JPH0317209A - Method for operating blast furnace - Google Patents
Method for operating blast furnaceInfo
- Publication number
- JPH0317209A JPH0317209A JP14953689A JP14953689A JPH0317209A JP H0317209 A JPH0317209 A JP H0317209A JP 14953689 A JP14953689 A JP 14953689A JP 14953689 A JP14953689 A JP 14953689A JP H0317209 A JPH0317209 A JP H0317209A
- Authority
- JP
- Japan
- Prior art keywords
- furnace
- blast furnace
- charged material
- calculated
- condition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 15
- 238000007664 blowing Methods 0.000 claims description 7
- 238000011017 operating method Methods 0.000 claims description 3
- 239000002801 charged material Substances 0.000 abstract 6
- 238000005422 blasting Methods 0.000 abstract 1
- 238000004364 calculation method Methods 0.000 description 9
- 238000012821 model calculation Methods 0.000 description 8
- 230000008859 change Effects 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 239000000571 coke Substances 0.000 description 5
- 230000009471 action Effects 0.000 description 4
- 238000009423 ventilation Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 241001062472 Stokellia anisodon Species 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Landscapes
- Manufacture Of Iron (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野[
本発明は高炉の操業方法に関し、特に将来の軟化融着帯
形状とその位置を想定して装入物或は送風条件の制御を
行い、安定かつクh率の良い操業を行う操業方法に関す
る.
〔従来の技術〕
高炉では、鉱石類とコークスを炉頂から層状に装入し,
羽目からの送風によって加熱製錬する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method of operating a blast furnace, in particular, a method for controlling the charge or air blowing conditions assuming the future shape and position of the softened cohesive zone. This article relates to an operation method for stable operation with a good h rate. [Conventional technology] In a blast furnace, ores and coke are charged in layers from the top of the furnace.
Heat and smelt by blowing air from the grain.
炉頂から装入された鉱石類は炉内を降下しながら上界す
るガスにより加熱還元され,1250℃付近で軟化融着
を開始し1 400℃付近で溶融滴下する。この軟化融
着帯は,極端に通気の悪い状態にあるため、この部分で
の炉内の通気を確保するためには軟化融着帯温度域の高
さが炉径方向で異なるようにし,鉱石類と鉱石類の間の
コークス層にガスが流れるようにする必要がある.さら
に軟化融着帯の炉内での位置についても過度に下がり過
ぎると還元不良による炉熱の変動、また過度に上方にあ
ると高温域の拡大により通気の悪化を招くことから,高
炉を安定にかつ効率よい状態で操業するには、この軟化
融着帯温度域の炉内での高さを適正に制御する必要があ
る。The ores charged from the top of the furnace descend through the furnace and are heated and reduced by the gas above, and begin to soften and fuse at around 1,250°C, and melt and drip at around 1,400°C. This softening cohesive zone has extremely poor ventilation, so in order to ensure ventilation in the furnace in this area, the height of the softening cohesive zone temperature range should be different in the furnace radial direction, and the ore It is necessary to allow gas to flow into the coke layer between the minerals and the ores. Furthermore, if the position of the softening cohesive zone in the furnace is too low, the furnace heat will fluctuate due to poor reduction, and if it is too high, the high temperature area will expand and the ventilation will deteriorate, so it is important to keep the blast furnace stable. In order to operate efficiently, it is necessary to appropriately control the height of this softening and cohesive zone temperature range within the furnace.
これに対して、本出願人は,先に,炉頂部に設置した炉
内ガスサンプラーで得られる炉径方向のガス組成、温度
分布を指数化してこれを適正範囲内におさめたり,軟化
#4着帯を代表する1400℃の炉内半径方向の等温分
布を把握しこれを適正範囲に制御することで高炉繰業の
安定化と効率化を達成する方法を,特開昭60−404
82号によって提案している.
