JPS6040483B2 - How to operate a blast furnace - Google Patents
How to operate a blast furnaceInfo
- Publication number
- JPS6040483B2 JPS6040483B2 JP6692380A JP6692380A JPS6040483B2 JP S6040483 B2 JPS6040483 B2 JP S6040483B2 JP 6692380 A JP6692380 A JP 6692380A JP 6692380 A JP6692380 A JP 6692380A JP S6040483 B2 JPS6040483 B2 JP S6040483B2
- Authority
- JP
- Japan
- Prior art keywords
- furnace
- temperature
- gas
- blast furnace
- flow ratio
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B7/00—Blast furnaces
- C21B7/24—Test rods or other checking devices
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacture Of Iron (AREA)
Description
【発明の詳細な説明】
本発明は高炉の操業方法に関し、詳しくは、高炉の操業
における炉内ガス流れの分布を最適状態に制御し、炉況
を安定化させて、高炉を操業する方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of operating a blast furnace, and more particularly, to a method of operating a blast furnace by controlling the distribution of gas flow in the furnace to an optimal state and stabilizing the furnace condition. .
近代的な大型高炉では炉内半径方向のガス流れを制御し
て炉況の安定化を達成することが不可欠の技術となって
いる。In modern large-scale blast furnaces, it is essential to achieve stable furnace conditions by controlling the gas flow in the radial direction inside the furnace.
すなわち、高炉の装入装置の一つとして、例えばムーバ
ルブアーマー、ベルレス式等が用いられており、この方
式ではローナィングシュート等を介して装入され、炉頂
部における装入物の分布を制御し、炉内半径方向のガス
流れを制御している。この理由を説明すると、次の通り
である。In other words, as one of the charging devices for blast furnaces, for example, movalve armor, bellless type, etc. are used, and in this method, charging is done through a rolling chute, etc., and the distribution of the charge at the top of the furnace is controlled. This controls the gas flow in the radial direction inside the furnace. The reason for this is as follows.
近年、高炉が次々に解体され、その調査が行なわれてい
る。In recent years, blast furnaces have been dismantled one after another and investigations are being carried out.
これらの調査によって炉内における融着帯の存在が確認
され、更に、この融着帯の機能が解明され、高炉の安定
操業に対しては融着帯形状が重要であってとくに、棚吊
り等操業上のトフフル、スリップ等の装入物の降下異常
は融着帯の形状に深く関連しているものと考えられてい
る。また最近の高炉操業では低燃料比操業が重視され、
とくに、その限界まで燃料比を低下させることが要請さ
れ、その操業の維持の上で最も重要なことは袋入物の安
定降下を得るために必要な炉下部における熱バランスの
確保であって、とくに、羽□上部における溶解能力のバ
ランスが崩れると、、安定操業が維持できなくなる。そ
こで安定操業確保のためには、装入物の降下量に見合っ
たように、炉内のガス量を最適状態に配分供給すること
が必要になるが、従来例ではこのように炉内ガス量を分
配することが困難である。すなわち、第1図aは従来例
に係る高炉シャフト上段の半径方向の炉内ガス流分布の
検出態様の説明図であって、第1図aに示す如くシャフ
ト1の上段にゾンデ2を設けるか、装入物3の表面より
上部に固定ゾンデ等(図示せず)を配置し、これらのゾ
ンデにより炉内ガスの温度あるいは成分を第1図bなら
びにcの如く測定し、この結果から炉内ガスの温度の高
くかつCoガス成分の高いところが炉内ガス流量そのも
のも大きいと仮定し、この仮定のもとに慣用的に中心流
と周辺流に分け、更に、これに炉壁レンガの温度、ステ
‐べ冷却水の温度等から求められる炉壁の熱負荷を考慮
して、炉壁近傍の炉内ガスの流量の増減を判断している
。Through these investigations, the existence of a cohesive zone in the furnace was confirmed, and the function of this cohesive zone was also elucidated.The shape of the cohesive zone is important for the stable operation of a blast furnace. It is believed that abnormalities in the fall of the charge, such as toffling and slip during operation, are deeply related to the shape of the cohesive zone. Furthermore, in recent blast furnace operations, emphasis has been placed on low fuel ratio operation.
