JPH02182813A - Method for operating blast furnace - Google Patents

Method for operating blast furnace

Info

Publication number
JPH02182813A
JPH02182813A JP177989A JP177989A JPH02182813A JP H02182813 A JPH02182813 A JP H02182813A JP 177989 A JP177989 A JP 177989A JP 177989 A JP177989 A JP 177989A JP H02182813 A JPH02182813 A JP H02182813A
Authority
JP
Japan
Prior art keywords
furnace
raceway
relative
temp
blast furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP177989A
Other languages
Japanese (ja)
Inventor
Morimasa Ichida
一田 守政
Kenji Tamura
健二 田村
Yoichi Hayashi
洋一 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP177989A priority Critical patent/JPH02182813A/en
Publication of JPH02182813A publication Critical patent/JPH02182813A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To keep the temp. at raceway constant by beforehand detecting furnace heating condition at lower part of the furnace with the temp. near the raceway and controlling relative descending velocity of charged material near furnace wall in the bosh part with the specific equation based on the detected temp. CONSTITUTION:Surface temp. of the charged material near the raceway 7 in the blast furnace is continuously measured, and when this measured value is varied by TR from the setting temp. near the raceway 7, variation VS of the relative descending velocity for the charged material near the furnace wall within 2m from the furnace wall in the bosh part A or a shaft part B is made as a function of the temp. near the raceway 7 and calculated by using the equation VS=(a)X TR and the relative descending velocity of the charged material near the furnace wall in the bosh part A or the shaft part B is adjusted by VS. Then, in the equation, (a) is factor and in the case of adjusting the relative descending velocity of the charged material in the bosh part A, this is made to the value in the range of 3.6-4.5X10<-4>, and in the case of adjusting the relative descending velocity in the shaft part B, this is made to the value in the range of 2.2-2.8X10<-4>. By this method, the stable and efficient blast furnace operation can be executed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、安定した条件下で高炉を操業する方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for operating a blast furnace under stable conditions.

〔従来の技術〕[Conventional technology]

高炉を操業する上で、安定した炉況の下で効率の良い操
業(低燃料比、高出銑比等)を行うことが目標とされる
。この操業を達成するためには、特に炉下部の炉熱状態
を精度良く制御することが要求される。この炉下部の炉
熱状態を検出する手段としては、数学モデルによって炉
下部の炉熱状態を推定する方法、各種の検出端により炉
熱状態を直接的に測定する方法、溶銑温度やSl 成分
等から炉熱状態を推定する方法等が知られている。
When operating a blast furnace, the goal is to operate efficiently (low fuel ratio, high iron production ratio, etc.) under stable furnace conditions. In order to achieve this operation, it is required to precisely control the furnace thermal state, especially in the lower part of the furnace. Methods for detecting the furnace thermal condition in the lower part of the furnace include methods that estimate the furnace thermal condition in the lower part of the furnace using a mathematical model, methods that directly measure the furnace thermal condition using various detection ends, hot metal temperature, Sl content, etc. There are known methods for estimating the furnace thermal state from

数学モデルによって炉下部の炉熱状態を推定する方法は
、推定精度に若干の問題があるものの、はとんど全ての
高炉に導入されている。また、最近では各種の検出端に
よって羽口先端温度、炉壁温度等の炉熱状態を直接測定
する方法が、高炉に適用されるようになってきている。
The method of estimating the furnace thermal state in the lower part of the furnace using a mathematical model has been introduced in almost all blast furnaces, although there are some problems with estimation accuracy. Recently, methods for directly measuring furnace thermal conditions such as tuyere tip temperature and furnace wall temperature using various detection ends have been applied to blast furnaces.

他方、溶銑の温度やSi 成分から炉熱状態を推定する
方法は、推定精度が良好であるものの、アクションが遅
れがちになるという欠点を有している。
On the other hand, although the method of estimating the furnace thermal state from the temperature of hot metal or Si 2 content has good estimation accuracy, it has the disadvantage that action tends to be delayed.