〔発明が解決しようとする課題1
ガスサンプラーで得られる炉径方向のガス組成、温度分
布の指数化は、軟化融着帯の炉内での高さについても他
の要因と交絡した定性的情報しか与えないため適切を欠
く場合が多く、ひいては操業の安定と効率化を阻害する
結果となっていた。In response to this, the present applicant first indexed the gas composition and temperature distribution in the radial direction of the furnace obtained with an in-furnace gas sampler installed at the top of the furnace and kept this within an appropriate range. Japanese Patent Laid-Open No. 60-404 describes a method for stabilizing and increasing the efficiency of blast furnace operation by grasping the isothermal distribution in the radial direction of the furnace at 1400°C, which is representative of the settling zone, and controlling this within an appropriate range.
This is proposed by No. 82. [Problem to be solved by the invention 1 The indexing of the gas composition and temperature distribution in the radial direction of the furnace obtained by a gas sampler is qualitative information about the height of the softened cohesive zone in the furnace, which is intertwined with other factors. In many cases, this was not appropriate as it provided only a limited amount of information, which in turn hindered the stability and efficiency of operations.
また、1400℃の炉内半径方向の等温分布の計算では
,操業結果として得られる炉頂ガス温度、成分と複合送
風条件などの操業条件とから物質収支,熱収支に基づき
炉内での反応量を求め,さらに反応温度と伝熱速度から
炉高方向の温度分市を求めているが,これは炉内が定常
状態に保たれているという条件での計算であり,非定常
状態での計算すなわち短期間の操業実績に基づく計算や
炉内状況が大きく変化しつつある期間内の計算には物質
収支,熱収支がとれないこと等により適用できないケー
スが多い。従って軟化融着帯形状とその位置がどのよう
に変化しつつあるかという状況もこの方法では分からな
いという欠点がある.
〔課題を解決するための手段〕
本発明は上述の問題点を解決するもので、高炉上部の装
入物直上に設置したガスサンプラーでホ11定される炉
径方向の温度と炉径方向のCO,CO2.H2.N2等
のガス成分分布と操業条件とから、軟化融着帯形状とそ
の位置を炉径方向装入物の1400℃の等温線分市とし
て定量的に求め,装入物或は送風榮件の制御を行う高炉
の操業方法に適用され,次の方法を探った.すなわち,
軟化融着帯の降下速度と、装入物の降下速度の実測値と
の差および別途計算される高炉操業の熱流比に基づき,
軟化融t帯の将来の位置および形状を恕定し、炉頂装入
物の分配或は羽目からの送風条件を制御することを特徴
とする高炉の操業方法である。In addition, in calculating the isothermal distribution in the radial direction inside the furnace at 1400°C, the amount of reaction in the furnace is calculated based on the mass balance and heat balance from the furnace top gas temperature and components obtained as the operation results, and the operating conditions such as combined air blowing conditions. is calculated, and the temperature distribution in the furnace height direction is calculated from the reaction temperature and heat transfer rate. However, this calculation is performed under the condition that the inside of the furnace is maintained in a steady state, and the calculation is performed under an unsteady state. In other words, in many cases, calculations based on short-term operating results or calculations during periods where the conditions inside the reactor are undergoing significant changes cannot be applied because material balance and heat balance cannot be taken. Therefore, this method has the disadvantage that it is not possible to know how the shape of the softened cohesive zone and its position are changing. [Means for Solving the Problems] The present invention solves the above-mentioned problems, and the temperature in the radial direction of the furnace and the temperature in the radial direction of the furnace determined by the gas sampler installed directly above the charge in the upper part of the blast furnace. CO, CO2. H2. From the distribution of gas components such as N2 and the operating conditions, the shape and position of the softened cohesive zone are quantitatively determined as a 1400°C isothermal line segment of the charge in the radial direction of the furnace. The following methods were explored to be applied to the operating method of blast furnaces that perform control. That is,
Based on the difference between the falling speed of the softened cohesive zone and the actual value of the falling speed of the charge, and the separately calculated heat flow ratio of blast furnace operation,
This is a blast furnace operating method characterized by determining the future position and shape of the softened molten t-zone and controlling the distribution of the top charge or the conditions for blowing air from the slats.
