JPH0417607A - Method for operating blast furnace - Google Patents

Method for operating blast furnace

Info

Publication number
JPH0417607A
JPH0417607A JP12204290A JP12204290A JPH0417607A JP H0417607 A JPH0417607 A JP H0417607A JP 12204290 A JP12204290 A JP 12204290A JP 12204290 A JP12204290 A JP 12204290A JP H0417607 A JPH0417607 A JP H0417607A
Authority
JP
Japan
Prior art keywords
furnace
temperature
blast furnace
charge
rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12204290A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Yamaguchi
一良 山口
Hiromitsu Ueno
上野 浩光
Kenji Tamura
健二 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP12204290A priority Critical patent/JPH0417607A/en
Publication of JPH0417607A publication Critical patent/JPH0417607A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To improve the productivity and to reduce fuel ratio by directly detecting charged material descendent velocity and temp. in a furnace at lower part of the furnace and using these to execute distribution control of the charged material. CONSTITUTION:At near the working position (within about 5cm from the furnace wall) in the lower part (bosh part from belly part) in the blast furnace, heat resistant alloy-made protecting tube 3 is inserted and a thermocouple 5 is inserted from outer part through this protecting tube 3 and tip part of the protecting tube 3 is positioned to the (a) part. With this thermocouple 5, the temp. at near the working position ((a) part) is detected and the charged material descendent velocity is calculated from periodical change of the detected temp. and the ratio of ore and coke at circumferential part in the furnace charged from the furnace top is adjusted so that the temp. and the charging material descendent velocity come in the set range. By this method, the blast furnace is stably operated, the productivity is improved, the fuel ratio is reduced, and the molten iron can stably be supplied.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高炉の炉腹部から朝顔部にかけて稼動面付近
の温度を検出し、高炉の炉頂装入物分布を調整すること
により、生産性を向上させ、燃料比を低下させた高炉操
業法に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention detects the temperature near the operating surface from the belly part of the blast furnace to the morning glory part, and adjusts the top charge distribution of the blast furnace. This paper relates to a blast furnace operating method that improves performance and reduces fuel ratio.

(従来の技術) 高炉操業にあっては、炉頂から装入する鉱石とコークス
の比率(0/Cと略す)の半径方向分布を調整すること
により、高炉の通気性を確保して生産性を向上させ、か
つガス還元効率の向上をはかり燃料比を低下させている
(Prior art) In blast furnace operation, by adjusting the radial distribution of the ratio of ore and coke (abbreviated as 0/C) charged from the top of the furnace, the ventilation of the blast furnace is ensured and productivity is increased. In addition, the fuel ratio is lowered to improve gas reduction efficiency.

この装入物分布調整にあたり、炉内の装入物降下速度を
検出することは非常に重要であり、とくに高炉の周辺部
の装入物降下速度は高炉の通気性、還元効率をほぼ決定
するので、従来からその検出方法が開発され実用化され
ている。
In adjusting the burden distribution, it is very important to detect the rate of descent of the charge in the furnace, and in particular, the rate of descent of the charge in the periphery of the blast furnace almost determines the permeability and reduction efficiency of the blast furnace. Therefore, detection methods have been developed and put into practical use.

例えば、特公昭57−031104号公報では、鉄鉱石
とコークスの電気抵抗の差を利用した2木のゾンデによ
る装入物降下速度検出方法が開示されている。
For example, Japanese Patent Publication No. 57-031104 discloses a method of detecting the rate of descent of a charge using two wooden sondes, which utilizes the difference in electrical resistance between iron ore and coke.

また高炉の炉壁部の温度は、高炉の炉熱を示す重要な指
揮となることが従来より知られており、特開昭53−0
46419号公報では、炉壁部の温度としてステーブク
ーラー温度を用いた高炉操業法が開示されている。
Furthermore, it has long been known that the temperature of the furnace wall of a blast furnace is an important indicator of the furnace heat of the blast furnace.
No. 46419 discloses a blast furnace operating method using stave cooler temperature as the temperature of the furnace wall.