また、これらの検知方法も、炉熱を制御する手段と組み
合わせることにより、高炉の安定操業に有効なものとな
る。たとえば、特開昭55−104406号公報では、
検出端により測定したガス温度及び降下速度から、計算
した熱流比が設定した基準熱流比に一致するように装入
制御、送風制御、燃料吹込み制御、炉頂圧制御等を行っ
ている。また、特公昭63−31523号公報では、高
炉の炉腹部具下の炉体内壁に100mm以上の突起物が
存在する場合に、炉壁近傍の鉱石/コークスの層厚比を
平均層厚比に比較して10%以上増大するように原料を
装入制御している。
In addition, these detection methods also become effective for stable operation of a blast furnace by combining them with means for controlling furnace heat. For example, in Japanese Patent Application Laid-open No. 55-104406,
Charge control, air blow control, fuel injection control, furnace top pressure control, etc. are performed so that the heat flow ratio calculated from the gas temperature and rate of fall measured by the detection end matches the set reference heat flow ratio. Furthermore, in Japanese Patent Publication No. 63-31523, when there is a protrusion of 100 mm or more on the wall of the blast furnace under the furnace wall, the layer thickness ratio of ore/coke near the furnace wall is adjusted to the average layer thickness ratio. The charging of raw materials is controlled so that the amount increases by 10% or more.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、前掲した特開昭55−104406号公報の方
法では、基準熱流比の設定方法が明確にされておらず、
そのためアクション基準が明確になっていない。また、
特公昭63−31523号公報の方法は、高炉を構築す
る耐火物の侵食が進んで炉体内壁に乱れが生じている場
合には極めて有効な方法であるが、火入れ直後の炉体内
壁面プロフィール又は炉壁レンガの侵食が少なく凸凹の
少ないプロフィールに対しては適用できない。
However, in the method of JP-A-55-104406 mentioned above, the method for setting the reference heat flow ratio is not clarified;
Therefore, the standards for action are not clear. Also,
The method disclosed in Japanese Patent Publication No. 63-31523 is an extremely effective method when erosion of the refractories constituting the blast furnace progresses and disturbances occur in the furnace wall, but it It cannot be applied to profiles with little erosion and unevenness of the furnace wall bricks.

そこで、本発明は、炉壁近傍にある装入物の相対降下速
度を制御することによって、安定で且つ効率良(高炉操
業を行うことを目的とする。
Therefore, an object of the present invention is to perform stable and efficient blast furnace operation by controlling the relative descending speed of the charge near the furnace wall.

〔課題を解決するだめの手段〕[Failure to solve the problem]

本発明は、炉下部の炉熱状態をレースウェイ近傍の温度
で事前に検知して、この検知した温度に基づき特定の関
係式で朝顔部或いはシャフト部の炉壁近傍にある装入物
の相対降下速度を制御することにより、レースウェイの
温度を一定に維持する。その結果、炉下部の炉熱状態が
制御され、安定で且つ効率の良い高炉操業(低燃料比、
高出銑比)を達成するものである。
The present invention detects the furnace thermal state in the lower part of the furnace in advance at the temperature near the raceway, and uses a specific relational expression based on the detected temperature to determine the relative position of the charge near the furnace wall in the morning glory section or the shaft section. Maintain a constant raceway temperature by controlling the rate of descent. As a result, the furnace thermal condition in the lower part of the furnace is controlled, resulting in stable and efficient blast furnace operation (low fuel ratio,
This is to achieve a high iron output ratio).