[作用J
従来例の、1 400℃の炉内半径方向の等温線分布計
算(以下、モデル計算と略す)を様々なケースに適用し
てきた結果、計算結果の中、装入物降下速度と同時にセ
ンサーによって実測した降下速度が一致しないケースが
発生した.さらに、それらの結果と別途求めた熱流比お
よびその時の計算対象期間以後の融着帯位置、形状の変
化を調査してみると、それらの間には一定の関係がある
ことが明らかとなった。その関係を以下に示す.(1)
モデル計算の対象期間として5日間以上の開間を選択し
て,その平均の操業実績を用いて計算を行い、また比較
する実測の降下速度データはモデル計算の対象期間の中
の最新のl日平均値を用いる.
(2)実測の降下速度分布(直線近似とする)とモデル
計算による降下速度分布の比較で、実測の方が勾配が大
きい場合、融着帯形状は炉芯と炉壁のレベル差が拡大し
つつあることを示す。(第l図参照)
(3)その時,炉壁および炉芯の融着帯がどのように変
化するかは,実測降下速度データと同じ期間の熱流比と
モデル計算の対象期間の熱流比とを比較することにより
決定される。その変化の状況を第1図に示す.熱流比T
FRは、次式により定義される.
VTOX RTQ
・−(1)
ただし2
Wore (Wcoke )
:鉱石(コークス)装入速度( t / h r )R
ore (Rcoke )
:鉱石(コークス)比熱(kca″l/t・℃)
V TG :炉頂ガスN ( Nrn’/ h r )
RTG :炉頂ガス比熱( k c a I / N
rrr’ − ’C )熱流比は一般的に炉内の融着帯
の平均的高さを示すもので第1図で明らかになった融着
帯の変化の関係とよく一致している。[Effect J] As a result of applying the conventional isotherm distribution calculation in the radial direction inside the furnace at 1400°C (hereinafter referred to as model calculation) to various cases, we found that the There were cases where the actual descent speed measured by the sensor did not match. Furthermore, when examining these results, the heat flow ratio calculated separately, and changes in the position and shape of the cohesive zone after the period covered by the calculation, it became clear that there was a certain relationship between them. . The relationship is shown below. (1)
A period of 5 days or more is selected as the period covered by the model calculation, and calculations are performed using the average operating results.The actual falling speed data to be compared is the latest daily average during the period covered by the model calculation. Use values. (2) Comparison of the actually measured falling rate distribution (linear approximation) and the model calculated falling rate distribution shows that if the slope in the actual measurement is larger, the difference in level between the core and the wall of the cohesive zone will increase. It shows that it is growing. (See Figure 1) (3) At that time, how the cohesive zone of the furnace wall and the furnace core will change can be determined by comparing the heat flow ratio for the same period as the measured descent rate data and the heat flow ratio for the period covered by the model calculation. Determined by comparison. Figure 1 shows the situation of this change. Heat flow ratio T
FR is defined by the following formula. VTOX RTQ ・-(1) However, 2 Wore (Wcoke): Ore (coke) charging rate (t/hr)R
ore (Rcoke): Ore (coke) specific heat (kca″l/t・℃) V TG: Furnace top gas N (Nrn’/hr)
RTG: Furnace top gas specific heat (k ca I/N
rrr'-'C) The heat flow ratio generally indicates the average height of the cohesive zone in the furnace, and it agrees well with the relationship of changes in the cohesive zone shown in FIG.
なお、第l図において,
■TFRMはモデル計算の対象期間の平均の熱流比,
TFRRは実測降下速度データと同一期間の熱流比であ
り、
■融着帯の内,破線は、この時のモデル計算により得ら
れた融着帯形状を示し,実線は本発明により予測される
融着帯の変化方向を示す.また、炉頂装入物の降下速度
の測定には種々の方法があるが、ここではマイクロ波に
よる炉頂装入物プロフィール計の測定値を適用するもの
とする。すなわち、一定時間間隔で装入物プロフィール
を測定しその変化量から降下速度を漬算して求めるもの
である6マイクロ波によるプロフィール計の概要を第3
図に示す。これは、マイクロ波の発振器からのマイクロ
波を炉頂装入物表面に発射して,その反射波を受信器で
受信しその間のマイクロ波伝播時間から装入物までの距
離を算出するものである.この操作を炉径方向に行なえ
ば装入物のプロフィールが得られる。プロフィール計の
仕様は,
測定時間 : 120sec
測定精度 :±130mm
測定範囲 : 半径方向一方向
である。In Figure 1, ■TFRM is the average heat flow ratio for the period covered by the model calculation, TFRR is the heat flow ratio for the same period as the actually measured rate of descent data, and ■The broken line in the cohesive zone is the model at this time. The shape of the cohesive zone obtained by calculation is shown, and the solid line shows the direction of change of the cohesive zone predicted by the present invention. Furthermore, there are various methods for measuring the descending speed of the top charge, but here, the value measured by a top charge profile meter using microwaves is applied. In other words, Section 3 provides an overview of the 6-microwave profile meter, which measures the charge profile at regular time intervals and calculates the rate of descent from the amount of change.
