JPS60113156A - Method for measuring deviation in circumferential direction of dropping speed of material loaded into shaft furnace - Google Patents

Method for measuring deviation in circumferential direction of dropping speed of material loaded into shaft furnace

Info

Publication number
JPS60113156A
JPS60113156A JP22053683A JP22053683A JPS60113156A JP S60113156 A JPS60113156 A JP S60113156A JP 22053683 A JP22053683 A JP 22053683A JP 22053683 A JP22053683 A JP 22053683A JP S60113156 A JPS60113156 A JP S60113156A
Authority
JP
Japan
Prior art keywords
temperature
tuyeres
circumferential direction
furnace
tuyere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22053683A
Other languages
Japanese (ja)
Inventor
Toshiyuki Matsumoto
敏行 松本
Takeshi Fukutake
福武 剛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP22053683A priority Critical patent/JPS60113156A/en
Publication of JPS60113156A publication Critical patent/JPS60113156A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/10Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring thermal variables

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To detect easily and surely the ununiform state in the circumferential direction of the dropping speed of a material loaded to the lower part of a furnace, by measuring the temperature of the front of tuyere. CONSTITUTION:A contactless thermometer 11 which can measure the temperature of the front of plural tuyeres attached in the circumferential direction of a funace body is provided in a viewing window 12 of a bend part of a blast branch pipe 9. Thermometers 11 are provided for all tuyeres or plural tuyeres at intervals of a certain length in the circumferential direction. The temperature of the front of tuyeres measured by these thermometers indicates a value corresponding to the heat incoming and outgoing state of a combustion zone in the front of tuyeres. Though this heat incoming and outgoing state is varied by various factors, it is determined by a ratio O/C of ore raw materials to fuel in the top of the furnace if the other conditions are fixed. Then, the ratio O/C of the material loaded to the shaft furnace is changed by >=10% of normal operation, and dropping of this changed loaded material to the front of tuyeres is detected as a variance of temperature by thermometers for measuring the temperature of the front of tuyeres. The differences between the time of the change of the ratio O/C and the time of the detection of the temperature change in individual tuyeres are compared with one another, and this time difference is obtained as deviation of the dropping speed of the loaded material in the circumferential direction.

Description

【発明の詳細な説明】 技術分野 −・・シーl[鈷n)憔母;翻1甜1亜田ト1イ註λ給
IThT凍度の円周方向偏差を適確に把握することに関
しこの明細書に述べる技術内容は、順調でかつ安定な、
シャフト炉における炉内反応の維持を図ることに関連し
て該反応挙動を正確に推定する基準を与えようとするも
のである。
[Detailed Description of the Invention] Technical Field - Seal [鈷n) 浔子; Translation 1 甜 1 ADA TO 1 Note: Regarding accurately grasping the circumferential direction deviation of the freezing degree of λ feed IThT. The technical content described in the specification is smooth and stable.
The purpose of this paper is to provide a standard for accurately estimating reaction behavior in a shaft furnace in connection with maintaining the reaction in the furnace.

技術的背景 シャフト炉例えば溶鉱炉では装入物つまり原料である鉱
石、焼結鉱、ベレットと燃料であるコークスフエどとを
ある一定の比率%となる様に例えば上ペル、下ベルを介
して交互に装入し、同時に環状管、送風支管を経由して
羽口より送風し、羽目前まで降下して来たコークスを燃
焼させるとともに燃焼により生成した高温還元ガスによ
り降下してくる原料を昇温し、還元溶融させる。
Technical background In a shaft furnace, for example, a blast furnace, the charges, that is, the raw materials such as ore, sintered ore, and pellets, and the fuel, such as coke feed, are alternately mixed at a certain ratio through an upper bell and a lower bell. At the same time, air is blown from the tuyeres via the annular pipe and the blower branch pipe to burn the coke that has descended to the point where it is present, and to raise the temperature of the descending raw material by the high-temperature reducing gas produced by combustion. , reduce and melt.

