JPS5910966B2 - How to operate a blast furnace - Google Patents

How to operate a blast furnace

Info

Publication number
JPS5910966B2
JPS5910966B2 JP54126199A JP12619979A JPS5910966B2 JP S5910966 B2 JPS5910966 B2 JP S5910966B2 JP 54126199 A JP54126199 A JP 54126199A JP 12619979 A JP12619979 A JP 12619979A JP S5910966 B2 JPS5910966 B2 JP S5910966B2
Authority
JP
Japan
Prior art keywords
hot metal
value
furnace
temperature
metal temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54126199A
Other languages
Japanese (ja)
Other versions
JPS5651507A (en
Inventor
祥行 的場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP54126199A priority Critical patent/JPS5910966B2/en
Publication of JPS5651507A publication Critical patent/JPS5651507A/en
Publication of JPS5910966B2 publication Critical patent/JPS5910966B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/006Automatically controlling the process

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)

Description

【発明の詳細な説明】 本発明は高炉の操業方法に関し、更に詳述すれば未来時
刻にj=−ける高炉内の溶銑温度又は溶銑Si値を高精
度で予測し、その予測値に基き、溶銑温度又は溶銑Si
を目標値に一致させるべく制御して安定な操業を可能と
する高炉の操業方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a blast furnace operating method, and more specifically, it predicts with high accuracy the hot metal temperature or hot metal Si value in the blast furnace at a future time j=-, and based on the predicted value, Hot metal temperature or hot metal Si
This invention relates to a method of operating a blast furnace that enables stable operation by controlling the temperature to match a target value.

高炉を安定み経済的に操業する為に炉熱制御は不可欠で
ある。
Furnace heat control is essential for stable and economical operation of blast furnaces.

即ち、炉熱が不安定となった場合は荷下がり、通気状態
も不安定となり、その為に浴銑温度、溶銑Si値等が変
動し、後の製鋼工程へ悪影響を及ぼすことになる。
That is, if the furnace heat becomes unstable, the load will drop and the ventilation state will also become unstable, which will cause changes in the bath pig iron temperature, hot metal Si value, etc., which will have an adverse effect on the subsequent steelmaking process.

更に炉熱を安定化することにより炉熱の目標レベルを低
下させて操業することが可能になるので、省エネルギー
の見地からも炉熱制御は重要である。
Further, by stabilizing the furnace heat, it becomes possible to operate with a lower target level of furnace heat, so furnace heat control is also important from the standpoint of energy conservation.

ところで炉熱変動の外的要因は装入原料の化学成分及び
物理性状であるとされている。
By the way, it is said that the external factors for furnace heat fluctuations are the chemical composition and physical properties of the charging raw material.

特に焼結鉱は装入鉱石のうちの70〜80チ以上の多き
を占めるのでその化学成分及び物理性状による影響は太
きい。
In particular, since sintered ore accounts for the majority of the charged ore, at least 70 to 80 tons, its chemical composition and physical properties have a significant influence.

一般に装入原料の化学成分及び物理性状については可及
的に一定となるように配慮して操業が行われるのである
が銘柄の切換、焼結鉱製造工程における外乱等の為に、
ある程度の変動は避けられず、特に原料の銘柄変更時、
プVンデイング変更時等には大きな変動を伴う。
Generally, operations are carried out with consideration given to keeping the chemical composition and physical properties of the charged raw materials as constant as possible, but due to brand changes, disturbances in the sinter production process, etc.
Some degree of fluctuation is inevitable, especially when changing brands of raw materials.
Large fluctuations occur when the programming is changed.

さて焼結鉱の化学成分及び物理性状は、従来、焼結機又
は焼結工場出口にて測定・管理されてきた。
Conventionally, the chemical components and physical properties of sintered ore have been measured and controlled at the exit of the sintering machine or sintering factory.

従って高炉に刻々と装入されぬ焼結鉱の成分・性状K:
)いてはこれを厳密に把握しているとは言い難い。
Therefore, the composition and properties of sintered ore that is not constantly charged into the blast furnace K:
), it is difficult to say that this is precisely understood.