As shown in the figure. This is a method in which microwaves from a microwave oscillator are emitted onto the surface of the charge at the top of the furnace, the reflected waves are received by a receiver, and the distance to the charge is calculated from the microwave propagation time. be. By performing this operation in the radial direction of the furnace, the profile of the charge can be obtained. The specifications of the profile meter are: Measurement time: 120 seconds Measurement accuracy: ±130 mm Measurement range: One direction in the radial direction.
また、モデル計算による降下速度と実測の降下速度のと
差は一定値以下にあることが重要で、そうでないと上述
の関係は得られない。この値は高炉の大きさ等により異
なるが、通常は20mm/min程度である.差が非常
に大きい場合は,炉内の定常状態からのずれが非常に大
きい非定常状態となっており、モデル計算結果が全く炉
内状況を表わしていないため、上述の関係が得られない
ものと推定される.
以上に示した様に、装入物のl400℃の炉径方向の等
温線分布として求められる軟化融着帯形状とその計算過
程で得られる装入物降下速度,そのモデル計算と同じ対
象期間の熱流比、実測の装入物降下速度5およびその実
測値と同じ対象期間の熱流比を用いることにより融着帯
の変化の予測が可能になる.
この予測結果に対応して融着帯の制御アクションをとる
ことにより従来よりも高精度の融着帯の制御が可能にな
り、高炉操業の安定化と効率化に寄与する。Furthermore, it is important that the difference between the descending speed calculated by the model and the actually measured descending speed be below a certain value, otherwise the above relationship will not be obtained. This value varies depending on the size of the blast furnace, etc., but is usually around 20 mm/min. If the difference is very large, the above relationship cannot be obtained because the deviation from the steady state inside the furnace is extremely large, and the model calculation results do not represent the inside situation at all. It is estimated to be. As shown above, the shape of the softened cohesive zone obtained as the isothermal distribution in the furnace radial direction at 1400℃ of the charge, the rate of descent of the charge obtained in the calculation process, and the rate of descent of the charge obtained during the same period as the model calculation. It is possible to predict changes in the cohesive zone by using the heat flow ratio, the actually measured charge fall rate 5, and the heat flow ratio for the same period as the actual measurement. By taking cohesive zone control actions in response to this prediction result, it becomes possible to control the cohesive zone with higher precision than before, contributing to the stabilization and efficiency of blast furnace operations.
本発明の処理フローを第2図により説明する.日毎の高
炉操業実績をもとに現在から5日前迄の平均的操業実績
を作成し,それを入力データとして軟化融着帯を代表す
るl400℃の炉内半径方向の等温分布を求める。この
方法の詳細は、前述の特公昭60−40482号に示す
通りである。The processing flow of the present invention will be explained with reference to FIG. Based on the daily blast furnace operation results, the average operation results from the present to five days ago are created, and using this as input data, the isothermal distribution in the radial direction inside the furnace at 1400°C, which represents the softened cohesive zone, is determined. The details of this method are as shown in the aforementioned Japanese Patent Publication No. 60-40482.
?のときの装入物降下速度の炉内半径方向分布も同時に
求められる。またこの同じ期間の熱流比を(1)式によ
り求める.
次に,その対象明間(5日間)の中の直五のl日間の平
均熱流比を求める.また同じ期間の平均の実測装入物降
下速度をマイクロ波プロフィール計測定結果より演算し
て求める。? The in-furnace radial distribution of the charge descending speed when . Also, calculate the heat flow ratio during this same period using equation (1). Next, find the average heat flow ratio for 1 day during the 5 day period of the target day. In addition, the average actually measured load descending speed during the same period is calculated from the microwave profile meter measurement results.
