JP3873356B2 - Operation method of vertical smelting reduction furnace - Google Patents

Operation method of vertical smelting reduction furnace Download PDF

Info

Publication number
JP3873356B2
JP3873356B2 JP06112597A JP6112597A JP3873356B2 JP 3873356 B2 JP3873356 B2 JP 3873356B2 JP 06112597 A JP06112597 A JP 06112597A JP 6112597 A JP6112597 A JP 6112597A JP 3873356 B2 JP3873356 B2 JP 3873356B2
Authority
JP
Japan
Prior art keywords
temperature
furnace
melt
lower tuyere
blowing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06112597A
Other languages
Japanese (ja)
Other versions
JPH10251721A (en
Inventor
義明 原
太郎 日下部
宏 板谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP06112597A priority Critical patent/JP3873356B2/en
Publication of JPH10251721A publication Critical patent/JPH10251721A/en
Application granted granted Critical
Publication of JP3873356B2 publication Critical patent/JP3873356B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Iron (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、金属酸化物を含有する粉粒状原料を溶融還元して溶融金属を製造する竪型溶融還元炉の操業方法に関する。
【0002】
【従来の技術】
現在地下資源として採掘される鉄鉱石、クロム鉱石等金属酸化物は、塊状よりも粉状のものが大半であり、将来は、さらに粉状鉱石が増大すると予想される。従って、このような鉱石から金属を製造するには、粉状のままで直接使用することが省エネルギー、製造コスト等の面で有利である。また、製鉄所等で発生するダストやスラジの多くは有価金属を含有しているが、該有価金属の回収方法がなくて廃棄されたり、回収されていても処理コストが高いとか、回収歩留りが低い等の問題を有している。これらダストやスラジの固形分は、大部分が粉粒状であり、有価金属の回収に際しそのままの形態で直接処理できれば、省エネルギー、製造コスト、環境保護上有利となる。
【0003】
このような粉粒状の金属酸化物含有原料を溶融還元し、金属を回収する手段として、竪型炉タイプの溶融還元炉が特公昭59−18452号公報に開示されている。それは、炉下部に設置された高温空気を吹き込む上下2段の羽口のうち、少なくとも上下の羽口から粉状原料を高温空気とともに竪型炉内に吹き込み、炉内に充填した炭材を燃焼させて溶融還元するものである。つまり、上段及び下段羽口を有する竪型炉では、上下羽口間に充填層を形成している炭材が燃焼して高温が発生する。したがって、上下羽口から吹き込まれる粉状原料は、加熱されて溶融し、充填層を滴下する間に固体炭材で直接還元され、溶融状態の金属及びスラグとなって、炉底部に溜る。
【0004】
上記方法では、上下羽口間で還元する際の還元吸熱量が大きく、融体が滴下不良を起こして操業トラブルの原因となるので、前記還元吸熱の補償に下段羽口から高温空気や酸素富化空気を吹き込んでいる。また、炉内で生成した融体を炉床に一旦溜めてから炉外へ排出するが、羽口破損や冷え込みを起こさずに操業を安定して継続するには、高炉の場合と同様、適正な融体温度やスラグ組成を確保しなければならない。この安定操業の方法としては、特開昭64−213号公報、や特公平3−59966号公報に開示されたものがある。特開昭64−213号公報記載の方法は、装置条件に応じて上下羽口間の熱的条件を決めるものであり、一方特公平3−59966号公報記載の方法は、羽口冷却水の温度差により送風条件を制御するものである。
【0005】
【発明が解決しようとする課題】
以上説明したように、炭材を充填した竪型溶融還元炉における操業トラブルのうちで最大のものは、炉床の冷え込みである。これを防止するためには、炉床での融体温度を十分確保し、さらに、スラグ組成を適正範囲に調整して、スラグ流動性を確保しなければならない。
【0006】
しかしながら、上記した2通りの安定操業方法は、上下羽口間での熱的条件を与えているが、炉床での熱損失による融体温度の低下を考慮しておらず、炉床での融体温度の確保にとって、必ずしも、十分な条件であるとは言えない。
本発明は、かかる事情に鑑み、炭材の充填した上下羽口間で金属酸化物の還元反応を完了させ、炉床での冷え込みがなく安定した操業が可能な竪型溶融還元炉の操業方法を提供することを目的としている。
【0007】
【課題を解決するための手段】