すなわち、本発明は、高炉のレースウェイ近傍の温度を
測定し、予め設定したレースウェイ近傍の温度より測定
温度が変動したときに、炉壁から2m以内の炉壁近傍の
装入物の相対降下速度の変化量Δvs を炉壁温度の函
数として次式(1)を用いて算出し、炉壁近傍の相対降
下速度をΔVSだけ調整制御することを特徴とする。こ
こで、相対降下速度V、とは、降下速度を出銑量及びコ
ークス燃焼量から計算される高炉の平均降下速度で除し
た値である。
That is, the present invention measures the temperature near the raceway of a blast furnace, and when the measured temperature fluctuates from a preset temperature near the raceway, the relative drop of the charge near the furnace wall within 2 m from the furnace wall is measured. The method is characterized in that the speed change amount Δvs is calculated as a function of the furnace wall temperature using the following equation (1), and the relative descent speed near the furnace wall is adjusted and controlled by ΔVS. Here, the relative descending speed V is a value obtained by dividing the descending speed by the average descending speed of the blast furnace calculated from the amount of iron tapped and the amount of coke burned.

ΔVs=aXΔT3   ・・・・(1)ここで、Δv
5は相対降下速度の変化量(無次元変数)、ΔT@はレ
ースウェイ近傍の温度の変動量(℃)である。aは係数
であり、朝顔部の装入物の相対降下速度を調整する場合
には3.6〜4.5X10−’の範囲、シャフト部の相
対降下速度を調整する場合には2.2〜2.8X10−
’の範囲の値をとる。
ΔVs=aXΔT3...(1) Here, Δv
5 is the amount of change in relative descent speed (dimensionalless variable), and ΔT@ is the amount of change in temperature near the raceway (° C.). a is a coefficient, which is in the range of 3.6 to 4.5X10-' when adjusting the relative descending speed of the charge in the bosh section, and from 2.2 to 4.5 x 10-' when adjusting the relative descending speed of the shaft section. 2.8X10-
Takes values in the range '.

〔作用〕[Effect]

前掲した式(1)は、以下に説明する実験結果から得ら
れたものである。
The above-mentioned formula (1) was obtained from the experimental results described below.

この実験では、第2図に示すような構造をもち現実の高
炉のl/20程度の大きさの模型を使用した。この模型
の炉床径は345市であり、炉腹径は378 mm、 
 羽口からシャフト上端までの有効高さは1217mm
であった。また、装置の前面には、コークスや擬似鉱石
(固液の流量比及び充填物の密度が実際の高炉内の条件
と近似するように調整した易融合金とステアリン酸との
混合物)の降下・溶融挙動を観察できるように耐熱性の
ガラスを装着した。
In this experiment, a model having a structure as shown in FIG. 2 and having a size of about 1/20 of an actual blast furnace was used. The hearth diameter of this model is 345 mm, the hearth diameter is 378 mm,
The effective height from the tuyere to the top of the shaft is 1217mm.
Met. In addition, at the front of the equipment, coke and pseudo-ore (a mixture of easily melted metal and stearic acid whose solid-liquid flow rate ratio and packing density are adjusted to approximate the conditions in the actual blast furnace) are deposited. A heat-resistant glass was attached so that the melting behavior could be observed.

コークス1及び擬似鉱石2は、装置上部のベル3からム
ーバブルアーマ4を介して交互に層状に装入された。他
方、180 ℃の加熱空気を装置下部の18本の羽口5
から吹き込み、擬似鉱石2を溶融滴下させた。溶融物は
、炉床に溜められた後、出銑口6から排出された。コー
クスは、レースウェイ7直下に設けた6台のロークリフ
ィーダ8によって下部ホッパーに運ばれ、更にチニーブ
ラコンベア9によって密閉庫内に排出された。また、こ
の高炉模型において、炉内の温度状態0通気性。
Coke 1 and pseudo ore 2 were charged alternately in layers from a bell 3 at the top of the device via a movable armor 4. On the other hand, heated air at 180°C is passed through 18 tuyeres 5 at the bottom of the device.
The pseudo ore 2 was molten and dripped. The molten material was collected in the hearth and then discharged from the tap hole 6. The coke was conveyed to a lower hopper by six row reef feeders 8 installed directly below the raceway 7, and further discharged into a closed storage by a chiny bra conveyor 9. In addition, in this blast furnace model, the temperature state inside the furnace is 0.