これらの結果より第1図に示す分類に従って現状(5日
間平均)の融着帯位置、レベルが今後どのように変化す
るかを予測する。その結果に基づいて軟化融着帯を適正
範囲に制御するために必要な操業アクションを決定する
.アクションは羽口からの送風条件としては送風温度,
温分,送風量等、また炉頃での原料装入条件としては1
回当りのコークスあるいは鉱石の装入量,装入線の高さ
,装入順序、ムーバブルアーマの■置,ベルレス高炉で
のシュート角度等の制御因子より選択して実廊する。From these results, we predict how the current (5-day average) cohesive zone position and level will change in the future according to the classification shown in Figure 1. Based on the results, the operational actions necessary to control the softened cohesive zone within an appropriate range are determined. The action is the air blowing temperature from the tuyeres,
Temperature, air flow rate, etc., and raw material charging conditions at the furnace are 1.
The method is selected based on control factors such as the amount of coke or ore charged per batch, the height of the charging line, the charging order, the location of the movable armor, and the chute angle in a bellless blast furnace.
〔実施例]
本発明を炉内容積4500rr?の高炉で出銑比1.9
で操業された時期(3ケ月間)に適用した例を示す。[Example] The present invention was applied to a furnace with an internal volume of 4500 rr? The blast furnace has an iron output ratio of 1.9.
An example of application during the period of operation (3 months) is shown below.
軟化融着帯を代表する1400℃の炉内半径方向の等温
分布計算は5日間の平均操業実績、また、実測降下速度
は直近のl日間の平均操業実績より求めそれらより融着
帯の動きを予ijI1するという第3図に示す一連の処
理を5日毎に実廁し,その結果に基づき所定の基準に従
ってアクションを実施した6
また,モデル計算による降下速度と実測の降下速度との
差は.15mm/min以下とし、両者の差がL5mm
/min以上の場合は処理を中断させ融着帯の変化予測
は求めないものとしている。The isothermal distribution calculation in the radial direction of the furnace at 1400°C, which represents the softened cohesive zone, was calculated based on the average operating results for 5 days, and the actual rate of descent was calculated from the average operating results for the most recent 1 day. The series of predictions shown in Figure 3 was carried out every five days, and based on the results, actions were taken according to predetermined standards. 15mm/min or less, and the difference between the two is L5mm
/min or more, the process is interrupted and no prediction of changes in the cohesive zone is required.
本発明を適用した操業について第E表に本発明適用前の
操業データと比較して示す.炉内装入物の降下速度の変
動状況を示し,ほど変動が大きい.
値が大きい
第l表によれば、融着帯の制御の精度が向上した結果、
装入物降下状況が改善され,また炉熱変動が低減したた
め、通気抵抗、疎密指数,溶銑成分のバラッキf[si
]、[S1)が大いに改善された。Table E shows operation data to which the present invention was applied in comparison with operational data before application of the present invention. This shows the fluctuations in the rate of descent of the contents in the reactor, and the fluctuations are larger. According to Table I, which has a large value, as a result of improving the accuracy of cohesive zone control,
As the burden descent situation was improved and the furnace heat fluctuation was reduced, the ventilation resistance, density index, and hot metal composition variation f [si
], [S1) were greatly improved.
[発明の効果]
本発明により,種々の操業実績に基づく情報により炉内
の軟化融着帯の変化方向を予測することができ、これを
適正範囲に入れるようなより高精度の制御が可能となり
、高炉の操業状態を良好に維持して生産性の向上を図る
ことができる.[Effects of the Invention] According to the present invention, it is possible to predict the direction of change in the softened cohesive zone in the furnace based on information based on various operational results, and it is possible to perform more precise control to keep the softened cohesive zone within an appropriate range. , it is possible to maintain the operating condition of the blast furnace in good condition and improve productivity.
第l図は,本発明の融着帯形状の変化予測の分類を示す
模式図、第2図は本発明実施のための処理フロー図、第
3図はマイクロ波プロフィール計の説明図である.
少f−ゾト
炉内Fig. 1 is a schematic diagram showing the classification of the prediction of changes in cohesive zone shape according to the present invention, Fig. 2 is a processing flow diagram for implementing the present invention, and Fig. 3 is an explanatory diagram of a microwave profile meter. Inside the small f-zoto furnace
Claims (1)
測定される炉径方向の温度と炉径方向のCO、CO_2
、H_2、N_2等のガス成分分布と操業条件とから、
軟化融着帯形状とその位置を炉径方向装入物の1400
℃の等温線分布として定量的に求め、装入物或は送風条
件の制御を行う高炉の操業方法において、該軟化融着帯
の降下速度と、装入物の降下 速度の実測値との差および別途計算される高炉操業の熱
流比に基づき、該軟化融着帯の将来の位置および形状を
想定し、炉頂装入物の分配或は羽口からの送風条件を制
御することを特徴とする高炉の操業方法。[Claims] 1. Temperature in the radial direction of the furnace and CO, CO_2 in the radial direction of the furnace, measured with a gas sampler installed directly above the charge at the top of the blast furnace.
, H_2, N_2, etc. from the gas component distribution and operating conditions,
The shape of the softened cohesive zone and its position are determined by the 1400°
In a blast furnace operating method that quantitatively determines the isothermal distribution of °C and controls the charge or air blowing conditions, the difference between the falling speed of the softened cohesive zone and the actual value of the falling speed of the charge The method is characterized in that the future position and shape of the softened cohesive zone is assumed based on the heat flow ratio of the blast furnace operation, which is calculated separately, and the distribution of the top charge or the air blowing conditions from the tuyere are controlled. How to operate a blast furnace.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14953689A JPH0317209A (en) | 1989-06-14 | 1989-06-14 | Method for operating blast furnace |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14953689A JPH0317209A (en) | 1989-06-14 | 1989-06-14 | Method for operating blast furnace |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0317209A true JPH0317209A (en) | 1991-01-25 |
Family
ID=15477285
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14953689A Pending JPH0317209A (en) | 1989-06-14 | 1989-06-14 | Method for operating blast furnace |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0317209A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104049649A (en) * | 2013-03-14 | 2014-09-17 | 宝山钢铁股份有限公司 | Model control method of heating furnace temperature |
-
1989
- 1989-06-14 JP JP14953689A patent/JPH0317209A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104049649A (en) * | 2013-03-14 | 2014-09-17 | 宝山钢铁股份有限公司 | Model control method of heating furnace temperature |
CN104049649B (en) * | 2013-03-14 | 2016-04-27 | 宝山钢铁股份有限公司 | The model control method of furnace temp |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3561743A (en) | Use of stack gas as oxygen potential measurements to control the bof process | |
JP6248550B2 (en) | How to determine blast furnace operating conditions | |
JPH0317209A (en) | Method for operating blast furnace | |
US4227921A (en) | Method of controlling a blast furnace operation | |
JPS58727B2 (en) | Estimation method of cohesive zone shape in blast furnace | |
JPH0254706A (en) | Method for operating blast furnace | |
JPS62188733A (en) | Manufacture of sintered ore | |
JP3065851B2 (en) | Manufacturing method of sponge iron | |
JPS5910966B2 (en) | How to operate a blast furnace | |
Laciak et al. | System of indirect measurement temperature of melt with adaptation module | |
JPH0433846B2 (en) | ||
JPS61159520A (en) | Converter refining method | |
SU1579897A1 (en) | Method of controlling heat treatment of phosphate material | |
JP2837284B2 (en) | Method and apparatus for producing hot metal containing chromium | |
JP2897363B2 (en) | Hot metal production method | |
SU981371A1 (en) | Method for conducting blast furnace smelting | |
JP2000008105A (en) | Control of distribution of charged material from furnace top of blast furnace | |
JPH04165009A (en) | Method for operating blast furnace | |
JPH02182813A (en) | Method for operating blast furnace | |
JP2969250B2 (en) | Blast furnace operation method | |
JPH05230510A (en) | Operating method for blast furnace | |
JPS5985841A (en) | Manufacture of ferrochromium | |
JP2022148377A (en) | Blast furnace operation method | |
SU943295A1 (en) | Method for controlling production process of producing ferromanganese in ore reducing furnace | |
SU624944A1 (en) | Method of control of agglomeration process |