発明者は、上記目的を達成するため、従来の操業を見直し、炉下部での着熱状態が、溶銑温度だけで判断されていたことを確認した。そして、溶銑温度以外の管理項目の発見に鋭意努力し、炉下部の温度を数学モデルで推定することを着想し、本発明を完成させた。
【0008】
すなわち、本発明は、炭素系固体還元剤の充填層に高温空気を吹き込む上下少なくとも2段に設けられた羽口を有する竪型炉を用い、粉粒状の金属酸化物含有原料を少なくとも上段羽口から吹き込み、溶融金属を製造する方法において、下記式で求められる下段羽口レベルでの融体温度Tが管理目標値以上になるように、送風温度、送風量、送風中酸素濃度、金属酸化物含有原料の吹き込み量から選択したいずれか1種あるいは2種以上を調整することを特徴とする溶融還元炉の操業方法である。
【0009】
T=HMT+Qloss/(Wm ・Cp
T:下段羽口レベルでの融体温度(℃)
HMT:出銑時の溶融金属の温度(℃)
loss:下段羽口より下部での炉体損失熱(kcal/h)
m :融体生成速度(kg/h)
p :融体の平均比熱(kcal/kg℃)
本発明では、竪型溶融還元炉の下部、つまり下段羽口以下の熱状態を、従来の溶銑温度に代え、下段羽口レベルでの融体温度(℃)の推定モデルを新規に開発し、その値を常時監視し、管理目標値を保持するようにしたので、炉床での冷え込みがなく安定した操業ができるようになる。
【0010】
以下に、本発明をなすに至った理論と実施形態を説明する。
【0011】
【発明の実施の形態】
上段及び下段羽口を有し、その間に炭材を充填した竪型溶融還元炉において、粉状の金属酸化物を含有する原料を少なくとも上段の羽口から吹き込むと、炭材が800から1000℃に加熱された空気により燃焼して高温ガスが発生する。そして、上段羽口から吹き込まれた前記原料は、加熱されて溶融し、充填層を滴下する間に固体炭材により直接還元され、溶融状態の金属及びスラグが生成する。この固体炭材による酸化物の直接還元反応は、大きな吸熱を伴う反応であるが、吸熱分は下段羽口からの送風により補償される。上下羽口間に投入される熱量が不足すると、該酸化物の還元反応が遅くなり、酸化物は、還元反応が完了しないうちに下段羽口より下方に滴下してしまう。その結果、残りの還元反応が熱補償の無い下段羽口より下方で生じることになる。還元反応は、大きな吸熱を伴うので、下段羽口より下方で還元反応が生じると、炉床で融体やコークスから熱が奪われ、これが冷え込みの原因となる。その対策としては、上下羽口間に投入される熱量を大きくし、この領域の温度を上げ、還元反応を十分進行させてしまうことである。しかしながら、下段羽口より下方の熱状態を判断する指標が溶銑温度しかなく、該溶銑温度だけで監視することに操業管理上の不安があった。
【0012】
そこで、発明者は、前記したように鋭意研究し、以下に示す炉下部の新しい管理項目を開発したのである。
すなわち、下段羽口レベルの融体温度を、下段羽口から下部での炉体損失熱(Qloss)、出銑時の金属温度(HMT)、生成速度(Wm )、融体の平均比熱(Cp )を用いて次式で表わした。
【0013】
下段羽口レベルでの融体温度T=HMT+Qloss(Wm ・Cp ) …(1)
そして、この(1)式により求められる温度Tを高めれば、前記した理論から上下羽口間で還元反応を完了させることができると考えた。
ここで、(1)式のHMTは、出湯時の金属温度であり、通常出湯した金属を輸送容器へ導入する樋内を流通する間に熱電対、光高温計等で測定できる。Qlossは、下段羽口レベルより下方での炉体熱損失であり、通常行われるような炉体レンガに設置した温度計による温度データなどを利用して計算で求めることができる。すなわち、炉底側壁の散水温度と炉底レンガ温度とを用いて、各測定位置の間の熱流速を伝熱計算で求める方法や、炉底レンガに半径方向2段以上の熱電対を設置して、その間の熱流速を伝熱計算で求める方法などが利用できる。Wm は、融体生成速度であり、炉内へ吹き込む金属酸化物含有原料の時間当りの吹き込み量と炉内での炭素系固体還元剤の時間当りの燃焼量とを用いて計算で求めることができる。Cp は、融体の平均比熱であり、本発明の対象となる溶融還元炉から生産される金属のような炭素含有量の多い溶融金属では、通常0.15〜0.25程度の値となる。また、スラグの平均比熱は、0.25〜0.30程度の値である。従って、操業条件に応じて生産される溶融金属とスラグの比熱を調べ、これを荷重平均することで、Cp は計算できる。すなわち、生産される溶融金属、スラグの比熱がそれぞれ0.20kcal/kg℃、00.27kcal/kg℃であり、スラグ比が350kg/tであるとき、平均比熱は、
p =(0.20+0.27*350/1000)/(1+350/1000)=0.218kcal/kg℃
と求められる。
【0014】
本発明は、かかる下段羽口レベルでの融体温度Tを管理項目に利用し、その値をある値以上になるよう、操業条件から選択した熱的因子の値を調整するようにしたものである。以下、実施例において、本発明の内容をさらに詳細に説明する。
【0015】
【実施例】
金属生産量が140トン/日規模の竪型溶融還元炉の操業に本発明を適用した。使用した酸化物原料は、製鋼工場の転炉から発生する製鋼ダストであり、酸化鉄、酸化クロム等の金属酸化物を含む。その際の操業条件は、表1に示すように、送風量150〜250Nm3 /min、酸素富化量20〜40Nm3 /min、送風温度800〜850℃、スラグ比300〜450kg/t、メタル生成速度75〜170t/dである。
【0016】
【表1】