(発明が解決しようとする課題) ところで従来の高炉操業において、特公昭57−031
104号公報に開示されている装入物降下速度検出方法
をはじめ、開発され実用化されている検出方法の測定位
置は炉頂製人物表面より5m程度までの低温領域に限ら
れている。この理由は、炉下部の高温領域になると、電
気抵抗の差を利用した検出の場合は、鉄鉱石とコークス
の抵抗差がなくなり、原理的に検出不可能であるととも
に、センサーを搭載するゾンデの耐熱性に限界があり、
長期的安定稼動できないことによる。しかし、装入物降
下速度は炉下部における検出が重要であり、炉頂部にお
ける装入物降下速度より炉下部の装入物降下速度を推定
することは、この間に5〜6時間のタイムラグがあるこ
とや、炉頂部で周辺部に装入された鉄鉱石とコークスが
そのままピストンフローで炉壁部を降下するとは限らず
、検出精度が悪く、それを用いた装入物分布制御による
生産性向上、燃料比低下には限界があった。
(Problem to be solved by the invention) By the way, in conventional blast furnace operation,
The measurement position of the detection methods that have been developed and put into practical use, including the method for detecting the rate of descent of the charge disclosed in Japanese Patent No. 104, is limited to a low-temperature region up to about 5 m from the surface of the figure made at the top of the furnace. The reason for this is that in the high-temperature region of the lower part of the furnace, detection using the difference in electrical resistance loses the difference in resistance between iron ore and coke, making it impossible to detect in principle, and the sonde equipped with the sensor There is a limit to heat resistance,
This is due to the inability to operate stably over the long term. However, it is important to detect the rate of descent of the burden at the bottom of the furnace, and there is a time lag of 5 to 6 hours between estimating the rate of descent of the burden at the bottom of the furnace from the rate of descent of the burden at the top of the furnace. In addition, the iron ore and coke charged around the top of the furnace do not necessarily descend down the furnace wall with the piston flow, resulting in poor detection accuracy, which makes it difficult to improve productivity by controlling the burden distribution. However, there was a limit to the reduction in fuel ratio.

また高炉の炉壁部の温度も、ステーブクーラーやレンガ
に埋めこんだ熱電対による、炉内温度の間接測定である
ため、炉下部の温度ではあるが、検出精度として十分で
はなく、やはりそれを用いた装入物分布制御による生産
性向上、燃料比低下には限界があった。
In addition, the temperature at the wall of the blast furnace is indirectly measured by thermocouples embedded in stave coolers and bricks, so although it is the temperature at the bottom of the furnace, the detection accuracy is not sufficient, and it is There was a limit to productivity improvement and fuel ratio reduction by the charge distribution control used.

このように従来の高炉操業は、生産性向上、燃料比低下
をはかろうとしたときに、炉下部を検出する精度よい測
定手段がないため、装入物分布制御技術が有効に活用さ
れていない。
In this way, in conventional blast furnace operations, when trying to improve productivity and reduce the fuel ratio, there is no accurate measurement means to detect the lower part of the furnace, so charge distribution control technology is not effectively utilized. .

そこで本発明は、炉下部における装入物降下速度、炉内
温度を直接検出し、それを用いて装入物分布制御を行う
ことにより、生産性向上、燃料比低下を達成することを
目的とする。
Therefore, the present invention aims to improve productivity and reduce the fuel ratio by directly detecting the rate of descent of the charge in the lower part of the furnace and the temperature inside the furnace, and using this to control the distribution of the charge. do.

(課題を解決するための手段および作用)本発明の高炉
操業法は、その目的を達成するために、高炉の炉腹部か
ら朝顔部にかけて稼動面付近の温度を検出し、該温度の
周期的変化より装入物降下速度を算出し、該温度および
装入物降下速度があらかじめ設定した範囲に入るように
、炉頂から装入する炉周辺部の鉱石とコークスの比率を
調整することを特徴とする。
(Means and effects for solving the problem) In order to achieve the object, the blast furnace operating method of the present invention detects the temperature near the operating surface from the belly part of the blast furnace to the morning glory part, and periodically changes the temperature. The method is characterized by calculating the rate of descent of the burden, and adjusting the ratio of ore and coke in the area around the furnace charged from the top of the furnace so that the temperature and rate of descent of the burden fall within a preset range. do.