即ち焼結機から高炉装入に至る迄の間にはベルトコンベ
ア、貯鉱漕が介在し、この貯鉱槽に一旦貯留された後切
出されて高炉へ装入されるので、焼結機出口での測定時
点から装入迄の間には通常数時間〜lO数時間の遅れ時
間が存在するからである。
In other words, a belt conveyor and a storage tank are used between the sintering machine and charging into the blast furnace. This is because there is usually a lag time of several hours to several hours between the time of measurement at the outlet and the time of charging.

従って原料の成分・性状が炉熱変動の主要因であると推
定されるとしても、炉熱、又はこれに追随変動臥炉熱制
御の指標となる溶銑温度、溶銑Si値に対する影響を定
量し得なかつtも このような次第であるから従来は主
として炉頂ガス分析値を基に炉内の反応状況を推定し、
過去の操業条件を参照して炉熱動向を推定するか、又は
数式モデルによってこれを推定し、この推定結果に基い
て燃料供給量等を制御を行う方法が採られていた。
Therefore, even if it is assumed that the ingredients and properties of the raw materials are the main cause of furnace heat fluctuations, it is not possible to quantify the influence on the furnace heat, or the hot metal temperature and hot metal Si value, which are indicators for follow-up fluctuations in the furnace heat control. Because of this, conventionally the reaction situation inside the furnace was estimated mainly based on the top gas analysis value,
The method of estimating the furnace heat trend by referring to past operating conditions or estimating it using a mathematical model, and controlling the fuel supply amount, etc. based on the estimation results has been adopted.

しかしながら斯かる制御に対する高炉の応答は遅く、炉
頂ガス分析値に依るフィードバック制脚では精度のよい
炉熱制御を行えないことは勿論、場合によっては原料の
成分・性状の変化による炉熱変動を助長する方向へ誤制
御することもあり、また原料の成分・性状の著しい変化
の為に炉熱が急変して炉冷えを招来する危険性もあった
However, the response of the blast furnace to such control is slow, and it goes without saying that accurate furnace heat control cannot be achieved with feedback control based on furnace top gas analysis values, and in some cases, it is difficult to control furnace heat fluctuations due to changes in raw material composition and properties. In addition, there was a risk that the furnace heat could suddenly change due to significant changes in the ingredients and properties of the raw materials, leading to furnace cooling.

本発明は斯かる事情に鑑みてなされたものであって、刻
々と高炉に装入される原料の化学成分・物理性状による
影響を事前に予測し、この予測結果に基くフイードフォ
ワード制御を行い炉熱を精度よく安定させることを可能
とし、安定且つ経済的な操業を行うことを可能とする高
炉の操業方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and involves predicting in advance the influence of the chemical composition and physical properties of raw materials charged into the blast furnace from moment to moment, and performing feedforward control based on the results of this prediction. It is an object of the present invention to provide a method of operating a blast furnace that enables stable and economical operation by stabilizing furnace heat with high precision.