Figure 0003873356
【0017】
操業にあたり、本発明に係る(1)式を用いて、下段羽口レベルの融体温度に相当するTを求めた。その際、下段羽口より下部での炉体損失熱は、下部レンガの温度測定より100〜160Mcal/hrと見積もった。そして、操業を続けた結果、TとMn分配比(MnO)/[Mn]との関係、Tとスラグ中全Cr濃度(T.Cr)との関係が得られた。それらを図1、図2に示す。図1及び図2により、(MnO)/[Mn]、(T.Cr)ともに酸化物の還元状況を表わすものであるが、いずれもTと強い相関があり、Tが還元の進行状況をも表わすよい指標であることが判った。また、Tが1500℃より低下すると(MnO)/[Mn]、(T.Cr)が急激に大きくなり、下段羽口までで還元が完了していないことが判る。従って、下段羽口レベルで融体温度に相当するTは、1500℃以上に管理する必要があると考えた。
【0018】
次に、酸化物原料としてCr鉱石を使用した場合の操業結果を、図3、図4に示す。この場合、Tが1550℃より低くなると、(MnO)/[Mn]、(T.Cr)が急激に高くなり、還元が完了していないことが判る。したがって、下段羽口レベルの融体温度に相当するTを、1550℃以上に管理しなければならない。Cr鉱石は、製鋼ダストに比べて難還元性物質であるため、還元の完了に高い温度が必要だから高めの温度になったのである。このように原料の還元性によって、確保すべき下段羽口の融体温度Tは変わってくる。原料の還元性の他にも、Tの確保すべき値は上下羽口間隔、コークス粒径等の還元反応速度、還元反応時間に関係する要因によって変わる。以上の例では、下段羽口レベルでの融体Tの管理目標値は、原料として製鋼ダストを利用する場合が1500℃、Cr鉱石を利用する場合が1550℃である。それぞれこの温度以上にTを保持するべく操業する必要がある。
【0019】
そこで、上記2つの操業とも、この管理目標値を得た以後は、Tが1500℃あるいは1550℃以上になるようにして継続した。その際、この下段羽口レベルでの融体温度Tを、具体的に上記数値以上にするため、溶融還元炉への入熱量、出熱量を調整する方法を採用した。すなわち、送風温度の上昇、送風量の増加、送風中酸素濃度の上昇、吹き込み金属酸化物の吹き込み速度の低減といった操業因子のうちから一種あるいは2種以上を選択し、それらの値を変更したのである。その結果、2つの場合とも、炉床での冷え込みの恐れを示すこと無く、円滑に安定操業が長期にわたって実施できた。
【0020】
【発明の効果】
以上述べたように、本発明により、竪型溶融還元炉で金属酸化物原料から金属を生産する操業が、炉床での冷え込みを恐れることなく円滑に実施できるようになった。
【図面の簡単な説明】
【図1】原料を製鋼ダストとした時の本発明に係る下段羽口レベルでの炉内温度Tとマンガン分配比(%MnO)/[%Mn]との関係を示す図である。
【図2】原料を製鋼ダストとした時の本発明に係る下段羽口レベルでの炉内温度Tとスラグ中の(%T.Cr)との関係を示す図である。
【図3】原料をCr鉱石とした時の本発明に係る下段羽口レベルでの炉内温度Tとマンガン分配比(%MnO)/[%Mn]との関係を示す図である。
【図4】原料をCr鉱石とした時の本発明に係る下段羽口レベルでの炉内温度Tとスラグ中の(%T.Cr)との関係を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for operating a vertical smelting reduction furnace for producing a molten metal by melting and reducing a powdery raw material containing a metal oxide.
[0002]
[Prior art]
Most metal oxides such as iron ore and chrome ore that are currently mined as underground resources are in powder form rather than in bulk, and in the future it is expected that powder ore will increase further. Therefore, in order to produce a metal from such an ore, it is advantageous in terms of energy saving, production cost, etc. to use it directly in powder form. In addition, most of the dust and sludge generated at steelworks etc. contain valuable metals, but there is no method for recovering such valuable metals, and they are discarded, or even if recovered, the processing costs are high, or the recovery yield is high. It has problems such as low. Most of the solid content of these dusts and sludges is in the form of powder, and if it can be directly processed in the form as it is when recovering valuable metals, it is advantageous in terms of energy saving, manufacturing cost, and environmental protection.
[0003]
Japanese Unexamined Patent Publication No. 59-18452 discloses a vertical furnace type smelting reduction furnace as means for recovering metal by melting and reducing such a powdered metal oxide-containing raw material. Of the two upper and lower tuyere injecting high-temperature air installed in the lower part of the furnace, at least the upper and lower tuyere are blown into the vertical furnace with hot air to burn the charcoal filled in the furnace. It is made to melt and reduce. That is, in the vertical furnace having the upper and lower tuyere, the carbon material forming the packed bed between the upper and lower tuyere burns to generate high temperature. Therefore, the powdery raw material blown from the upper and lower tuyere is heated and melted, and is directly reduced by the solid carbonaceous material while dropping the packed bed, and becomes molten metal and slag and accumulates at the furnace bottom.
[0004]
In the above method, the reduction endotherm when reducing between the upper and lower tuyere is large, and the melt causes dripping failure and causes operational troubles. Bubbling air is blown. In addition, the melt produced in the furnace is once stored in the hearth and then discharged outside the furnace. In order to continue the operation stably without causing tuyere damage or cooling, the same as in the case of the blast furnace. The melt temperature and slag composition must be ensured. As this method of stable operation, there are those disclosed in JP-A No. 64-213 and JP-B-3-59966. The method described in Japanese Patent Application Laid-Open No. 64-213 determines the thermal conditions between the upper and lower tuyere according to the apparatus conditions, while the method described in Japanese Patent Publication No. 3-59966 discloses the tuyere cooling water. The air blowing condition is controlled by the temperature difference.
[0005]
[Problems to be solved by the invention]
As described above, the biggest problem among the operation troubles in the vertical smelting reduction furnace filled with the carbon material is cooling of the hearth. In order to prevent this, it is necessary to ensure a sufficient melt temperature in the hearth and further adjust the slag composition to an appropriate range to ensure slag fluidity.
[0006]
However, the above two stable operation methods give thermal conditions between the upper and lower tuyere, but do not consider the decrease in melt temperature due to heat loss in the hearth, It is not necessarily a sufficient condition for securing the melt temperature.
In view of such circumstances, the present invention completes the reduction reaction of the metal oxide between the upper and lower tuyere filled with carbonaceous material, and operates the vertical smelting reduction furnace capable of stable operation without cooling in the hearth The purpose is to provide.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the inventor reviewed the conventional operation and confirmed that the heat receiving state in the lower part of the furnace was determined only by the hot metal temperature. The present inventors completed the present invention by contemplating diligently discovering control items other than the hot metal temperature and estimating the temperature of the lower part of the furnace using a mathematical model.