本発明における高炉の炉腹部から朝顔部にかけての稼動
面付近の温度の検出方法を第4図に示す。第4図におい
て、1は高炉鉄皮、2はレンガ、3は耐熱性のある合金
製保護管、4は駆動式ゾンデ、5は熱電対、6は遮断弁
を示し、a部は炉腹部より合金製保護管に挿入した熱電
対を外部から炉内に挿入し、その保護管の先端を稼動面
付近に位置させる方法を示し、b部は朝顔部の開孔部よ
り駆動式ゾンデ(熱電対内蔵)を挿入し、測定するとき
にそのゾンデ先端を稼動面付近に位置させる方法を示す
FIG. 4 shows a method of detecting the temperature in the vicinity of the working surface of the blast furnace from the belly part to the morning glory part in the present invention. In Fig. 4, 1 is a blast furnace shell, 2 is a brick, 3 is a heat-resistant alloy protective tube, 4 is a driven sonde, 5 is a thermocouple, and 6 is a shutoff valve. A method is shown in which a thermocouple inserted into an alloy protection tube is inserted into the furnace from the outside, and the tip of the protection tube is positioned near the operating surface. This example shows how to insert the probe (built-in) and position the tip of the probe near the operating surface when making measurements.

本発明の方法は第4図に示すように、炉下部(炉腹部か
ら朝顔部)の稼動面付近に、耐熱性のある合金製保護管
に挿入した熱電対を外部から炉内に挿入し、その保護管
の先棒を稼動面付近に位置させる方法(a部参照)、お
よび駆動式ゾンデ(熱電対内蔵)を高炉の炉腹部から朝
顔部にかけての開孔部より挿入し、測定するときにその
ゾンデ先端を稼動面付近に位置させる方法(b部参照)
による。
As shown in Fig. 4, the method of the present invention involves inserting a thermocouple inserted into a heat-resistant alloy protective tube into the furnace from the outside near the working surface of the lower part of the furnace (from the furnace belly to the morning glory part). There is a method of positioning the tip of the protective tube near the operating surface (see part a), and a method of inserting a driven sonde (with built-in thermocouple) through the opening from the belly of the blast furnace to the morning glory section to make measurements. How to position the tip of the sonde near the operating surface (see part b)
by.

本発明において稼動面とは、熱電対の先端部を炉壁から
5cm以内に挿入して測定するので、この範囲をいう。
In the present invention, the operating surface refers to this range since the tip of the thermocouple is inserted within 5 cm from the furnace wall for measurement.

これらの方法により高炉の炉腹部の稼動面付近の温度を
測定すると、例えばある高炉の場合、第1図に示す測定
結果が得られた。第1図において、横軸は経過時間、縦
軸は炉腹部稼動面付近の温度を示す。この温度は周期的
変化をしており、tはこの周期の谷と谷の間の時間を示
す。
When the temperature near the working surface of the belly of a blast furnace was measured using these methods, for example, in the case of a certain blast furnace, the measurement results shown in FIG. 1 were obtained. In FIG. 1, the horizontal axis shows the elapsed time, and the vertical axis shows the temperature near the working surface of the reactor belly. This temperature changes periodically, and t indicates the time between the troughs of this period.

高炉の炉下部(炉腹部から朝顔部)の稼動面付近の温度
は、この領域を流れるガス温度を直接測定することにな
るから、炉熱の指標として非常に精度がよい。また第1
図に示すようにこの温度(この場合は炉腹部温度)は周
期的変化をしており、炉頂から層状に装入される鉄鉱石
とコークスのうち、炉下部で鉄鉱石だけが軟化融着する
ためこの部分の通気性が悪くなり、温度が低下するもの
で、交互に降下する鉄鉱石とコークスにしたがって周期
性をもっている。この周期の谷と谷の間の時間t (m
in)を測定し、(1)式により装入物降下速度が計算
できる。
The temperature near the operating surface of the lower part of the blast furnace (from the furnace belly to the morning glory part) is a very accurate indicator of furnace heat because the temperature of the gas flowing in this area is directly measured. Also the first
As shown in the figure, this temperature (temperature at the bottom of the furnace in this case) changes periodically, and among the iron ore and coke charged in layers from the top of the furnace, only the iron ore softens and melts in the lower part of the furnace. As a result, the permeability of this area deteriorates and the temperature decreases, with periodicity following the alternating descent of iron ore and coke. The time t (m
in), and the rate of charge descent can be calculated using equation (1).