本発明に係る高炉の操業方法は、 高炉へ装入されるべき原料の化学成分及び物理性状を原
料製造工場から高炉へ至る迄の間にて経時的に実測し、
且つ高炉へ至る迄の搬送過程における原料の移動をトラ
ッキングすることにより、刻々と高炉へ装入されていく
原料の化学成分及び物理性状を求め、 予め求めて2いた、原料の化学成分及び物理性状の変化
に対する溶銑温度又は溶銑Si値の応答特性を基に、前
述の如くして求めた化学成分及び物理性状の変化に因る
溶銑温度又は溶銑Si値の変化量を予測する一方、 予め求めておいた、操作量変更に対する炉内反応速度の
応答特性を基に、刻々得られる炉頂ガス分析値と前記炉
内反応速度の応答特性とから未来時刻での炉内反応速度
及び炉内部温度を予測し、この予測値と、溶銑温度又は
溶銑Si値の実測値とから未来時刻での溶銑温度又は溶
銑Si値を予測し、 この予測値に、前記溶銑温度又は溶銑Si値の変化量の
予測値を加えて得られる溶銑温度又は溶銑Si値の補正
予測値を得、次式に従い溶銑温度又は溶銑Si値を制御
することを特徴とする。
The blast furnace operating method according to the present invention includes actually measuring the chemical composition and physical properties of the raw material to be charged into the blast furnace over time from the raw material manufacturing factory to the blast furnace,
In addition, by tracking the movement of raw materials during the transportation process up to the blast furnace, we can determine the chemical composition and physical properties of the raw materials that are being charged into the blast furnace moment by moment, and the chemical composition and physical properties of the raw materials that have been determined in advance. Based on the response characteristics of hot metal temperature or hot metal Si value to changes in hot metal Based on the response characteristics of the reaction rate in the furnace to changes in the manipulated variable, the reaction rate in the furnace and the temperature inside the furnace at future times can be calculated from the top gas analysis values obtained every moment and the response characteristics of the reaction rate in the furnace. From this predicted value and the actual measured value of hot metal temperature or hot metal Si value, predict the hot metal temperature or hot metal Si value at a future time, and use this predicted value to predict the amount of change in the hot metal temperature or hot metal Si value. The method is characterized in that a corrected predicted value of the hot metal temperature or the hot metal Si value obtained by adding the values is obtained, and the hot metal temperature or the hot metal Si value is controlled according to the following equation.

但し U※:変更後操作量 UO ++.現時刻操作量 GT3:鐵 X※:溶銑温度又は溶銑Si値の目標値 X,:未来時刻jにおげる溶銑温度又は溶コ 銑Si値の補正予測値 以下本発明方法を図面に基いて詳述する。However, U*: Manipulated amount after change UO ++. Current time manipulated variable GT3: Iron X*: Target value of hot metal temperature or hot metal Si value X,: Hot metal temperature or molten metal that will rise at future time j Corrected predicted value of pig Si value The method of the present invention will be explained in detail below with reference to the drawings.

第1図は高炉原料たる焼結鉱、コークス等の高炉14に
至る迄の経路を模式的κ示している。
FIG. 1 schematically shows the route of the blast furnace raw materials such as sintered ore and coke to the blast furnace 14.

焼結鉱等の原料は焼結工場10、コークス製造工場10
′等から夫々にベルトコンベヤー1にて搬出され、一旦
夫々の貯鉱槽12に貯留され、その後荷下がり状況に応
じて切出され装入コンベヤー3によって搬送されて高炉
14へその炉頂から装入されるようになっている。
Raw materials such as sintered ore are available at 10 sintering plants and 10 coke manufacturing plants.
' etc. are carried out by the belt conveyor 1, stored in the respective storage tanks 12, and then cut out depending on the unloading situation, transported by the charging conveyor 3, and loaded into the blast furnace 14 from the top of the furnace. It is designed to be entered.

さて、このようにして高炉14へ装入される原料の化学
成分及び物理性状を遅れ時間なしに求める方法、つまり
、ある時点で実際に高炉へ装入されていく原料の成分・
性状を求める方法について説明する。
Now, how to determine the chemical composition and physical properties of the raw material charged into the blast furnace 14 without delay, that is, the composition and physical properties of the raw material actually charged into the blast furnace at a certain point in time.
We will explain how to obtain the properties.

この方法の基本原理はまず成分・性状を従来同様に焼結
工場等、原料製造工場にて適宜周期でサンプリング測定
し、このサンプリング対象部分の原料の搬送過程をコン
ピュータにて高炉へ装入される迄トラッキングし、サン
プリング対象部分及びその前後の原料の成分・性状を、
そのサンプリング対象部分につき先に測定して得た成分
一性状又はその修正データで順次代替していくこととす
るにある。
The basic principle of this method is that the ingredients and properties are first sampled and measured at appropriate intervals at a raw material manufacturing factory such as a sintering factory, as in conventional methods, and the transportation process of the raw material of the sampled portion is controlled by a computer and charged into the blast furnace. We track the ingredients and properties of the sampling target area and the raw materials before and after it.
The sampling target portion is sequentially replaced with the properties of the components obtained by measuring them or their modified data.