In particular, it is required to reduce the fuel ratio to its limit, and the most important thing in maintaining its operation is to ensure the heat balance in the lower part of the furnace necessary for stable descent of the bags. In particular, if the balance of dissolving ability in the upper part of the blade is disrupted, stable operation cannot be maintained. Therefore, in order to ensure stable operation, it is necessary to distribute and supply the amount of gas in the furnace in an optimal state according to the amount of descent of the charge, but in the conventional example, the amount of gas in the furnace was is difficult to distribute. That is, FIG. 1a is an explanatory diagram of a detection mode of the radial in-furnace gas flow distribution in the upper stage of the blast furnace shaft according to the conventional example, and as shown in FIG. A fixed sonde or the like (not shown) is placed above the surface of the charge 3, and these sondes measure the temperature or composition of the gas in the furnace as shown in Figure 1 b and c. It is assumed that the gas flow rate itself in the furnace is large in areas where the gas temperature is high and the Co gas component is high, and based on this assumption, it is conventionally divided into a central flow and a peripheral flow, and further, the temperature of the furnace wall brick, The increase or decrease of the flow rate of gas in the furnace near the furnace wall is determined by considering the heat load on the furnace wall determined from the temperature of the stave cooling water, etc.
しかし、このようにして判断しても、次の通り問題があ
る。まず、装入物が雛着帯降する際、そのレベルにおけ
る菱入物の温度はそのレベルにまで降下する間の菱入物
の降下速度、上昇する炉内ガス流の温度やそのガス量等
に左右され、従来例の如く、炉内ガスの温度のみの推移
で判断しても、実際に、その部分において必要な量の炉
内ガスが流れているかどうかわからない。また、炉内ガ
スの成分に着目しても、所定のレベルの装入物について
、そのレベルにおいて行なわれるべき還元過程を十分に
経て、所望のところまで還元が進行しているかどうかは
、炉内ガスの組成からでは十分に判断することは困難で
ある。換言すれば、従来例の如く炉内ガスの温度レベル
や組成等からでは、炉内において操操業者が意図する部
分に必要な量の炉内ガスが十分に確保されているかどう
かは判断できない。本発明は上記欠点の解決を目的とし
、具体的には、高炉の操業条件を炉内を降下する装入物
の熱容量流量と上昇する炉内ガスの熱容量流量、つまり
、熱流比として評価し、この熱流比を一定に保持するよ
う操業して、安定操業を達成する高炉の操業方法を提案
する。However, even if the judgment is made in this way, there are problems as follows. First, when the charge is lowered into chicks, the temperature of the charge at that level is determined by the rate of descent of the charge while it falls to that level, the temperature of the rising gas flow in the furnace, the amount of gas, etc. As in the conventional example, even if the judgment is based only on the change in the temperature of the furnace gas, it cannot be determined whether the necessary amount of furnace gas is actually flowing in that part. In addition, even if we focus on the composition of the gas in the furnace, it is difficult to determine whether the charging material at a given level has undergone the reduction process that should be carried out sufficiently at that level and whether the reduction has progressed to the desired level. It is difficult to make a sufficient judgment based on the composition of the gas. In other words, as in the conventional example, it cannot be determined from the temperature level, composition, etc. of the furnace gas whether or not the necessary amount of furnace gas is sufficiently secured in the portion of the furnace intended by the operator. The present invention aims to solve the above-mentioned drawbacks. Specifically, the operating conditions of a blast furnace are evaluated as the heat capacity flow rate of the charge descending in the furnace and the heat capacity flow rate of the rising gas in the furnace, that is, the heat flow ratio, We propose a method of operating a blast furnace that maintains this heat flow ratio constant to achieve stable operation.
すなわち、本発明方法は高炉の熱保存帯上方に、上下2
段に分けかつ高炉の半径方向に指向して配置した温度検
出手段により高炉々壁から炉内半径の1/6以内の範囲
内の温度を測定し、この両温度差を港銑中の成分の変動
が4・さし、範囲に保存して高炉を操業することを特徴
とする。That is, the method of the present invention provides two upper and lower parts above the heat storage zone of the blast furnace.