(装入物降下速度、m/m1n) = (コークス装入量、トン/回)X(コークス 圧縮率、
!¥)/loo /((センサー取付は位置の高炉断面
積、m2)x(コークス嵩密度、トン/m3)xt) 
  ・・・(1)コークス圧縮率は通常80%を用いる
。このようにして求めた装入物降下速度は、炉下部の直
接測定データをベースにしているので非常に精度がよい
(Charge descending speed, m/m1n) = (Coke charging amount, ton/time) x (Coke compression ratio,
! ¥)/looo/((Blast furnace cross-sectional area at sensor installation location, m2) x (Coke bulk density, ton/m3) xt)
(1) A coke compression ratio of 80% is normally used. The charge descending speed determined in this way is highly accurate because it is based on data directly measured in the lower part of the reactor.

この精度よい炉下部の稼動面付近の温度、および装入物
降下速度を装入物分布制御によ)、一定範囲に維持する
には次のようにする。すなわち、稼動面付近の温度が高
いときおよび装入物降下速度が遅いときは、炉の周辺部
のO/Cを低下させることを基本として、該温度および
該降下速度が一定範囲を外れたときの、炉の周辺部のO
/Cのアクション方向を第1表に示す。
To maintain the temperature near the operating surface of the lower part of the furnace and the rate of descent of the charge within a certain range by controlling the charge distribution, the following steps are taken. In other words, when the temperature near the operating surface is high and the rate of descent of the charge is slow, the O/C around the furnace is reduced, and when the temperature and rate of descent are outside a certain range, O around the furnace
The action direction of /C is shown in Table 1.

本発明において、炉周辺部とは炉壁から1.0m以内を
いう。
In the present invention, the furnace periphery refers to the area within 1.0 m from the furnace wall.

$1表 発明者らは高炉の炉下部(炉腹部から朝顔部)の稼動面
付近の温度を測定し、その温度の周期的変化より(1)
式にしたがって装入物降下速度を算出して、炉周辺部0
7Cを増減する操業試験を実施して、温度および装入物
降下速度と炉周辺部07Cとの関係を追跡した。本発明
はそれらの試験の結果得られた方法であフて、温度およ
び装入物降下速度が基準値を外れたとき、第2図、第3
図に示すように基準値からの変化量と基準値に戻すため
の炉周辺部0/Cの変化量の関係を用いて、高炉の炉下
部(炉腹部から朝顔部)の稼動面付近の温度および装入
物降下速度が一定になるように炉周辺部07Cを調整す
ることにより、高炉操業が安定し、生産性向上、燃料比
低下を達成することができる。
$1 table The inventors measured the temperature near the operating surface of the lower part of the blast furnace (from the furnace belly to the morning glory part), and based on the periodic changes in temperature (1)
Calculate the charge descending speed according to the formula, and
Operational tests were conducted to increase and decrease 7C to track the relationship between temperature and charge fall rate and the furnace periphery 07C. The present invention is a method obtained as a result of those tests.
As shown in the figure, using the relationship between the amount of change from the standard value and the amount of change in the furnace peripheral area 0/C to return to the standard value, the temperature near the operating surface of the lower part of the blast furnace (from the furnace belly to the morning glory part) By adjusting the furnace peripheral area 07C so that the charge descending speed is constant, the blast furnace operation can be stabilized, productivity can be improved, and the fuel ratio can be reduced.

温度および装入物降下速度の制御すべき一定範囲は、そ
の高炉の好調な操業状態のときを参考にして、炉別に定
めるものとする。また炉の周辺部のO/Cの変化量につ
いても、当該炉の操業試験等を実施して炉別に定めるも
のとする。
The certain range in which the temperature and charge descending rate should be controlled shall be determined for each furnace, with reference to when the blast furnace is in good operating condition. The amount of change in O/C around the furnace shall also be determined for each furnace by conducting operational tests of the furnace.

(実 施 例) 以下実施例により本発明の特徴を具体的に説明する。(Example) The features of the present invention will be specifically explained below with reference to Examples.