なお成分・性状の測定結果はサンプリング時刻より遅れ
て判明するが、サンプリング対象部分が高炉へ装入され
る迄には前述の如く数時間以上おるσヤ支障はない。
Although the measurement results of the components and properties are known later than the sampling time, there is no problem in that it takes several hours or more before the sampled part is charged into the blast furnace, as mentioned above.

以下焼結鉱につき貯鉱槽が1槽であるとして、その物理
性状測定項目の一つであるRDI (還元粉化性状)を
例にとって説明する。
Hereinafter, assuming that there is one ore storage tank for sintered ore, an explanation will be given by taking as an example RDI (reduction powder property), which is one of the physical property measurement items.

まず焼結工場から貯鉱槽12迄のベルトコンベヤ11に
よる搬送過程及び貯鉱槽12から高炉14までの装入コ
ンベヤ13による搬送過程においては、各過程の所要時
間ぱ略々一定であるので各所要時間を時間遅れとしてデ
ータ処理することによりこれらの過程でのトラッキング
は容易に行える。
First, in the conveyance process by the belt conveyor 11 from the sintering factory to the ore storage tank 12 and the conveyance process by the charging conveyor 13 from the ore storage tank 12 to the blast furnace 14, the time required for each process is approximately constant. Tracking in these processes can be easily performed by processing data using the required time as a time delay.

ベルトコンベヤ11の搬送速度及び装入コンヘヤ13の
搬送速度を経時的にコンピュータに入力L トラッキ
ング精度の向上を図ることとしてもよいことは勿論であ
る。
Of course, the conveyance speed of the belt conveyor 11 and the conveyance speed of the charging conveyor 13 may be input into the computer over time to improve the tracking accuracy.

次に貯鉱槽12内におけるトラッキング方法について述
べる。
Next, a tracking method within the ore storage tank 12 will be described.

貯鉱槽12を第2図に示す如く一定容積Δv(rrL3
)を有する多数の薄い水平層に高さ方向に分割認識し、
貯鉱槽12への装入終了時及び貯鉱槽12からの切出終
了時の各タイミングにて下記の演算を行い、各水平層R
DIを求めることとする。
As shown in FIG. 2, the ore storage tank 12 has a constant volume Δv (rrL3
) is recognized divided in the height direction into a number of thin horizontal layers,
The following calculations are performed at each timing at the end of charging into the ore storage tank 12 and at the end of cutting from the ore storage tank 12, and each horizontal layer R
Let's find DI.

以下この演算の説明の為に使用する記号の意味は次のと
おりである。
The meanings of the symbols used below to explain this operation are as follows.

なお水平層の番号は下から順にlI 2 − 3・・・
と上へ向うに従って犬となるように定める。
The horizontal layer numbers are lI 2 - 3... from the bottom.
As you move upwards, it becomes a dog.