壁面近傍の応力状態及びガス流れを検出するため、温度
計、圧力計及び熱線風速計を設置した。
A thermometer, pressure gauge, and hot wire anemometer were installed to detect the stress state and gas flow near the wall.

そして、炉下部の炉熱状態を代表しているレースウェイ
近傍の温度とシャフト部B近傍にある装入物の相対降下
速度との関係を求めたところ、両者の間には、第1図に
示すように一次函数的な関係が成立していることが判明
した。この関係式は、朝顔部へにおけるレースウェイ近
傍の温度をT8とし、シャフト部B近傍にある装入物の
相対降下速度をv5  とするとき、次式で表せる。
We then determined the relationship between the temperature near the raceway, which represents the furnace thermal state in the lower part of the furnace, and the relative descending speed of the charge near shaft section B. As shown, it was found that a linear functional relationship was established. This relational expression can be expressed by the following equation, where the temperature near the raceway to the morning glory section is T8, and the relative descending speed of the charge near the shaft section B is v5.

Tl1= −263,3x V、 +272.2したが
って、レースウェイ近傍の温度TIの変動量ΔT、と相
対降下速度■3の変化量ΔVSは次式の関係となり、レ
ースウェイ近傍の温度T11 の変動9八T、をできる
かぎり0とするためには次式を満足するように、相対降
下速度Vsの変化量ΔVsを制御する必要がある。
Tl1 = -263,3x V, +272.2 Therefore, the amount of variation ΔT in the temperature TI near the raceway and the amount ΔVS of variation in the relative descent speed ■3 have the following relationship, and the variation 9 in the temperature T1 near the raceway In order to make 8T as zero as possible, it is necessary to control the amount of change ΔVs in the relative descending speed Vs so as to satisfy the following equation.

ΔTl=263.3XΔVs 本発明におけるレースウェイ近傍とは、炉下部の炉熱と
密接な関係があるレースウェイ空間部の周辺から1mの
範囲である。また、相対降下速度V、を炉壁から2m以
内の炉壁近傍にある装入物の相対降下速度とした理由は
、炉下部の炉熱状態に及ぼす炉壁近傍、特に炉壁から2
m以内の範囲にある装入物の相対降下速度の影響の大き
いことが本模型実験で判明したためである。
ΔTl=263.3XΔVs The vicinity of the raceway in the present invention is a range of 1 m from the periphery of the raceway space that is closely related to the furnace heat in the lower part of the furnace. In addition, the reason why the relative descending velocity V is taken as the relative descending velocity of the charge located near the furnace wall within 2 m from the furnace wall is that the
This is because this model experiment revealed that the relative descending speed of the charge within the range of m or less has a large effect.

前述の式をスタントン数基準で実炉に換算するとき、次
式(2)が得られる。なお、スタントン数はガス−固体
間の熱伝達伍と装入物の蓄量熱量の比であり、本模型実
験の送風温度は、実炉のスタントン数と模型のスタント
ン数が一致するように決定されている。したがって、ス
タントン数が一定と仮定することにより、本模型実験の
温度測定値からスタントン数基準の実炉換算値を計算す
ることができる。
When converting the above equation to an actual furnace based on the Stanton number, the following equation (2) is obtained. Note that the Stanton number is the ratio of the heat transfer between gas and solid to the amount of heat stored in the charge, and the blowing temperature for this model experiment was determined so that the Stanton number in the actual reactor and the Stanton number in the model matched. has been done. Therefore, by assuming that the Stanton number is constant, it is possible to calculate the actual reactor conversion value based on the Stanton number from the temperature measurement value of this model experiment.