実施例1 朝顔部稼動面付近に耐熱性のある合金製保護管に挿入し
た熱電対を配設し、その温度の周期的変化の谷と谷を通
過する時間(t、m1n)を測定すると、5〜15分の
値となった。(1)式にコークス装入量=25トン/回
、コークス圧縮率=80%、センサー取付は位置の高炉
断面積=135m’、  コークス嵩密度=  0.5
 トン/m3を代入して装入物降下速度を計算すると、
0.059〜0.020m/minとなった。また温度
は1o5o〜114o℃の間を変化した。あらかじめ操
業試験で求めた制御範囲として、温度を1080〜11
20tに、装入物降下速度を0.030〜0.050m
/minに設定しており、炉周辺部のO/Cは4.0で
操業していた。
Example 1 A thermocouple inserted into a heat-resistant alloy protection tube is placed near the operating surface of the bosh section, and the time (t, m1n) for passing through the valleys of periodic temperature changes is measured. The value was 5 to 15 minutes. In equation (1), coke charging amount = 25 tons/time, coke compression rate = 80%, blast furnace cross-sectional area at sensor installation position = 135 m', coke bulk density = 0.5
Substituting ton/m3 to calculate the rate of descent of the charge, we get:
The speed was 0.059 to 0.020 m/min. The temperature also varied between 105°C and 114°C. The temperature was set at 1080 to 11 as the control range determined in advance through operational tests.
20t, charge descent speed 0.030-0.050m
/min, and the O/C around the furnace was operating at 4.0.

温度が1140℃と上限を+2o’eを越えたときは、
第2図にしたがって、炉周辺部のO/Cを4.0から5
.0と+1.0増加して、8時間経過したら1120℃
に戻ったので、炉周辺部のO/Cをもとに戻した。また
温度が1050’Cと下限を−30℃下まわったときは
、第2図にしたがって、炉周辺部のO/Cを4.0から
2.5 と−1,5減少して、9時間経過したら108
0tに戻ったので、炉周辺部の0/Cをもとに戻した。
When the temperature exceeds the upper limit of 1140℃ and +2o'e,
According to Figure 2, the O/C around the furnace should be adjusted from 4.0 to 5.
.. 0 and +1.0 increase, and after 8 hours, it becomes 1120℃
The O/C around the furnace was restored to its original condition. Also, when the temperature is 1050'C, which is -30°C below the lower limit, the O/C around the furnace is reduced by -1.5 from 4.0 to 2.5 for 9 hours according to Figure 2. After 108
Since the temperature returned to 0t, the 0/C around the furnace was returned to its original value.

装入物降下速度が0.020m/minと下限を−0,
010m/min下まわったときは、第3図にしたがっ
て、炉周辺部のO/Cを4.0から5.3と+1.3増
加して、8時間経過したら0.030m/minに戻っ
たので、炉周辺部のO/Cをもとに戻した。また装入物
降下速度がQ、059m/minと上限を+0.009
m/min越えたときは、第3図にしたがって、炉周辺
部の07Cを4.0から2.9 と−1,1減少して、
7時間経過したら0.050 m/minに戻ったので
、炉周辺部のO/Cをもとに戻した。
The lower limit of the charge descending speed is 0.020 m/min -0,
0.010 m/min, the O/C around the furnace was increased by +1.3 from 4.0 to 5.3 according to Figure 3, and after 8 hours it returned to 0.030 m/min. Therefore, the O/C around the furnace was returned to its original state. In addition, the charge descending speed is Q, 059 m/min, and the upper limit is +0.009
m/min, reduce the 07C around the furnace by -1.1 from 4.0 to 2.9 according to Figure 3.
After 7 hours, the speed returned to 0.050 m/min, so the O/C around the furnace was returned to its original value.

温度、装入物降下速度の両方が外れているときは、まず
装入物降下速度を制御範囲に入るように炉周辺部のO/
Cを調整し、その後温度を制御範囲に入るように炉周辺
部のO/Cを調整した。
If both the temperature and the charge descending rate are out of range, first adjust the O/O around the furnace to bring the charge descending rate within the control range.
After that, the O/C around the furnace was adjusted so that the temperature was within the control range.

実施例2 炉腹部稼動面付近に駆動式ゾンデ(熱電対内蔵)を設置
し、その温度の周期的変化の谷と谷を通過する時間(t
、m1n)を測定すると、4〜12分の値となった。(
1)式にコークス装入量;25トン/回、コークス圧縮
率=80%、センサー取付は位置の高炉断面積= 14
5m’  コークス嵩密度= 0.5)ン/m3を代入
して装入物降下速度を計算すると、0.069〜0.0
23m/minとなった。また温度は960〜1050
℃の間を変化した。
Example 2 A driven sonde (with a built-in thermocouple) was installed near the operating surface of the reactor abdomen, and the time (t) for passing through the valleys of periodic temperature changes was measured.
, m1n), the values ranged from 4 to 12 minutes. (
1) Coke charging amount: 25 tons/time, coke compression ratio = 80%, blast furnace cross-sectional area at sensor installation position = 14
5m' Coke bulk density = 0.5) When calculating the rate of descent of the charge by substituting ton/m3, it is 0.069 to 0.0.
The speed was 23m/min. Also, the temperature is 960-1050
It varied between ℃.