第1図に溶鉱炉の縦断面を示し、図中1は鉄皮、2は内
張り耐火物、3は羽口、4は小ベル、5は大ベルであり
、6はコークス、7は鉱石(焼結鉱又はベレットなどを
含む)また8は環状′u19は送風支管、そしてlOは
出銑口である。
Figure 1 shows a vertical cross section of a blast furnace. In the figure, 1 is the iron shell, 2 is the lining refractory, 3 is the tuyere, 4 is the small bell, 5 is the large bell, 6 is the coke, and 7 is the ore (burnt ore). 8 is annular; 19 is a blowing branch pipe; and 1O is a taphole.

゛ このとき、この溶鉱炉の操業の安定つまり溶融生成
物の各種成分を経時的罠安定させるためKは、溶鉱炉の
円周方向における反応の均一性が重要である。
At this time, in order to stabilize the operation of the blast furnace, that is, to stabilize the various components of the molten product over time, it is important for K to have uniformity of reaction in the circumferential direction of the blast furnace.

かような均一性を確保するためには円周方向でのo/C
の均一性、送風量の均一性、そして装入物の降下速度の
均一性が必要となる。
To ensure such uniformity, O/C in the circumferential direction is
uniformity of air flow, uniformity of air flow rate, and uniformity of descending speed of the charge.

これらの均一性が乱されると、炉内での装入物の昇温、
還元および溶融速度は不均一となり、たとえば第2図(
イ)に示すように炉頂における円周4方向の温度差(T
エアーT+n1n)が大きくなり、それに伴ってスリッ
プ回数が増加して第2図(ロ)に示すように溶鉄中81
%の変動が大きくなる。
If these uniformities are disturbed, the temperature of the charge in the furnace increases,
The reduction and melting rates will be non-uniform, e.g. in Figure 2 (
As shown in (a), the temperature difference (T
Air T+n1n) increases, and the number of slips increases accordingly, resulting in 81
% fluctuation becomes large.

均一性の乱れは、不安定な操業状態をまねき、溶融生成
物の成分変動も大きくなる。
Disturbances in uniformity lead to unstable operating conditions and large fluctuations in the composition of the molten product.

スリップというのは、溶鉱炉の朝顔上部からシャフト中
部にて装入物の下降がとまりガス上昇が困難となり、風
圧が高くなる現象を棚吊りと(・うが、この棚吊りが、
何らかの原因で下降開始する現象であり、棚吊り→スリ
ップの増加は溶鉱炉の・操業を不安定にする。
Slip is a phenomenon in which the descending of the charge stops from the upper part of the morning glory of the blast furnace to the middle of the shaft, making it difficult for the gas to rise and increasing the wind pressure.
This is a phenomenon that starts to fall due to some reason, and an increase in shelf suspension → slip makes the operation of the blast furnace unstable.

このような不安定挙動を是正するためには、溶鉱炉の円
周方向にわたる反応不均一化の進行をできるだけ早期に
検知し、送風量の低下、%の低下などの対策を講すると
ともに%の円周不均一く・送風量の円周不均一、炉壁付
着物の円周不均一な成長などその原因に対して適正化す
る操作を実施する必要がある。
In order to correct such unstable behavior, it is necessary to detect as early as possible the progress of non-uniform reaction in the circumferential direction of the blast furnace, and take measures such as reducing the amount of air flow and reducing the percentage of the blast furnace. It is necessary to carry out operations to correct the causes of such problems, such as non-uniform circumference, non-uniform air flow, non-uniform growth of substances deposited on the furnace wall, etc.

発明の目的 炉内状況の円周方向不均一の早期検出方法としてとくに
銑鉄成分のバラツキに直接影響をおよぼす炉下部の装入
物降下速度の円周不均一状態の検出を容易かつ確実なら
しめる方法を与えることがこの発明の目的である。
Purpose of the Invention A method for early detection of circumferential non-uniformity in the inside of a furnace, in particular a method for easily and reliably detecting circumferential non-uniformity in the rate of descent of the charge in the lower part of the furnace, which directly affects the variation in pig iron composition. It is an object of this invention to provide the following.

発明の構成 上記の目的は、次の事項を骨子とする手順により有利に
成就できる。
Structure of the Invention The above object can be advantageously achieved by a procedure consisting of the following points.