ΔT*=  3り50XΔVS  ・・・(2)そこで
、削成から ΔVS=aXΔTII・・・(1) を得、この関係式を使用してレースウェイ近傍のコーク
ス表面温度T、の変動量ΔT@を基準として装入物の相
対降下速度V5の変化量△Vsを制御するとき、安定し
た炉況下での操業が可能となる。
ΔT*=350XΔVS...(2) Therefore, from the cutting, ΔVS=aXΔTII...(1) is obtained, and this relational expression is used to calculate the variation ΔT@ of the coke surface temperature T near the raceway. When the amount of change ΔVs in the relative descending speed V5 of the charge is controlled based on V5, operation under stable furnace conditions becomes possible.

すなわち、変動量ΔT1がプラス側に大きくなったとき
には、相対降下速度V、の変化量Δvsがプラス側に大
きくなるような操業を行う。また、変動量ΔT□がマイ
ナス側に大きくなったとき、相対降下速度Vsの変化量
ΔVsがマイナス側に大きくなるような操業を行う。こ
れにより、炉熱状況を常に安定した範囲内に収め、効率
の良い操業が行われる。
That is, when the amount of variation ΔT1 becomes larger on the plus side, the operation is performed such that the amount of change Δvs in the relative descending speed V becomes larger on the plus side. Further, when the amount of variation ΔT□ becomes large on the negative side, an operation is performed such that the amount of change ΔVs in the relative descent speed Vs becomes large on the negative side. As a result, the furnace heat condition is always kept within a stable range, and efficient operation is performed.

なお、変化量Δv5を変動させる手段としては、燃料吹
込み条件、装入物分布条件、送風条件等を制御する方法
がある。たとえば、燃料吹込みによってコークスの燃焼
が抑えられ、装入物の相対降下速度が遅くなる。また、
吹き込まれる液体燃料の流量を調整してコークスの燃焼
をコントロールすることにより、相対降下速度を制御す
ることもできる。更には、炉壁近傍の鉱石/コークスの
層厚比を大きくするとき、相対降下速度が大きくなる。
Note that as means for varying the amount of change Δv5, there is a method of controlling fuel injection conditions, charge distribution conditions, air blowing conditions, and the like. For example, fuel injection reduces coke combustion and slows the relative rate of descent of the charge. Also,
The relative rate of descent can also be controlled by controlling the combustion of coke by adjusting the flow rate of the injected liquid fuel. Furthermore, when the ore/coke layer thickness ratio near the furnace wall is increased, the relative rate of descent increases.

なお、前述した式(1)は、シャフト部Bにおける装入
物の相対降下速度V、を制御するために導き出された関
係式であるが、レースウェイ7近傍の温度T、は、朝顔
部へにおける装入物の相対降下速度に対しても一次函数
で表される関係にあることが、同様な実験から判明した
。そこで、この朝顔部へにおける装入物の相対降下速度
を調整することにより、炉熱状態をコントロールするこ
ともできる。この場合、式(1)の係数aは、次のよう
に若干変更した範囲で表される。
Note that the above-mentioned equation (1) is a relational equation derived to control the relative descending speed V of the charge in the shaft section B, but the temperature T near the raceway 7 is It was found from similar experiments that there is a relationship expressed by a linear function with respect to the relative descending speed of the charge. Therefore, by adjusting the relative rate of descent of the charge into the bosh section, the furnace thermal state can also be controlled. In this case, the coefficient a in equation (1) is expressed in a slightly modified range as follows.

a=3.6〜4.5X10−’ このようにして、炉内装入物の相対降下速度を調整する
ことによって、炉熱状態が制御され、安定した吠況下で
高炉を操業することができる。また、本発明による場合
、炉内温度を検知してから所定の対応をとり、その結果
が炉熱に現れるまでの時間が短く、迅速で且つ高精度の
炉況制御が可能となる。
a=3.6~4.5X10-' In this way, by adjusting the relative falling speed of the contents in the furnace, the furnace thermal state is controlled, and the blast furnace can be operated under stable barking conditions. . Further, according to the present invention, the time required for taking a predetermined response after detecting the temperature inside the furnace and for the result to appear in the furnace heat is short, making it possible to control the furnace condition quickly and with high precision.