[0008]
That is, the present invention uses a vertical furnace having at least two stages of upper and lower tuyere that blow high-temperature air into a packed bed of carbon-based solid reducing agent, and uses at least the upper tuyere of the powdered metal oxide-containing raw material. In the method for producing molten metal, the blowing temperature, the blowing amount, the oxygen concentration during blowing, the metal oxide so that the melt temperature T at the lower tuyere level obtained by the following formula is equal to or higher than the management target value. It is an operation method of a smelting reduction furnace characterized by adjusting any one type or two or more types selected from the blowing amount of the contained raw material.
[0009]
T = HMT + Q loss / (W m · C p )
T: Melt temperature at the lower tuyere level (° C)
HMT: Temperature of molten metal at the time of extraction (° C)
Q loss : Heat loss in the furnace body below the lower tuyere (kcal / h)
W m : Melt formation rate (kg / h)
C p : average specific heat of melt (kcal / kg ° C.)
In the present invention, the lower part of the vertical smelting reduction furnace, that is, the heat state below the lower tuyere is replaced with the conventional hot metal temperature, and a new model for estimating the melt temperature (° C.) at the lower tuyere level is developed. This value is constantly monitored and the control target value is maintained, so that stable operation is possible without cooling in the hearth.
[0010]
The theory and embodiments that have led to the present invention will be described below.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
In a vertical smelting reduction furnace having an upper stage and a lower stage tuyere and filled with a carbonaceous material between them, when a raw material containing a powdered metal oxide is blown from at least the upper tuyere, the carbonaceous material is 800 to 1000 ° C. It is burned by the heated air to generate hot gas. Then, the raw material blown from the upper tuyere is heated and melted, and is directly reduced by the solid carbonaceous material while dropping the packed bed to produce molten metal and slag. This direct reduction reaction of the oxide by the solid carbon material is a reaction accompanied by a large endotherm, but the endothermic component is compensated by the air blown from the lower tuyere. When the amount of heat input between the upper and lower tuyere is insufficient, the reduction reaction of the oxide is slowed down, and the oxide is dropped below the lower tuyere before the reduction reaction is completed. As a result, the remaining reduction reaction occurs below the lower tuyere without heat compensation. Since the reduction reaction involves a large endotherm, if a reduction reaction occurs below the lower tuyere, heat is taken away from the melt or coke in the hearth, which causes cooling. The countermeasure is to increase the amount of heat input between the upper and lower tuyere, increase the temperature in this region, and allow the reduction reaction to proceed sufficiently. However, there is only hot metal temperature as an index for determining the heat state below the lower tuyere, and there is anxiety in operation management to monitor only with the hot metal temperature.
[0012]
Therefore, the inventor has intensively studied as described above, and has developed the following new management items in the lower part of the furnace.
That is, the melt temperature at the lower tuyere level is expressed as follows: furnace heat loss (Q loss ) from lower tuyere to lower part, metal temperature (HMT) at unloading, production rate (W m ), average specific heat of melt Using (C p ), it is expressed by the following equation.
[0013]
Melt temperature at the lower tuyere level T = HMT + Q loss (W m · C p ) (1)
And if the temperature T calculated | required by this (1) Formula is raised, it thought that a reductive reaction could be completed between upper and lower tuyere from the above-mentioned theory.
Here, the HMT in the formula (1) is a metal temperature at the time of pouring, and can be measured with a thermocouple, an optical pyrometer, or the like while flowing through the tub that normally introduces the metal that has been poured out into the transport container. Q loss is the furnace heat loss below the lower tuyere level, and can be obtained by calculation using temperature data from a thermometer installed on the furnace brick as is normally done. In other words, using the water spray temperature on the bottom wall of the furnace bottom and the temperature of the brick at the bottom of the furnace, the heat flow rate between each measurement position is obtained by heat transfer calculation, or a thermocouple with two or more radial directions is installed on the bottom brick. Thus, a method of obtaining the heat flow rate during the heat transfer calculation can be used. W m is the melt production rate, and is calculated using the amount of metal oxide-containing raw material blown into the furnace per hour and the amount of combustion of the carbon-based solid reducing agent per hour in the furnace. Can do. C p is the average specific heat of the melt, and is usually about 0.15 to 0.25 for a molten metal with a high carbon content such as a metal produced from a smelting reduction furnace that is the subject of the present invention. Become. Moreover, the average specific heat of slag is a value of about 0.25 to 0.30. Thus, examine the specific heat of molten metal and slag produced in accordance with the operational conditions, which by Average Load, C p can be calculated. That is, when the specific heat of the produced molten metal and slag is 0.20 kcal / kg ° C. and 0.027 kcal / kg ° C., respectively, and the slag ratio is 350 kg / t, the average specific heat is