あらかじめ操業試験で求めた制御範囲として、温度を 
980〜1020℃に、装入物降下速度を0.030〜
0.055m/minに設定しており、炉周辺部のO/
Cは4.1で操業していた。
The temperature is set as the control range determined in advance through operational tests.
980-1020℃, charge descent rate 0.030-1020℃
It is set at 0.055m/min, and the O/
C was running on 4.1.

温度が1050℃と上限を+30℃越えたときは、第2
図にしたがって、炉周辺部のO/Cを4.1から5.6
 と+1.5増加して、9時間経過したら1020℃に
戻ったので、炉周辺部の0/Cをもとに戻した。また温
度が960℃と下限を−20℃下まわったときは、第2
図にしたがって、炉周辺部の0/Cを4.1から3.1
 と−1,0減少して、7時間経通したら980℃に戻
ったので、炉周辺部の07Cをもとに戻した。
When the temperature exceeds the upper limit by 30°C (1050°C), the second
According to the diagram, increase the O/C around the furnace from 4.1 to 5.6.
The temperature increased by +1.5, and after 9 hours, the temperature returned to 1020°C, so the 0/C around the furnace was returned to the original value. Also, when the temperature is 960℃, -20℃ below the lower limit, the second
According to the diagram, change the 0/C around the furnace from 4.1 to 3.1.
The temperature decreased by -1.0 and returned to 980°C after 7 hours, so the 07C around the furnace was returned to its original value.

装入物降下速度が0.023m/minと下限を−0,
007m/min下まわったときは、第3図にしたがっ
て、炉周辺部のO/Cを4.1から4.9と÷0.8増
加して、7時間経過したら0.030m/minに戻っ
たので、炉周辺部のO/Cをもとに戻した。また装入物
降下速度が0.069m/minと上限を+0.014
m/min越えたときは、第3図にしたがって、炉周辺
部のO/Cを4.1から2.4 と−1,7減少して、
10時間経過したら0.055m/minに戻ったので
、炉周辺部のO/Cをもとに戻した。
The lower limit of the charge descending speed is 0.023 m/min -0,
0.007m/min, increase the O/C around the furnace from 4.1 to 4.9 (÷0.8) according to Figure 3, and return to 0.030m/min after 7 hours. Therefore, the O/C around the furnace was returned to its original state. In addition, the charge descending speed is 0.069 m/min, which increases the upper limit by +0.014 m/min.
m/min, reduce the O/C around the furnace by -1.7 from 4.1 to 2.4 according to Figure 3.
After 10 hours, the speed returned to 0.055 m/min, so the O/C around the furnace was returned to its original value.

温度、装入物降下速度の両方が外れているときは、まず
装入物降下速度を制御範囲に入るように炉周辺部のO/
Cを調整し、その後温度を制御範囲に入るように炉周辺
部のO/Cを調整した。
If both the temperature and the charge descending rate are out of range, first adjust the O/O around the furnace to bring the charge descending rate within the control range.
After that, the O/C around the furnace was adjusted so that the temperature was within the control range.

実施例3 朝顔部稼動面付近に耐熱性のある合金製保護管に挿入し
た熱電対を配設し、炉腹部稼動面付近に駆動式ゾンデ(
熱電対内蔵)を設置し、その温度の周期的変化の谷と谷
を通過する時間(t、win)を測定すると、それぞれ
朝顔部5〜14分、炉腹部4〜11分の値となった。(
1)式ニコークス装入量=25トン/回、コークス圧縮
率=80%、センサー取付は位置の高炉断面積= 13
5m2(朝顔部) 、145m2(炉腹部)、コークス
嵩密度= 0.5)ン/m3を代入して装入物降下速度
を計算すると、それぞれ朝顔部0.059〜(1,02
1m/min 、炉腹部0.069〜0.025m/m
inとな)た。
Example 3 A thermocouple inserted into a heat-resistant alloy protective tube was installed near the operating surface of the morning glory section, and a driven sonde (
When we installed a thermocouple (with built-in thermocouple) and measured the time (t, win) to pass through the troughs of periodic temperature changes, the values were 5 to 14 minutes for the morning glory and 4 to 11 minutes for the furnace belly, respectively. . (
1) Equation Nikoke charging amount = 25 tons/time, coke compression rate = 80%, sensor installation position = blast furnace cross-sectional area = 13
5 m2 (morning glory section), 145 m2 (furnace belly), coke bulk density = 0.5) tons/m3 to calculate the charge descent rate, the morning glory section 0.059 to (1,02
1m/min, furnace belly 0.069-0.025m/m
intona)ta.