〔実施例〕〔Example〕

一実施例1 高炉の実操業において、高炉のレースウェイ7の近傍に
光学式温度計を装着し、レースウエイ7近傍にあるコー
クスの表面温度を連続的に測定した。測定開始から終了
までのレースウェイ7近傍のコークスの表面温度は、平
均1700℃を中心とし上下に約300℃の範囲で変動
した。そこで、このレースウェイ7のコークスの表面温
度の変動量ΔT11が+200℃を超えたときに、燃料
吹込みを中止して、コークスの燃焼量を増加させた。こ
れによって、シャフト部已における装入物の降下速度が
5m/時から5.3m/時に増加し、20分間でレース
ウェイ7近傍のコークスの表面温度Til が目標温度
1700℃に復帰した。なお、実炉での実施例において
は、前述した相対降下速度の代わりに実際の降下速度で
説明する。
Example 1 During actual operation of a blast furnace, an optical thermometer was installed near the raceway 7 of the blast furnace, and the surface temperature of coke near the raceway 7 was continuously measured. The surface temperature of the coke near the raceway 7 from the start to the end of the measurement fluctuated upward and downward in a range of about 300°C, centered around an average of 1700°C. Therefore, when the amount of variation ΔT11 in the surface temperature of the coke in the raceway 7 exceeded +200° C., the fuel injection was stopped and the amount of coke burned was increased. As a result, the descending speed of the charge at the end of the shaft increased from 5 m/hour to 5.3 m/hour, and the coke surface temperature Til near raceway 7 returned to the target temperature of 1700° C. in 20 minutes. In addition, in an example using an actual reactor, the actual descending speed will be used instead of the above-mentioned relative descending speed.

また、レースウェイ7近傍のコークスの表面温度の変動
量ΔT、が一200℃になったとき、燃料の吹込み量を
増加して、コークスの燃焼量を抑制した。これにより、
シャフト部Bにおける装入物の降下速度が5m/時から
4.7 m /時に低下し、20分間でレースウェイ7
近傍のコークスの表面温度T、が目標温度1700℃に
復帰した。
Furthermore, when the amount of variation ΔT in the surface temperature of the coke near the raceway 7 reached 1,200° C., the amount of fuel blown was increased to suppress the amount of coke burned. This results in
The descending speed of the charge in shaft part B decreased from 5 m/h to 4.7 m/h, and in 20 minutes raceway 7
The surface temperature T of the nearby coke returned to the target temperature of 1700°C.

−実施例2− 同様に高炉のレースウェイ7近傍に光学式温度計を装着
し、レースウェイ7近傍にあるコークスの表面温度を連
続的に測定した。測定開始から終了までのレースウェイ
7近傍のコークスの表面温度は、平均1700℃を中心
とし上下に約300℃の範囲で変動した。そこで、この
レースウェイ7近傍のコークスの表面温度の変動量ΔT
Rが+200℃を超えたとき、燃料吹込みを中止して、
コークスの燃焼量を増加させた。これによって、朝顔m
Aにおける装入物の降下速度が6m/時から6.5 m
 /時に増加し、20分間でレースウェイ7近傍のコー
クスの表面温度T、が目標温度1700℃に復帰した。
-Example 2- Similarly, an optical thermometer was installed near the raceway 7 of the blast furnace, and the surface temperature of the coke near the raceway 7 was continuously measured. The surface temperature of the coke near the raceway 7 from the start to the end of the measurement fluctuated upward and downward in a range of about 300°C, centered around an average of 1700°C. Therefore, the amount of variation ΔT in the surface temperature of coke near raceway 7
When R exceeds +200℃, stop fuel injection and
Increased the amount of coke burned. By this, morning glory m
The rate of descent of the charge at A is from 6 m/hour to 6.5 m
/ hour, and the coke surface temperature T near raceway 7 returned to the target temperature of 1700°C in 20 minutes.