Temperature detection means arranged in stages and oriented in the radial direction of the blast furnace measure the temperature within 1/6 of the radius of the furnace from the blast furnace wall, and the difference between these two temperatures is calculated as the difference between the two temperatures. It is characterized by the fact that the fluctuation is 4.0 and the blast furnace is operated by storing it within a range.
以下、本発明方法について詳しく説明する。The method of the present invention will be explained in detail below.
まず、高炉において、その熱保存帯上部に上下2段に分
けて例えばゾンデの如き温度検出手段を設けて、炉内の
温度、なかでも上昇する炉内ガス温度を測定する。この
場合、通常、各ゾンデは高炉の外部からその半径方向に
指向させ、とくに、高炉々壁から高炉の内径の約1/6
以内の範囲、即ち、高炉々壁の周辺における炉内ガスの
温度を検出する。次に、上下の各ゾンデによって炉内ガ
ス温度を測定し、これらの炉内ガス温度の温度差は溶銑
中の成分変動が小さいよう保持して、高炉操業、例えば
、炉頂からの装入条件、羽口からの送風条件を調整して
操業する。First, in a blast furnace, temperature detection means, such as sondes, are installed in two stages above and below the heat storage zone to measure the temperature inside the furnace, especially the rising temperature of the gas inside the furnace. In this case, each sonde is usually directed from the outside of the blast furnace in its radial direction, in particular from the blast furnace wall to about 1/6 of the inside diameter of the blast furnace.
The temperature of the gas in the furnace is detected in the range within the range, that is, around the walls of the blast furnace. Next, the temperature of the gas in the furnace is measured by each of the upper and lower sondes, and the temperature difference between these gas temperatures in the furnace is maintained so that the fluctuation of the components in the hot metal is small. , and operate by adjusting the air blowing conditions from the tuyeres.
このように操業すると、操業の安定化のために、高炉々
壁周辺部の熱流比は容易に一定範囲にコントロールをす
ることができる。すなわち、高炉の安定操業には装内装
入物が高炉の高さ方向の一定レベルにおいて常に一定の
還元率と一定の温度を持っていることが必要な条件であ
る。このため、高炉操業の評価は単に従来例の如く炉内
ガス温度でなく、単位時間当り降下する袋入物の熱容量
流量と単位時間当り上昇する炉内ガスの熱容量流量との
比、つまり、熱流比という概念を導入して評価すべきで
ある。この理由は熱流比が一定であると、上記の安定操
業の条件を満足させるからである。従って、高炉操業に
おいて本質的に管理すべき因子は熱流比でなければなら
ず、熱流比を適正範囲内にコントロールするよう操業す
ることが、高炉は熱的にも反応的にも安定した炉況が得
られる。この場合、熱流比は上記の通りの上下ゾンデか
らの炉内温度の温度差によって管理でき、直接熱流比は
管理しなくとも、この温度差を管理することによって安
定操業が保持できる。更に詳しく説明すると、実際に上
下のゾンデで炉内温度を測定する場合、第2図に示す如
く、高炉1のシャフト部においてストックライン(SL
)のところを基準とし、そこからz,,z2の各レベル
の如く2段に分け、水平方向にそれぞれゾンデ4,5を
設置する。When operated in this way, the heat flow ratio around the blast furnace walls can be easily controlled within a certain range in order to stabilize the operation. That is, for the stable operation of a blast furnace, it is necessary that the charging contents always have a constant reduction rate and constant temperature at a constant level in the height direction of the blast furnace. For this reason, the evaluation of blast furnace operation is not simply based on the gas temperature in the furnace as in conventional examples, but rather the ratio of the heat capacity flow rate of the bagged material that decreases per unit time to the heat capacity flow rate of the furnace gas that increases per unit time. The concept of ratio should be introduced and evaluated. The reason for this is that a constant heat flow ratio satisfies the above conditions for stable operation. Therefore, the essential factor to be controlled in blast furnace operation is the heat flow ratio, and operating to control the heat flow ratio within an appropriate range will ensure that the blast furnace maintains a stable furnace condition both thermally and reactively. is obtained. In this case, the heat flow ratio can be controlled by the temperature difference in the furnace temperature from the upper and lower sondes as described above, and stable operation can be maintained by controlling this temperature difference without directly controlling the heat flow ratio. To explain in more detail, when actually measuring the temperature inside the furnace with the upper and lower sondes, the stock line (SL) is
) is used as a reference, and from there, it is divided into two levels such as z, , z2, and sondes 4 and 5 are installed in the horizontal direction.