C p = (0.20 + 0.27 * 350/1000) / (1 + 350/1000) = 0.218 kcal / kg ° C.
Is required.
[0014]
The present invention uses the melt temperature T at the lower tuyere level as a management item, and adjusts the value of the thermal factor selected from the operating conditions so that the value becomes a certain value or more. is there. Hereinafter, the contents of the present invention will be described in more detail in Examples.
[0015]
【Example】
The present invention was applied to the operation of a vertical smelting reduction furnace with a metal production of 140 tons / day. The used oxide raw material is steelmaking dust generated from a converter in a steelmaking factory, and includes metal oxides such as iron oxide and chromium oxide. As shown in Table 1, the operating conditions at that time are as follows: air flow 150-250 Nm 3 / min, oxygen enrichment 20-40 Nm 3 / min, air blowing temperature 800-850 ° C., slag ratio 300-450 kg / t, metal The generation rate is 75 to 170 t / d.
[0016]
[Table 1]
Figure 0003873356
[0017]
In operation, T corresponding to the melt temperature at the lower tuyere level was obtained using the equation (1) according to the present invention. At that time, the heat loss of the furnace body below the lower tuyere was estimated to be 100 to 160 Mcal / hr from the temperature measurement of the lower brick. As a result of continuing the operation, a relationship between T and Mn distribution ratio (MnO) / [Mn] and a relationship between T and the total Cr concentration in slag (T.Cr) were obtained. They are shown in FIGS. 1 and 2, both (MnO) / [Mn] and (T.Cr) represent the reduction state of the oxide, both of which have a strong correlation with T, and T shows the progress of reduction. It turned out to be a good indicator. Moreover, when T falls below 1500 ° C., (MnO) / [Mn] and (T.Cr) increase rapidly, indicating that the reduction is not completed up to the lower tuyere. Therefore, it was considered that T corresponding to the melt temperature at the lower tuyere level should be controlled to 1500 ° C. or higher.
[0018]
Next, FIG. 3 and FIG. 4 show the operation results when Cr ore is used as the oxide raw material. In this case, when T becomes lower than 1550 ° C., (MnO) / [Mn] and (T.Cr) are rapidly increased, and it is understood that the reduction is not completed. Therefore, T corresponding to the melt temperature at the lower tuyere level must be controlled to 1550 ° C. or higher. Since Cr ore is a hard-to-reduced substance compared to steelmaking dust, a high temperature is required because a high temperature is required to complete the reduction. Thus, the melt temperature T of the lower tuyere which should be ensured changes with the reducing property of a raw material. Besides the reducibility of the raw material, the value to be secured for T varies depending on factors related to the reduction reaction rate such as the interval between the upper and lower tuyere, the coke particle size, and the reduction reaction time. In the above example, the management target value of the melt T at the lower tuyere level is 1500 ° C. when steelmaking dust is used as a raw material and 1550 ° C. when Cr ore is used. It is necessary to operate to keep T above this temperature.
[0019]
Therefore, in the above two operations, after obtaining the management target value, T was continued so that T became 1500 ° C. or 1550 ° C. or higher. At that time, in order to specifically set the melt temperature T at the lower tuyere level to the above numerical value or more, a method of adjusting the heat input to the smelting reduction furnace and the heat output was adopted. That is, since one or more kinds of operating factors such as an increase in the blowing temperature, an increase in the blowing amount, an increase in the oxygen concentration during blowing, and a reduction in the blowing speed of the blowing metal oxide were selected and their values were changed. is there. As a result, in both cases, stable operation could be carried out smoothly over a long period without showing the fear of cooling in the hearth.
[0020]
【The invention's effect】
As described above, according to the present invention, an operation for producing metal from a metal oxide raw material in a vertical smelting reduction furnace can be smoothly performed without fear of cooling in the hearth.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between furnace temperature T and manganese distribution ratio (% MnO) / [% Mn] at the lower tuyere level according to the present invention when the raw material is steelmaking dust.
FIG. 2 is a graph showing the relationship between the furnace temperature T at the lower tuyere level and (% T. Cr) in the slag when the raw material is steelmaking dust.
FIG. 3 is a diagram showing the relationship between the furnace temperature T and the manganese distribution ratio (% MnO) / [% Mn] at the lower tuyere level according to the present invention when the raw material is Cr ore.
FIG. 4 is a diagram showing the relationship between the furnace temperature T at the lower tuyere level and (% T. Cr) in the slag when the raw material is Cr ore.