また、レースウェイ7近傍のコークスの表面温度の変動
量ΔTIlが一200℃になったとき、燃料の吹込み量
を増加して、コークスの燃焼量を抑制した。これにより
、朝顔部Aにおける装入物の降下速度が6m/時から5
.5 m /時に低下し、20秒間でレースウェイ7近
傍のコークスの表面轟度T。
Furthermore, when the amount of variation ΔTIl in the surface temperature of coke near raceway 7 reached -200° C., the amount of fuel blown was increased to suppress the amount of coke burned. As a result, the descending speed of the charge in the morning glory section A is increased from 6 m/hour to 5 m/hour.
.. The surface roar T of the coke near raceway 7 decreased by 5 m/h in 20 seconds.

が目標温度1700℃に復帰した。The temperature returned to the target temperature of 1700°C.

〔発明の効果〕〔Effect of the invention〕

以上に説明したように、本発明においては、高炉の炉内
を降下する装入物の相対降下速度を調整することによっ
て、炉熱状態を代表的に表しているレースウェイ近傍の
温度を制御することができる。そのため、炉況を常に安
定な状態に維持し、低燃料比、高出銑比で効率良く高炉
操業することが可能となる。
As explained above, in the present invention, the temperature near the raceway, which typically represents the furnace thermal state, is controlled by adjusting the relative descending speed of the charge that descends inside the blast furnace. be able to. Therefore, it is possible to always maintain the furnace condition in a stable state and efficiently operate the blast furnace with a low fuel ratio and high iron production ratio.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は装入物の相対降下速度とレースウェイ近傍の温
度との関係を表したグラフ、第2図は本発明において使
用した高炉模型を示す。 1:コークス      2:擬似鉱石3:ベル   
     4:ムーバブルアーマ5:羽口      
   6:出銑ロア:レースウェイ     8:ロー
タリフィーダ9:チニーブラコンベア A:QB顔部       B:シャフト部特許出願人
   新日本製鐵  株式會社代  理  人    
 小  堀  益  (ほか2名)第 璽 図 装入物の和対降下速1(−) 第 図
FIG. 1 is a graph showing the relationship between the relative descending speed of the charge and the temperature near the raceway, and FIG. 2 shows the blast furnace model used in the present invention. 1: Coke 2: Pseudo ore 3: Bell
4: Movable armor 5: Tuyere
6: Tapping lower: Raceway 8: Rotary feeder 9: Chiny bra conveyor A: QB face part B: Shaft part Patent applicant Nippon Steel Corporation Representative Mr.
Masu Kobori (and 2 other people) Sum of the charges vs. descending speed 1 (-) Fig.

Claims (1)

【特許請求の範囲】 1、高炉のレースウェイ近傍の温度を測定し、該測定値
が予め設定したレースウェイ近傍の温度よりΔT_Rだ
け変動したとき、朝顔部又はシャフト部の炉壁から2m
以内の炉壁近傍にある装入物の相対降下速度の変化量Δ
V_Sをレースウェイ近傍の温度の函数として次式を用
い算出し、朝顔部又はシャフト部の炉壁近傍にある装入
物の相対降下速度をΔV_Sだけ調整することを特徴と
する高炉操業法。 ΔV_S=a×ΔT_R 〔ただし、aは係数であり、朝顔部の装入物の相対降下
速度を調整する場合には3.6〜4.5×10^−^4
の範囲、シャフト部の相対降下速度を調整する場合には
2.2〜2.8×10^−^4の範囲の値をとる。〕
[Claims] 1. When the temperature near the raceway of the blast furnace is measured and the measured value fluctuates by ΔT_R from the preset temperature near the raceway, 2 m from the furnace wall of the morning glory section or the shaft section.
The amount of change Δ in the relative descending speed of the charge near the furnace wall within
A blast furnace operating method characterized in that V_S is calculated as a function of the temperature near the raceway using the following equation, and the relative descending speed of the charge near the furnace wall in the morning glory section or the shaft section is adjusted by ΔV_S. ΔV_S=a×ΔT_R [However, a is a coefficient, and when adjusting the relative descending speed of the charge in the morning glory section, it is 3.6 to 4.5×10^-^4
In the case of adjusting the relative descending speed of the shaft part, the value is in the range of 2.2 to 2.8 x 10^-^4. ]
JP177989A 1989-01-07 1989-01-07 Method for operating blast furnace Pending JPH02182813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP177989A JPH02182813A (en) 1989-01-07 1989-01-07 Method for operating blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP177989A JPH02182813A (en) 1989-01-07 1989-01-07 Method for operating blast furnace