また温度はそれぞれ朝顔部1100〜1200℃、炉腹
部990〜1110℃の間を変化した。あらかしめ操業
試験で求めた制御範囲として、温度を朝顔部1130〜
1170℃、炉腹部1030〜1070℃に、装入物降
下速度を朝顔部0.030〜0.050m/minに、
炉腹部0.035〜0.055m/winに設定してお
り、炉周辺部の07Cは3.9で操業していた。実施例
1、実施例2と同様な炉周辺部のo/Cを、まず炉腹部
の温度、装入物降下速度をあらかじめ操業試験で求めた
制御範囲に入るように調整し、その後朝顔部の温度、装
入物降下速度をあらかじめ操業試験で求めた制御範囲に
入るように調整した。
Further, the temperature varied between 1100 to 1200°C for the morning glory part and 990 to 1110°C for the furnace part. As the control range determined in the preliminary operation test, the temperature was set at 1130 to
1170°C, furnace belly 1030-1070°C, charge descending speed 0.030-0.050 m/min in morning glory part,
The furnace was set at 0.035 to 0.055 m/win, and the 07C around the furnace was operated at 3.9. The O/C around the furnace, similar to those in Examples 1 and 2, was first adjusted so that the temperature in the furnace belly and the rate of descent of the charge fell within the control range determined in advance through operational tests, and then the O/C in the morning glory area was adjusted. The temperature and rate of charge descent were adjusted so that they fell within the control range determined in advance through operational tests.

いずれの場合も、第2表に示すように、比較例に対比す
ると、出銑量が多く、燃料比が低くなっている。
In any case, as shown in Table 2, compared to the comparative example, the amount of pig iron tapped was large and the fuel ratio was low.

比較例は従来のように炉腹部レンガに埋めこんだ熱電対
による温度を測定すると、100〜200℃の間を変化
した。あらかじめ操業試験で求めた制御範囲として、温
度を150±20℃に維持するように炉周辺部の0/C
の調整を行った操業例である。第2表に示すように、実
施例1〜3に比べると、出銑量が少なく、燃料比が高い
In the comparative example, when the temperature was measured using a thermocouple embedded in the bricks in the furnace belly, the temperature varied between 100 and 200°C. As a control range determined in advance through operational tests, the temperature was adjusted to 0/C around the furnace to maintain the temperature at 150±20°C.
This is an example of an operation in which adjustments were made. As shown in Table 2, compared to Examples 1 to 3, the amount of pig iron tapped is small and the fuel ratio is high.

第2表 (発明の効果) 以上説明したように、本発明においては、高炉の炉am
から朝顔部にかけての稼動面付近の温度および装入物降
下速度を一定に維持するように炉頂装入物分布を調整す
ることにより、高炉が安定的に稼動し、生産性向上、燃
料比低下をはかることができ、安定した溶銑供給が可能
である。
Table 2 (Effects of the Invention) As explained above, in the present invention, the blast furnace
By adjusting the top charge distribution so that the temperature near the operating surface and the rate of charge descent from the top to the morning glory section remain constant, the blast furnace operates stably, improving productivity and reducing the fuel ratio. This enables stable supply of hot metal.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の高炉操業法で使用する、高炉の炉腹
部温度の周期的変化の例を示す図、第2図は、本発明の
高炉操業法で使用する、炉腹部稼動面付近の温度の基準
値に対する変化幅と炉周辺部07Cの変化幅との関係を
示す図、第3図は、炉腹部製入物降下速度の基準値に対
する変化幅と炉周辺部o7cの変化幅との関係を示す図
、第4図は、本発明の高炉操業法で使用する、高炉縦断
面における炉腹部から朝顔部にかけての稼動面付近の温
度測定装置を示す。 1・・・高炉鉄皮    2・・・レンガ3・・・合金
製保護管  4・・・駆動式ゾンデ5・・・熱電対  
   6・・・遮断弁第2図 第1図 炉腹部稼動面付近の温度の 基準値に対する変化幅(”C) 第3図 経過時間(分) 基準値に対する変化幅(s/minl
FIG. 1 is a diagram showing an example of periodic changes in the temperature of the blast furnace belly area, which is used in the blast furnace operating method of the present invention, and FIG. 2 is a diagram showing the vicinity of the operating surface of the blast furnace belly portion, which is used in the blast furnace operating method of the present invention. Figure 3 is a diagram showing the relationship between the range of change in the temperature of the furnace relative to the standard value and the range of change in the furnace peripheral area 07C. FIG. 4 shows a temperature measuring device near the operating surface from the furnace belly to the morning glory section in the longitudinal section of the blast furnace, which is used in the blast furnace operating method of the present invention. 1... Blast furnace shell 2... Brick 3... Alloy protection tube 4... Drive type sonde 5... Thermocouple
6...Shutoff valve Fig. 2 Fig. 1 Range of change in temperature near the working surface of the reactor abdomen relative to the reference value (''C) Fig. 3 Elapsed time (minutes) Range of variation relative to the reference value (s/minl)