Claims (1)

炭素系固体還元剤の充填層に高温空気を吹き込む上下少なくとも2段に設けられた羽口を有する竪型炉を用い、粉粒状の金属酸化物含有原料を少なくとも上段羽口から吹き込み、溶融金属を製造する溶融還元炉の操業方法において、
下記式で求められる下段羽口レベルでの融体温度Tが管理目標値以上になるように、送風温度、送風量、送風中酸素濃度、金属酸化物含有原料の吹き込み量から選択したいずれか1種あるいは2種以上を調整することを特徴とする溶融還元炉の操業方法。
T=HMT+Qloss/(Wm ・Cp
T:下段羽口レベルでの融体温度(℃)
HMT:出銑時の溶融金属の温度(℃)
loss:下段羽口より下部での炉体損失熱(kcal/h)
m :融体生成速度(kg/h)
p :融体の平均比熱(kcal/kg℃)
Using a vertical furnace having tuyeres provided in at least two upper and lower stages for blowing high-temperature air into a packed bed of carbon-based solid reducing agent, powdered metal oxide-containing raw material is blown from at least the upper tuyere, and molten metal is poured In the operation method of the smelting reduction furnace to be manufactured,
Any one selected from the blowing temperature, the blowing amount, the blowing oxygen concentration, and the blowing amount of the metal oxide-containing raw material so that the melt temperature T at the lower tuyere level obtained by the following formula is equal to or higher than the management target value. A method of operating a smelting reduction furnace characterized by adjusting seeds or two or more kinds.
T = HMT + Q loss / (W m · C p )
T: Melt temperature at the lower tuyere level (° C)
HMT: Temperature of molten metal at the time of extraction (° C)
Q loss : Heat loss in the furnace body below the lower tuyere (kcal / h)
W m : Melt formation rate (kg / h)
C p : average specific heat of melt (kcal / kg ° C.)
JP06112597A 1997-03-14 1997-03-14 Operation method of vertical smelting reduction furnace Expired - Fee Related JP3873356B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06112597A JP3873356B2 (en) 1997-03-14 1997-03-14 Operation method of vertical smelting reduction furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06112597A JP3873356B2 (en) 1997-03-14 1997-03-14 Operation method of vertical smelting reduction furnace