これらゾンデ4,5によってレベルz,,z2の各点の
炉内ガスの温度を検出する。これらガス温度は熱保存帯
より上部であって、熱損失や反応熱の少ない領域である
ため、炉内ガスと装入物との間には熱交換される熱量は
等しいことから次の【1}式、(2}式が成立する。w
g.溝=HV‐s(T−t) ・…‐・‘11wS.溝
=HV・s(T−t〉 .・・.・似ただし、Ws:
単位時間に降下する装入物の熱容量流量(Kcal/h
r、℃)Wg:単位時間に上昇する炉内ガスの
熱容量流量(Kcal/hr、℃)
t:菱入物の温度(℃)
T:炉内ガスの温度(℃)
Hv:装入物と炉内ガスとの間の単位
体積当りの熱伝達係数(Kcal/
で・hr、℃)
S:任意のレベル(z)の高炉内の断
面積(力)
然るに、m式、‘2)式に対し、ストックライン(SL
)ではz=○でT=To、t=めであるから、この境界
条件を入れて解くと、炉内ガス温度Tならびに装入物温
度tについて、次の{3’式、【41式が得られる。These sondes 4 and 5 detect the temperature of the furnace gas at each point on levels z and z2. These gas temperatures are above the heat storage zone and are an area with little heat loss and reaction heat, so the amount of heat exchanged between the furnace gas and the charge is equal, so the following [1 } formula, (2} formula holds true. w
g. Groove=HV-s(T-t) ・…-・'11wS. Groove = HV・s(T-t>... similar, but Ws:
The heat capacity flow rate of the charge falling per unit time (Kcal/h
r, °C) Wg: Heat capacity flow rate of gas in the furnace that increases per unit time (Kcal/hr, °C) t: Temperature of the charging material (°C) T: Temperature of the gas in the furnace (°C) Hv: Temperature of the gas in the furnace (°C) Heat transfer coefficient per unit volume between the furnace gas (Kcal/ hr, °C) S: Cross-sectional area (force) inside the blast furnace at an arbitrary level (z) However, in formula m and '2), On the other hand, stock line (SL
), z=○, T=To, and t=me, so if we solve by including this boundary condition, the following {Equations 3' and 41 are obtained for the furnace gas temperature T and the charge temperature t. It will be done.
Hv・S
Ws
T=;三三ずe(W−・)Z+Wも戸;と‐‐‐8)H
v・SV村s
t=T斎…三〇e(W−・)Z+W未≦;T。Hv・S Ws T=;三三zue(W-・)Z+Wもト;と――8)H
v・SVmuras t=Tsai...30e(W-・)Z+W<=;T.
‐‐‐‐E4)羊ただし、W:Ws/Wgで熱流比を示
す。次に、レベルz.の炉内ガス温度をT,、レベルz
2の炉内ガス温度T2とし、これらを糊式に代入すると
、次の‘5}式、【6}式が得られる。Hv・SWS
T,=T宅テ秦ye(w−・)Z,十Wt憲三;。---E4) Sheep However, the heat flow ratio is expressed as W:Ws/Wg. Next, level z. Let the furnace gas temperature be T, level z
By substituting these values into the glue equation, the following equations '5} and [6} are obtained. Hv・SWS T,=Takutehata ye (w-・)Z, 10Wt Kenzo;.