Claims (1)

【特許請求の範囲】[Claims] 1 高炉の炉腹部から朝顔部にかけて稼動面付近の温度
を検出し、該温度の周期的変化より装入物降下速度を算
出し、該温度および装入物降下速度があらかじめ設定し
た範囲に入るように、炉頂から装入する炉周辺部の鉱石
とコークスの比率を調整することを特徴とする高炉操業
法。
1. Detect the temperature near the working surface of the blast furnace from the belly to the morning glory section, calculate the rate of descent of the charge from periodic changes in temperature, and make sure that the temperature and rate of descent of the charge fall within a preset range. A blast furnace operating method characterized by adjusting the ratio of ore and coke in the periphery of the furnace, which are charged from the top of the furnace.
JP12204290A 1990-05-11 1990-05-11 Method for operating blast furnace Pending JPH0417607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12204290A JPH0417607A (en) 1990-05-11 1990-05-11 Method for operating blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12204290A JPH0417607A (en) 1990-05-11 1990-05-11 Method for operating blast furnace

Publications (1)

Publication Number Publication Date
JPH0417607A true JPH0417607A (en) 1992-01-22

Family

ID=14826168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12204290A Pending JPH0417607A (en) 1990-05-11 1990-05-11 Method for operating blast furnace

Country Status (1)

Country Link
JP (1) JPH0417607A (en)

Similar Documents

Publication Publication Date Title
Brimacombe et al. Heat transfer in a direct-fired rotary kiln: I. Pilot plant and experimentation
WO1999023262A1 (en) Method of operating blast furnace
JPH0417607A (en) Method for operating blast furnace
JP2727563B2 (en) Blast furnace operation method
JP2678767B2 (en) Blast furnace operation method
RU2825734C1 (en) Method and device for determining residual amount of liquid, method and device for determining residual amount of liquid material and method of operating vertical furnace
JPS6361367B2 (en)
US20240132982A1 (en) Residual liquid amount detection method and detection apparatus for the same, residual molten material amount detection method and detection apparatus for the same, and method for operating vertical furnace
JPH11222610A (en) Method for controlling furnace heat of blast furnace
JPH06212215A (en) Method for controlling temperature of refractory brick at furnace bottom
JPS6115905A (en) Method for operating blast furnace
RU2025495C1 (en) Method to check heat exchange in a blast furnace
JPS61201711A (en) Operating method for blast furnace
JP2897363B2 (en) Hot metal production method
JPS6136564B2 (en)
JPH02182813A (en) Method for operating blast furnace
JPS59222506A (en) Method for estimating descending condition of charge in vertical type blast furnace
JP2837284B2 (en) Method and apparatus for producing hot metal containing chromium
KR20000028284A (en) Method for deciding ventilation inside melting furnace
JPH06306420A (en) Operation of blast furnace
JPS5839710A (en) Operating method for blast furnace
JPS6040483B2 (en) How to operate a blast furnace
JPH0230707A (en) Method for operating blast furnace
JPS62202006A (en) Method for measuring heat flow rate ratio in blast furnace
JPS5834107A (en) Operating method for blowing-in of blast furnace