Publications (2)

Publication Number Publication Date
JPH10251721A JPH10251721A (en) 1998-09-22
JP3873356B2 true JP3873356B2 (en) 2007-01-24

Family

ID=13162057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06112597A Expired - Fee Related JP3873356B2 (en) 1997-03-14 1997-03-14 Operation method of vertical smelting reduction furnace

Country Status (1)

Country Link
JP (1) JP3873356B2 (en)

Also Published As

Publication number Publication date
JPH10251721A (en) 1998-09-22

Similar Documents

Publication Publication Date Title
US7914601B2 (en) Cold start-up method for a direct smelting process
CN101665871B (en) Method for producing titanium carbide slag
JP2007177295A (en) Method for producing molten iron
US3499755A (en) Method for the production of pig iron and steel
JP3873356B2 (en) Operation method of vertical smelting reduction furnace
JP4762420B2 (en) Method of smelting reduction of iron oxide using a rotary kiln
EP1160338A1 (en) Process to preheat and reduce directly reduced iron (DRI) to be fed to an electric arc furnace (EAF)
US5084093A (en) Method for manufacturing molten pig iron
JP3744133B2 (en) Method for removing slag generated during the manufacture of stainless steel and method for reusing waste slag
JPS6036613A (en) Production of raw molten nickel-containing stainless steel
CN115572787B (en) Process method for reducing thermal state slag through slag splashing protection
JP2019065352A (en) Method for protecting furnace bottom brick in blast furnace
JP4767611B2 (en) Reduction method of iron oxide
Dutta et al. Raw Materials for Steelmaking
JPS6169944A (en) Manufacture by melting and reducing of ferrochrome
JP2837282B2 (en) Production method of chromium-containing hot metal
JP2817394B2 (en) Pig iron production method
JP2897362B2 (en) Hot metal production method
JPH01149911A (en) Smelting reduction process
JPH05239521A (en) Production of molten iron
Fontana et al. SMS Demag technology for zero-waste steel production
JP2001241859A (en) Reducing melting method
JP2002069517A (en) Method for operating smelting reduction furnace
JPH07207313A (en) Method for melting tin-plated steel sheet scrap
JPH02247312A (en) Production of chromium-containing molten iron

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061016

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees