) Monitoring a blast furnace during operation and controlling operation of the furnace accordingly
JPS5818591B2 (en) Surface layer position measuring device for vertical furnace contents
JPH0210204B2 (en)
US3495741A (en) Apparatus for controlling the flow of a fluid material
JPS6140761Y2 (en)
JPS6277413A (en) Method for controlling position of welded zone of blast furnace
JPS57126904A (en) Control method for air-permeability of blast furnace
JPS57152401A (en) Method and device for measuring heat level in reduction melting furnace
JPH06299215A (en) Operation of blast furnace
JPH0717931B2 (en) Blast furnace furnace interior entrance layer boundary measurement method
JPS61201711A (en) Operating method for blast furnace
JP2007284725A (en) Blast furnace operation method
JPS58208384A (en) Detection of carbon deposition in carbonization chamber of coke oven
JPS5741304A (en) Blast furnace operation method
JPH09279207A (en) Method for estimating condition of core in blast furnace
JPH06306419A (en) Operation of blast furnace