シャフト炉装入物中の鉱石原料と燃料との比・0//C
を、通常操業時の10%以上で変化させかつその後複数
本の送風羽口部で羽口前燃焼帯における温度、輝度又は
羽口先端埋込温度を連続的に測定して、上記比%を変更
した装入物が羽目前まで降下して来るのを該測定値の変
化によって検出し上記比%を変更した時刻と上記検出時
刻の差を各羽口毎に比較し、この差をもって円周方向で
の装入物降下速度の偏差とすることからなるシャフト炉
の装入物降下速度の円周方向偏差測定法。
Ratio of ore raw material and fuel in shaft furnace charge 0//C
is changed by 10% or more of normal operation, and then the temperature in the combustion zone before the tuyere, the brightness, or the embedded temperature at the tip of the tuyere are continuously measured at multiple blast tuyeres, and the above ratio % is determined. It is detected by the change in the measured value that the changed charge is coming down just before the change, and the difference between the time when the ratio % is changed and the above detection time is compared for each tuyere, and this difference is used to determine the circumference. A method for measuring the circumferential deviation of the charge-falling rate in a shaft furnace, which consists in determining the deviation of the charge-falling rate in the direction.

さて第8図には、羽口3含んだ溶鉱炉の要部断面を示す
Now, FIG. 8 shows a cross section of the main part of the blast furnace including the tuyere 3.

通常炉体の円周方向に複数本取付けられた羽口8に対し
その炉内側における燃焼帯いわゆるレースウェイ温度(
以下単に羽口前温度という)を測定し5る非接触型の温
度計11を送風支管9のベンド部における覗き穴部12
に設置する。
Normally, a plurality of tuyeres 8 are installed in the circumferential direction of the furnace body, and the combustion zone inside the furnace has a so-called raceway temperature (
A non-contact thermometer 11 for measuring the tuyere temperature (hereinafter simply referred to as the temperature before the tuyere) is inserted into the peephole 12 at the bend of the blower branch pipe 9.
to be installed.

この温度計11は、全羽口に対してそれぞれ設置するを
可とするが、ときには円周方向に間隔をおく複数羽口に
対して設ければ足りる場合もあ、るが何れにせよこの温
度計により測定される羽口前温度は、羽目前の燃焼帯に
おける熱の収支状態に対応する。図中13は温度計11
の支脚、14は羽目冷却箱である。
This thermometer 11 can be installed for each tuyere, but sometimes it is sufficient to install it for multiple tuyeres spaced apart in the circumferential direction. The pre-tuyere temperature measured by the meter corresponds to the heat balance state in the combustion zone immediately before the tuyere. 13 in the figure is a thermometer 11
The support leg 14 is a siding cooling box.

さて燃焼帯の熱収支状態は、種々の要因により変化する
が、他の条件が一定ならば炉頂における装入物の%によ
ってまず決まる。
Now, the heat balance state of the combustion zone changes depending on various factors, but if other conditions are constant, it is first determined by the percentage of charge at the top of the furnace.

いまO々を変化させた場合における羽目前温度の経時変
化の一例を第4図に示し、また騎の変化幅とそれに対応
する燃焼帯の熱収支状態を反映する羽口前温度の変化幅
の関係を第5図に示す。
Figure 4 shows an example of the change in the temperature before the tuyere over time when O is changed, and also shows the width of the change in the temperature before the tuyere, which reflects the change in the temperature and the corresponding heat balance state in the combustion zone. The relationship is shown in FIG.

第4図からO/cが一定の時、でも羽目前温度のかなり
大きな変化が認められ、これは装入物降下速度の断続的
変化によるものと考えられる。
From FIG. 4, even when O/c is constant, a fairly large change in the immediate temperature is observed, and this is thought to be due to intermittent changes in the rate of descent of the charge.

しかしながら第5図に示すように”/Ck 10%以上
変化させたとき羽口前温度の変化が装入物降下速度の断
続変化によるものとは、明確な区別をもって、検出され
るよう忙なることを知見した。
However, as shown in Figure 5, when ``/Ck'' is changed by 10% or more, the change in the temperature before the tuyere is clearly distinguishable from the intermittent change in the rate of descent of the burden and can be detected. I found out.

ここに0/Cの変化時期(装入物の炉頂部への装入から
羽目前温度の変化する時期)のずれ時間は、コークスの
炉内滞留時間のずれを示している。
Here, the lag time in the change timing of 0/C (the time when the immediate temperature changes from the charging of the charge to the top of the furnace) indicates the lag in the residence time of coke in the furnace.

なお羽目前温度測定手段としては、第8図に示した羽目
温度計の代りに図示しないが、輝度測定器や、また第6
図に示すような羽口8に設けた先端埋込温度計15を用
いても、はぼ同様な検出結果を得ることができた。
Although not shown, the means for measuring the temperature at the front end may be a luminance measuring device, or a device for measuring the temperature at the end point, instead of the temperature meter shown in FIG. 8.
Even if a thermometer 15 embedded in the tip of the tuyere 8 as shown in the figure was used, almost the same detection results could be obtained.

さて能力lo 、 ooo t/B 、羽口数88本の
うち東西南北4方位に位置する羽目4本についての円周
方向圧おける装入物降下速度偏差と溶銑成分変動との関
係の1例を実績について示すと次のとおりであった。
Now, let's look at an example of the relationship between the charge descending speed deviation and the hot metal composition fluctuation in the circumferential pressure for four tuyeres located in four directions, north, south, east, west, and with capacity lo, ooo t/B, out of 88 tuyeres. The details are as follows.

第7図にO/C= 8.75〜3.19へと約15%低
下したときの円周4方向(E、S、W、N )の羽口前
温度の推移を示す。0/c低下による羽口前温度の上昇
開始時期に差が見られ、S、E、WXNの順序で温度が
上昇開始していることがわかる。
FIG. 7 shows the transition of the temperature in front of the tuyere in four circumferential directions (E, S, W, N) when O/C was reduced by about 15% from 8.75 to 3.19. Differences can be seen in the timing at which the temperature in front of the tuyere starts to rise due to the decrease in 0/c, and it can be seen that the temperature starts to rise in the order of S, E, and WXN.

%変更時点から各羽口前温度の変化時点の差つまり各測
定方向における装入物の炉内滞留時間をめるには、0外
と羽口前温度の相関係数を時間t 、2t 、8t・・
・・、12tずらしてめる。
To calculate the difference between the time of change of each tuyere temperature and the time of change of each tuyere temperature from the time of % change, that is, the residence time of the charge in the furnace in each measurement direction, the correlation coefficient between the temperature outside of 0 and the tuyere temperature is expressed as time t , 2t , 8t...
..., shift by 12t.

tは1分〜10程度度とする。t is 1 minute to about 10 degrees.

相関係数の計算は、次のようにして行う。まず適当な時
間(1〜1o分程度)毎の平均の”/cと任意の位置の
羽口前温度をめる。
Calculation of the correlation coefficient is performed as follows. First, calculate the average ``/c'' and the temperature in front of the tuyere at an arbitrary position at an appropriate time interval (approximately 1 to 10 minutes).

これらをX(、)、y(□) 1=1〜Nとする。Let these be X(, ), y(□) 1=1 to N.

1が同じXとyの値は、同時刻のものであり、1が大き
いほど時間的に後のデータを示すことになる。
Values of X and y with the same 1 are for the same time, and the larger the value of 1, the later the data is.

このようなデータを用いて(X(□)、y(□+n))
のデータの組を作り、この組の相関係数を計算する。
Using such data (X(□), y(□+n))
Create a set of data and calculate the correlation coefficient for this set.

例えば データ につき時間遅れΔT−00とき (Xl lyl ) * (X2 +Y2) + (−
XB IY8 ) ””’(Xl−1+”/1−1)、
(xl、y4)・・・・・(xn、yn) また時間遅れΔT=1のとき、 (xl +’Y2)r (X2+yB)+ (XB +
y4) ・・’ ・・(”1−1 +y4) ’ ・・
・・(XH−1+’Yn)このデータ組合せを用いてr
□をめる。
For example, when the time delay ΔT-00 for data (Xl lyl ) * (X2 + Y2) + (-
XB IY8) ””’(Xl-1+”/1-1),
(xl, y4)...(xn, yn) Also, when time delay ΔT=1, (xl +'Y2)r (X2+yB)+ (XB +
y4) ...'...("1-1 +y4) '...
...(XH-1+'Yn) Using this data combination, r
□Fill in.

同様にΔT=jのとき (X1+’Y1+j)+(X2+72+j) ””’ 
(x11y1+j) ・−0” (X、−j+y、)こ
のデータの組合せを用いてr3をめる。
Similarly, when ΔT=j, (X1+'Y1+j)+(X2+72+j) ""'
(x11y1+j) -0'' (X, -j+y,) Use this data combination to calculate r3.

■は20時間分位たくわえ、jは7時間分位だくわえて
ピッチはIO分程度として計算する。
Calculate by assuming that ■ is stored for about 20 hours, j is stored for about 7 hours, and the pitch is about IO minutes.

nの値を次第に大きくして行き、rとJをプロットして
相関係数の変化をめると例えば第8図の場合4.5 H
r遅れで炉頂%と羽口前温度との対応が良く、従って4
.5 Hrが炉内滞溜時間として得られる。
Gradually increase the value of n, plot r and J, and calculate the change in the correlation coefficient. For example, in the case of Figure 8, it is 4.5 H.
With r delay, there is a good correspondence between furnace top% and tuyere front temperature, so 4
.. 5 Hr is obtained as the residence time in the furnace.

第9図は、円周方向4点(N、 E、 SSW )につ
いて、上述の手順で計算した結果をプロットしたもので
ある。この図でピークを示すずれ時間が炉内滞留時間で
あり、これらで装入レベルから羽目レベルまでの距離を
除すことKよって装入物降下速度をめることができるの
は明らかである。
FIG. 9 is a plot of the results calculated using the above procedure for four points in the circumferential direction (N, E, SSW). It is clear that the shift time that shows a peak in this figure is the residence time in the furnace, and that by dividing the distance from the charging level to the grain level K, the rate of charge descent can be determined.

同様の測定を行い、これよりめた降下速度の偏差(最大
値−最小値)と七の測定前1日間の出銑毎の銑中81%
の標準偏差との関係を第10図に示す。
A similar measurement was carried out, and the deviation of the descending speed (maximum value - minimum value) determined from this and 81% of the pig iron in each tap for one day before the seventh measurement.
Figure 10 shows the relationship between the standard deviation of

以上のようにして得られた円周方向での装入物降下速度
偏差は操業の不安定と良好な対応関係が1認められるこ
とがわかった。
It was found that the deviation of the charge descending speed in the circumferential direction obtained as described above has a good correlation with operational instability.

発明の効果 この発明により円周方向での装入物降下速度偏差を管理
し、この偏差が増大する傾向にある場合には円周方向で
の均一化を図るための操作を行うことによって溶鉱炉操
業の安定化を達成するのに大いに役立つ。
Effects of the Invention According to the present invention, blast furnace operation is improved by managing the deviation of the charge descending speed in the circumferential direction, and when this deviation tends to increase, an operation is performed to equalize it in the circumferential direction. greatly helps in achieving stabilization.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は操業中における溶鉱炉の断面図、第2図は円周
偏差と操業の安定性との対応を示すグラフであり、 第3図は羽目部の断面図、 第4図はO/c変更時の羽口温度の変化の一例を示すグ
ラフ、 第5図はQ/cの変化幅と羽口温度の変化幅の対応グラ
フであり、 第6図は羽口埋込み温度計の模式図、 また第7図は0/C変更時の円周4方向の羽口前温度の
変化を示すグラフであり、 第8図、第9図は、炉内滞溜時間の相関係数との関係グ
ラフであり、 第1O図は円周方向降下速度偏差と溶銑中81%の標準
偏差との対応グラフである。 特許出願人 川崎製鉄株式会社 第1図 第2図 (イ) (p) (日内) 第3図 第4図 1 HブトFB’l (8今、) 第5図 第7図 rf、間(fB釦↓2時間を将)
Fig. 1 is a cross-sectional view of the blast furnace during operation, Fig. 2 is a graph showing the correspondence between circumferential deviation and operational stability, Fig. 3 is a cross-sectional view of the siding section, and Fig. 4 is an O/C A graph showing an example of the change in tuyere temperature at the time of change. Figure 5 is a graph showing the correspondence between the range of change in Q/c and the range of change in tuyere temperature. Figure 6 is a schematic diagram of a thermometer embedded in the tuyere. In addition, Fig. 7 is a graph showing changes in the temperature in front of the tuyere in four directions around the circumference when changing 0/C, and Figs. 8 and 9 are graphs showing the relationship between the residence time in the furnace and the correlation coefficient. Figure 1O is a graph showing the correspondence between the circumferential descending velocity deviation and the standard deviation of 81% in hot metal. Patent applicant: Kawasaki Steel Corporation Figure 1 Figure 2 (a) (p) (Japanese) Figure 3 Figure 4 1 H but FB'l (8 now) Figure 5 Figure 7 rf, between (fB button ↓ 2 hours)

Claims (1)

【特許請求の範囲】[Claims] L シャフト炉装入物中の鉱石原料と燃料との比%を、
通常操業時の10%以上で変化させかつ、その後複数本
の送風羽口前で羽目前燃焼帝における温度、輝度又は羽
目先端埋込温度を連続的に測定して、上記比笈を変更し
た装入物が羽口前まで降下して来るのを該測定値の変化
によって検出し、上記比’/cを変更した時刻と上記検
出時刻の差を各羽日毎に比較し、この差をもって円周方
向での装入物降下速度の偏差とすることを特徴とするシ
ャフト炉の装入物降下速度の円周方向偏差測定法0
L The ratio of ore raw material and fuel in the shaft furnace charge is
The above ratio was changed by changing the temperature by 10% or more compared to normal operation, and then continuously measuring the temperature, brightness, or embedded temperature at the tip of the tuyere in front of multiple air tuyeres. Detect the falling object to the front of the tuyere by the change in the measured value, compare the difference between the time when the above ratio '/c was changed and the above detection time, and use this difference to determine the circumference. Method for measuring deviation in circumferential direction of charge descending speed in a shaft furnace characterized by measuring deviation of charge descending speed in the direction 0
JP22053683A 1983-11-25 1983-11-25 Method for measuring deviation in circumferential direction of dropping speed of material loaded into shaft furnace Pending JPS60113156A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22053683A JPS60113156A (en) 1983-11-25 1983-11-25 Method for measuring deviation in circumferential direction of dropping speed of material loaded into shaft furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22053683A JPS60113156A (en) 1983-11-25 1983-11-25 Method for measuring deviation in circumferential direction of dropping speed of material loaded into shaft furnace

Publications (1)

Publication Number Publication Date
JPS60113156A true JPS60113156A (en) 1985-06-19

Family

ID=16752529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22053683A Pending JPS60113156A (en) 1983-11-25 1983-11-25 Method for measuring deviation in circumferential direction of dropping speed of material loaded into shaft furnace

Country Status (1)

Country Link
JP (1) JPS60113156A (en)

Similar Documents

Publication Publication Date Title
JPS60113156A (en) Method for measuring deviation in circumferential direction of dropping speed of material loaded into shaft furnace
JP3099322B2 (en) Blast furnace heat management method
JP2000256712A (en) Method for controlling distribution of charged material in furnace opening part of blast furnace
RU2825734C1 (en) Method and device for determining residual amount of liquid, method and device for determining residual amount of liquid material and method of operating vertical furnace
JP2897363B2 (en) Hot metal production method
JP7107050B2 (en) Blast furnace operation method
US20240132982A1 (en) Residual liquid amount detection method and detection apparatus for the same, residual molten material amount detection method and detection apparatus for the same, and method for operating vertical furnace
JPH11222610A (en) Method for controlling furnace heat of blast furnace
JPH02182813A (en) Method for operating blast furnace
JPS62243702A (en) Controlling method for fusion zone of blast furnace
SU998513A2 (en) Method for measuring level of liquid phases in hearth of shaft furnace
SU1553809A1 (en) Method of controlling iron-melting in cupola furnace
JPH03291315A (en) Method for operating blast furnace
Bol’shakov et al. Predicting the thermal state of the blast-furnace hearth
JPH07278623A (en) Operation of blast furnace
JPS6040483B2 (en) How to operate a blast furnace
JPH02182814A (en) Method for operating blast furnace
JPH0625368B2 (en) Blast furnace operation method
JP2001263960A (en) Blast furnace wall brick-supporting structure and method of operating the blast furnace
JP3033263B2 (en) Hot metal production furnace and hot metal production method
JPH0610289B2 (en) Blast furnace operation method
JPH06306420A (en) Operation of blast furnace
JPS61201711A (en) Operating method for blast furnace
JPH04301013A (en) Method for operating blast furnace
JPH0417607A (en) Method for operating blast furnace