‐.‐‐t5)Hv・SWS
To−to
T2:7千河ve(W−1)Z2十年三宇』Q‐‐.【
6)この‘51式、■式からHv、S、Wsを消去して
まとめると、{n,一to)W−n,一to)}Z2ニ
{(t−to)W−び2一の)}Z,
……‘7,(To−の)W
(To−to)W‘7’式が得られ、‘7ー
式からしベルz.,z2の各炉内ガスの温度を検出する
と、容易に熱流比Wを決定することができ、とくに、本
発明方法の如く、高炉シャフト部において上下2段のレ
ベルの炉内ガスの温度を検出し、これら温度を基準とし
て操業する場合は熱流比Wを一定に保持して安定操業で
きることがわかる。-. ‐-t5) Hv・SWS To-to T2:7 Senkawave (W-1) Z20 Years Three'' Q--. [
6) If we delete Hv, S, and Ws from this '51 formula and the ■ formula and put it together, we get {n, 1 to) W-n, 1 to)} Z2 ni {(t-to) W-bi 2-1 )}Z,
...'7, (To-)W
(To-to) W'7' formula is obtained, '7-formula mustard bell z. , z2, the heat flow ratio W can be easily determined. In particular, as in the method of the present invention, the temperature of the furnace gases at two levels, upper and lower, in the blast furnace shaft section is detected. However, it can be seen that when operating based on these temperatures, stable operation can be achieved by keeping the heat flow ratio W constant.
次に、上記の通りに熱流比が2つのレベルZ・’z2の
各炉内ガスの温度に関係することを確かめる一方、この
関係を実際の高炉操業に適用する条件を研究したところ
、2つのレベルz,,z2の温度差が熱流比に比例し、
この温度差を一定に保持すれば、熱流比も一定に保持で
きることがわかった。Next, while confirming that the heat flow ratio is related to the temperature of each furnace gas at the two levels Z and 'z2 as described above, we also researched the conditions for applying this relationship to actual blast furnace operation. The temperature difference between levels z, z2 is proportional to the heat flow ratio,
It was found that if this temperature difference was kept constant, the heat flow ratio could also be kept constant.
例えば、第3図は実際に高炉の操業においてその高さ方
向の炉内温度分布の各種パターンを示し、とくに、(1
)は基準とする温度パターンであり、(D)は熱流比の
高い操業時の温度パターンであり、(m)は熱流比の低
い操業時の温度パターンであって、Aは熱保存帯、Bは
羽〇先を示す。第3図から明らかな通り、熱保存帯の温
度は何れの操業であってあまり変化しないが、2つのゾ
ンデ4,5は熱保存帯Aの上部にあり、この温度差(△
T)は熱流比に関係し、温度差(△T)は熱流比が大き
いほど大きくなる。そこで、実際の高炉操業において両
者の関係を求めたところ、第4図に示す通りの関係が得
られた。For example, Figure 3 shows various patterns of temperature distribution in the furnace in the height direction during actual operation of a blast furnace.
) is a reference temperature pattern, (D) is a temperature pattern during operation with a high heat flow ratio, (m) is a temperature pattern during operation with a low heat flow ratio, A is a heat reserve zone, and B is a temperature pattern during operation with a low heat flow ratio. indicates the tip of the wing. As is clear from Fig. 3, the temperature of the heat reserve zone does not change much during any operation, but the two sondes 4 and 5 are located in the upper part of the heat reserve zone A, and this temperature difference (△
T) is related to the heat flow ratio, and the temperature difference (ΔT) increases as the heat flow ratio increases. Therefore, when the relationship between the two was determined in actual blast furnace operation, the relationship shown in FIG. 4 was obtained.
すなわち、第4図は実際の高炉操業における上下2段の
各レベルの炉内ガスの温度差(△T)と熱流比(W)と
の関係を示すグラフである。That is, FIG. 4 is a graph showing the relationship between the temperature difference (ΔT) of the furnace gas at each level of the upper and lower two stages and the heat flow ratio (W) in actual blast furnace operation.
この際、炉内ガスの温度は上段、下段共に高炉々壁から
そのレベルにおける高炉の炉半径の1/6以内までの範
囲で複数点のところで測定し、その平均値をベースとし
て一日の平均値を求め、この平均値を第4図において縦
軸に示した。この第4図から明らかな通り、炉内ガスの
一日平均値の温度差(△T)は熱流比(W)と比例し、
安全操業達成のため熱流比を直接制御しなくとも、炉墜
部の炉内ガス温度を上下2段に分けて測定し、その温度
差(△T)として評価すれば、熱流比が確実に管理でき
ることがわかった。また、炉内ガス温度は高炉の炉内半
径の1/6以内のところで測定したのは、高炉々内の半
径方向の炉内ガスの温度は炉壁から炉内半径の1/6ま
での範囲であると、比較的フラットに分布し、更に、例
えば、上記の如く、ムーバルブアーマーその他の菱入物
分布調整手段によって半径方向の装入物の分布を調整し
て、炉壁部の熱流比を制御する場合は、炉壁部から高炉
の炉内半径の1′6以内であると有効に制御できるから
である。At this time, the temperature of the gas in the furnace is measured at multiple points within the range from the walls of the blast furnaces to within 1/6 of the radius of the blast furnace at that level in both the upper and lower stages, and the average value is used as the daily average. The average value is shown on the vertical axis in FIG. As is clear from Fig. 4, the daily average temperature difference (△T) of the furnace gas is proportional to the heat flow ratio (W),
To achieve safe operation, the heat flow ratio can be controlled reliably by measuring the temperature of the gas inside the furnace in two stages, the upper and lower stages, and evaluating it as the temperature difference (△T), without directly controlling the heat flow ratio. I found out that it can be done. Furthermore, the temperature of the furnace gas in the radial direction of each blast furnace was measured within 1/6 of the radius inside the blast furnace. In this case, the distribution of the charge is relatively flat, and the heat flow ratio at the furnace wall can be adjusted by adjusting the distribution of the charge in the radial direction by, for example, using a movalve armor or other charge distribution adjusting means as described above. This is because when controlling the temperature, it can be effectively controlled within 1'6 of the inner radius of the blast furnace from the furnace wall.
なお、炉内ガス温度は炉内半径の1/6以内のところよ
り内部、つまり、他の5/6のところでも頚Q定するこ
とができるが、この場合の温度差と熱流比とは、上記の
ところと同じ関係が存在するが、やや感度が悪いことも
あって、操業アクションには補助的に生かすのが好まし
い。Note that the furnace gas temperature can be determined from within 1/6 of the furnace radius, that is, at the other 5/6, but the temperature difference and heat flow ratio in this case are as follows: The same relationship as above exists, but the sensitivity is a little low, so it is preferable to use it as an auxiliary for operational actions.
また、炉内ガス温度は上記お如く、一日平均値で評価す
るのが好ましい理曲ま、上段の温度検出手段における炉
内ガスの温度は400〜60000程度なのに対し、下
段の温度検出手段における炉内ガスの温度は500〜9
0000の如く変化し、その変化の中が大きいからであ
る。また、記の通りの2つの測定レベルz,,z2は熱
保存帯より上方であることが必要であるが、この理由は
、この部分であると高炉内の熱損失や反応熱が少なく、
{1}〜{7ーの式で炉内の温度変化を表わすことがで
きるからである。Furthermore, as mentioned above, it is preferable to evaluate the furnace gas temperature based on the daily average value, but the temperature of the furnace gas in the upper temperature detection means is about 400 to 60,000, whereas the temperature in the lower temperature detection means is about 400 to 60,000. The temperature of the gas in the furnace is 500-9
This is because it changes like 0000 and the change is large. In addition, the two measurement levels z, and z2 as described above need to be above the heat storage zone.
This is because the temperature change inside the furnace can be expressed by the equations {1} to {7-.
従って、熱保存帯の開始位置が鉱石等の装入物の装入面
から約10〜15m下に存在するから、通常はこの範囲
内に温度検出手段を設置することが望ましい。また、以
上の通り、温度差(△T)、つまり熱流比(W)を適正
範囲に保持するよう高炉操業する場合、溶銑中の成分変
動が少ない状態に操業を保持することができる。Therefore, since the starting position of the thermal storage zone exists approximately 10 to 15 meters below the charging surface of the charge such as ore, it is usually desirable to install the temperature detection means within this range. Furthermore, as described above, when the blast furnace is operated so as to maintain the temperature difference (ΔT), that is, the heat flow ratio (W) within an appropriate range, the operation can be maintained in a state where there is little variation in the components in the hot metal.
すなわち、第5図は熱流比と溶銑中のSi分の標準偏差
(バラッキ)との関係を示すグラフであって、第5図に
示す如く、高炉操業においてはその炉壁部から炉内半径
の1′6までのところの半径熱流比に対応して、溶銑中
のSi分が変動し、とくに、溶銑中のSi分の変動が最
小な適正な熱流比が存在することがわかる。また、高炉
操業において、熱流比若しくは温度差を適正範囲に保つ
よう、高炉操業を行なう場合、この目的を達成する為に
多くの因子を操作することができるが、通常は炉頂から
の袋入条件、羽□からの送風条件等を変更し、調整する
のが好ましい。更に詳しく説明すると、例えば、炉頂か
らの袋入条件を変更する場合は、例えばムーバルブア−
マーを駆動し、炉頂のストックレベル等を変更し「高炉
の半径方向の鉱石、コークス等の装入物の分布を変えれ
ば、容易に炉熱を適正範囲に保持できる。In other words, Fig. 5 is a graph showing the relationship between the heat flow ratio and the standard deviation (variation) of the Si content in hot metal. It can be seen that the Si content in the hot metal varies in accordance with the radial heat flow ratio up to 1'6, and in particular, there is an appropriate heat flow ratio at which the Si content in the hot metal varies minimally. Furthermore, when operating a blast furnace in order to maintain the heat flow ratio or temperature difference within an appropriate range, many factors can be manipulated to achieve this objective. It is preferable to change and adjust the conditions, air blowing conditions from the blade □, etc. To explain in more detail, for example, when changing the bagging conditions from the top of the furnace, for example, move valve
By driving the blast furnace and changing the stock level at the top of the furnace and changing the distribution of charges such as ore and coke in the radial direction of the blast furnace, the furnace heat can be easily maintained within the appropriate range.
また、羽□からの送風条件を変更する場合は、軍油吹込
量や酸素吸込量等を変更するほか羽口前における送風の
温度条件等を変更して、炉内ガスの発生量を変更すれ‘
ま十分である。以上詳しく説明した通り、本発明方法は
、高炉の熱保存帯の上部のところにおいて、上下2段の
温度検出手段から炉内ガス温度を検出し、この温度差が
適正範囲内にあるよう、高炉操業するものである。従っ
て、本発明方法により操業すると、高炉において有効な
評価方法が存在しないと云われた熱流比が精度よく評価
でき、安定操業を保持できる。また、温度差若し〈は熱
流比を適正に保持するためにも、通常は、ムーバルブア
ーマー等によってストックライン等を変更し、高炉の半
径方向の炉内ガスの分布を変更すれば十分であり、また
、高炉操業においてその基準が熱流比として適正に評価
されるため、炉頂部における装入条件と羽□部における
送風条件(例えば、理論燃焼温度差)との対応関係が明
確になり、よりさめ細やかに炉内ガス流の分布が制御で
きる。In addition, when changing the air blowing conditions from the blade □, the amount of gas generated in the furnace must be changed by changing the amount of military oil injected, the amount of oxygen sucked, etc., and also changing the temperature conditions of the air blowing in front of the tuyere. '
That's enough. As explained in detail above, the method of the present invention detects the gas temperature in the furnace from the upper and lower temperature detection means at the upper part of the heat storage zone of the blast furnace, and detects the gas temperature in the blast furnace so that the temperature difference is within an appropriate range. It is something that operates. Therefore, when operating according to the method of the present invention, the heat flow ratio, which is said to have no effective evaluation method in blast furnaces, can be accurately evaluated and stable operation can be maintained. In addition, in order to maintain an appropriate temperature difference or heat flow ratio, it is usually sufficient to change the stock line etc. using movalve armor, etc., and change the distribution of gas in the blast furnace radial direction. In addition, in blast furnace operation, the standard is properly evaluated as the heat flow ratio, so the correspondence between the charging conditions at the top of the furnace and the blowing conditions at the blade section (for example, theoretical combustion temperature difference) becomes clear. The distribution of gas flow in the furnace can be controlled more precisely.
第1図aは従来例に係る高炉シャフト上段部の半径方向
の炉内ガス流分布の検出態様の説明図、第1図bならび
にcは第1図aの通りに測定した場合の炉内ガスの温度
分布の説明図と炉内ガスの組成分の説明図、第2図は高
炉の炉内ガスの測定位置の説明図、第3図は上下2段に
おける温度差と熱流比との関係を示す説明図、第4図は
高炉の上下2段の温度差(△T)と熱流比(W)との関
係を示すグラフ、第5図は熱流比(W)と溶接中のSi
分の標準偏差(バラッキ)との関係を示すグラフである
。
符号 1・・・シャフト、2,4,5・・・ゾンデ、3
・・・装入物。
第1図
第2図
第3図
第4図
第5図Figure 1a is an explanatory diagram of the detection mode of the radial in-furnace gas flow distribution in the upper part of the blast furnace shaft according to the conventional example, and Figures 1b and c are the in-furnace gas when measured as shown in Figure 1a. Fig. 2 is an explanatory diagram of the temperature distribution and the composition of the furnace gas, Fig. 2 is an explanatory diagram of the measurement position of the furnace gas in the blast furnace, and Fig. 3 is the relationship between the temperature difference and heat flow ratio between the upper and lower two stages. Figure 4 is a graph showing the relationship between the temperature difference (ΔT) between the upper and lower stages of the blast furnace and the heat flow ratio (W), and Figure 5 is a graph showing the relationship between the heat flow ratio (W) and the Si during welding.
It is a graph showing the relationship between the standard deviation (variance) of Code 1...Shaft, 2, 4, 5...Sonde, 3
...Charging material. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5
Claims (1)
半径方向に指向して配置した温度検出手段により高炉々
壁から炉内半径の1/6以内の範囲内の温度を測定し、
この両温度差を溶銑中の成分の変動が小さい範囲に保持
して高炉を操業することを特徴とする高炉の操業方法。1. Measure the temperature within 1/6 of the radius of the inside of the furnace from the walls of each blast furnace using temperature detection means arranged above the heat storage zone of the blast furnace in two stages, upper and lower, and oriented in the radial direction of the blast furnace.
A method of operating a blast furnace characterized by operating the blast furnace while maintaining the temperature difference between the two temperatures within a range in which fluctuations in components in the hot metal are small.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6692380A JPS6040483B2 (en) | 1980-05-20 | 1980-05-20 | How to operate a blast furnace |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6692380A JPS6040483B2 (en) | 1980-05-20 | 1980-05-20 | How to operate a blast furnace |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS56163206A JPS56163206A (en) | 1981-12-15 |
JPS6040483B2 true JPS6040483B2 (en) | 1985-09-11 |
Family
ID=13329978
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6692380A Expired JPS6040483B2 (en) | 1980-05-20 | 1980-05-20 | How to operate a blast furnace |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6040483B2 (en) |
-
1980
- 1980-05-20 JP JP6692380A patent/JPS6040483B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS56163206A (en) | 1981-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6040483B2 (en) | How to operate a blast furnace | |
JP2000256712A (en) | Method for controlling distribution of charged material in furnace opening part of blast furnace | |
JP2897363B2 (en) | Hot metal production method | |
JP2019019347A (en) | Method of operating blast furnace | |
JPH0254706A (en) | Method for operating blast furnace | |
JP2001263960A (en) | Blast furnace wall brick-supporting structure and method of operating the blast furnace | |
JP4328001B2 (en) | Blast furnace operation method | |
JP3722059B2 (en) | Operation method of smelting reduction furnace | |
JPH05295410A (en) | Method for operating blast furnace | |
JPH0359966B2 (en) | ||
JP2001262208A (en) | Method for operating blast furnace | |
JP2897362B2 (en) | Hot metal production method | |
JPH08188808A (en) | Method for operating blast furnace | |
JPH0313514A (en) | Method for operating blast furnace | |
JPS60113156A (en) | Method for measuring deviation in circumferential direction of dropping speed of material loaded into shaft furnace | |
JP3016948B2 (en) | Blast furnace operation method | |
JPS6331523B2 (en) | ||
JPS621809A (en) | Method for operating blast furnace | |
JP2837284B2 (en) | Method and apparatus for producing hot metal containing chromium | |
JP3873356B2 (en) | Operation method of vertical smelting reduction furnace | |
JPH0417607A (en) | Method for operating blast furnace | |
JPH0726131B2 (en) | Blast furnace operation method | |
JPH0136523B2 (en) | ||
JPH06306419A (en) | Operation of blast furnace | |
JPS62224610A (en) | Method for controlling temperature of melt reducing furnace |