Publications (1)

Publication Number Publication Date
JPH02182813A true JPH02182813A (en) 1990-07-17

Family

ID=11511063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP177989A Pending JPH02182813A (en) 1989-01-07 1989-01-07 Method for operating blast furnace

Country Status (1)

Country Link
JP (1) JPH02182813A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020020003A (en) * 2018-08-01 2020-02-06 Jfeスチール株式会社 Learning method of level lowering speed prediction model for blast furnace, level lowering speed prediction model for blast furnace, prediction method of level lowering speed for blast furnace, blast furnace operation guidance method, control method of level lowering speed for blast furnace, molten iron production method, blast furnace operation method, and a learning device for level lowering speed prediction model for blast furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020020003A (en) * 2018-08-01 2020-02-06 Jfeスチール株式会社 Learning method of level lowering speed prediction model for blast furnace, level lowering speed prediction model for blast furnace, prediction method of level lowering speed for blast furnace, blast furnace operation guidance method, control method of level lowering speed for blast furnace, molten iron production method, blast furnace operation method, and a learning device for level lowering speed prediction model for blast furnace

Similar Documents

Publication Publication Date Title
JPS6111289B2 (en)
WO1999023262A1 (en) Method of operating blast furnace
JPH02182813A (en) Method for operating blast furnace
JPH02182814A (en) Method for operating blast furnace
JP7111278B1 (en) METHOD AND DEVICE FOR DETECTING RESIDUAL MELTS, AND METHOD OF OPERATING VERTICAL FURNACE
WO2022168556A1 (en) Method for detecting remaining amount of liquid and detection device for same, method for detecting remaining amount of molten substance and detection device for same, and vertical furnace operation method
JP7111277B1 (en) METHOD AND DEVICE FOR DETECTING LIQUID LEVEL HEIGHT OF MELTS, AND METHOD OF OPERATING VERTICAL FURNACE
WO2022168557A1 (en) Detection method and detection device for liquid level height of liquid, detection method and detection device for liquid level height of molten material, and operation method for vertical furnace
JPH06306420A (en) Operation of blast furnace
JP2002115007A (en) Structure for inner wall surface at lower part in blast furnace
JPS58117804A (en) Estimating method for position of melt-stuck zone in blast furnace
RU2044058C1 (en) Method for control of erosion of blast-furnace well
JPS6331523B2 (en)
JPS60113156A (en) Method for measuring deviation in circumferential direction of dropping speed of material loaded into shaft furnace
JP2000256712A (en) Method for controlling distribution of charged material in furnace opening part of blast furnace
SU1680791A1 (en) Method of control of silicomanganese melting in rectangular electric furnace
JP2897363B2 (en) Hot metal production method
JP3646361B2 (en) Blast furnace charge distribution control method
JPH0317209A (en) Method for operating blast furnace
JPH11222610A (en) Method for controlling furnace heat of blast furnace
JPH0417607A (en) Method for operating blast furnace
JPH021899B2 (en)
RU2241764C1 (en) Method for regulating of fuel consuming rate for dispensing of fuel into blast furnace tuyeres
SU1553809A1 (en) Method of controlling iron-melting in cupola furnace
SU1145222A1 (en) Method of determining fusion zone of silicate materials in cupola furnace