Nmax: 焼結鉱が存する水平層のうち最上層のも
のの番号 Nmax: 装入又は切出の直前でのNmaxO値ρ
(#g/扉):焼結鉱の嵩密度 Wi n(#g) :装入量 Wout(#9):切出量 β:最上層の水平層における焼結鉱充填率(例えば第2
図中の2重斜線部のΔVに対する割合) β:装入又は切出の直前でのβの値(例えば第2図中の
小点部のΔ■に対する割合) RDIj(→:番号jの水平層につきトラソキングされ
たRDIO値 RDIjφ)二番号jの水平層における装入又は切△
出0直前f’)RDI(7)値 RDIk(→:番号kの水平層に装入された焼結鉱のR
DIO値 tins:装入開始時刻 tinE:装^終了寺刻 tin(Nmax+i):番号Nmax+iの水平層へ
焼結鉱が装入される時刻 W,(kV分):焼結工場から貯鉱槽までのベルトコン
ベヤ搬送速度 T8(分):焼結工場から貯鉱槽までの搬送所要時間 TB(分):貯鉱槽から高炉までの搬送所要時間Nin
:装入によって増加する水平層の数Nout:切出によ
って減少する水平層の数α:切出に与った最上水平層の
残存焼結鉱のΔ■に対する体積比率(例えば第4図aの
小点部のΔVに対する割合) イ)装入終了時 さて第2図は装入終了時の貯鉱槽内の状態を模式的に示
しており、図中2点鎖線は装入直前のレベlレを示して
いる。
Nmax: Number of the uppermost horizontal layer in which sintered ore exists Nmax: NmaxO value ρ immediately before charging or cutting
(#g/door): Bulk density of sintered ore Win (#g): Charging amount Wout (#9): Cutting amount β: Sintered ore filling rate in the uppermost horizontal layer (for example, the second
β: The value of β immediately before charging or cutting (for example, the ratio of the small dot in Figure 2 to ΔV) RDIO value trasoked per layer RDIjφ) charging or cutting in horizontal layer of second number j △
Immediately before output 0 f') RDI (7) Value RDIk (→: R of sintered ore charged in the horizontal layer with number k
DIO value tins: Time of charging start tinE: End of charging tin (Nmax+i): Time W when sintered ore is charged into the horizontal layer with number Nmax+i, (kV minutes): From sintering factory to ore storage tank Belt conveyor conveyance speed T8 (minutes): Required time for conveyance from the sintering factory to the ore storage tank TB (minutes): Required time for conveyance from the ore storage tank to the blast furnace Nin
: Number of horizontal layers increased by charging Nout : Number of horizontal layers decreased by cutting α : Volume ratio of the remaining sintered ore in the uppermost horizontal layer involved in cutting to Δ■ (for example, a) At the end of charging Figure 2 schematically shows the state inside the ore storage tank at the end of charging, and the two-dot chain line in the figure indicates the level l just before charging It shows.

この図を参照するとの関係式が成立することが明らかで
ある。
Referring to this figure, it is clear that the relational expression holds true.

一方、装入された焼結鉱(図中左下りの斜線で示す)の
各水平層についてのRDIの値はなお上述の時間区間の
RDI平均値とは、例えば( tin(Nma x+i
−1 ) * t i n(Nma x+i ) ,
1時間区間内のRDI平均値について説明すると、次の
ようにして求められる値である。
On the other hand, the RDI value for each horizontal layer of charged sintered ore (indicated by the diagonal line downward to the left in the figure) is different from the RDI average value in the above-mentioned time interval, for example, (tin(Nmax+i
-1) *tin(Nmax+i),
To explain the RDI average value within a one-hour period, it is a value obtained as follows.

即ち第3図は横軸に時刻を、また縦軸にRDI値をとっ
て、RDI測定結果とサンプリング時点とを対応づけて
○印で示してある。
That is, in FIG. 3, time is plotted on the horizontal axis, and RDI value is plotted on the vertical axis, and the RDI measurement results and sampling time points are shown in correspondence with each other by circles.

而してtin{Nmax+i−1)及びtin(Nma
x+i )の各時刻から時間Tsだけ遡った時刻(即ち
夫々の時刻に貯鉱槽に装入された焼結鉱が焼結工場のサ
ンプリング位置を通過した時刻) tin(Nmax+
i −1 )−’rg及びtin(Nmax+i)−T
8が例えば図中の2本の縦線にて表わせるものとすると
、RDI平均値はこの縦線区間内における○印座標の直
線補間値の平均値(破線で示す)として求められるもの
とする。
Then, tin{Nmax+i-1) and tin(Nmax
x+i)) (i.e., the time when the sintered ore charged into the ore storage tank at each time passed the sampling position of the sintering factory) tin(Nmax+
i −1 )−′rg and tin(Nmax+i)−T
8 can be represented, for example, by two vertical lines in the figure, the RDI average value is determined as the average value (indicated by a broken line) of the linearly interpolated values of the ○-marked coordinates within this vertical line section. .

このようにしてRDIk(ここではk=Nmax〜Nm
ax)を求めると貯鉱槽内の各水平層におけるRDIは
次の計算式にて求めることができる。
In this way, RDIk (here k=Nmax~Nm
ax), the RDI in each horizontal layer in the ore storage tank can be calculated using the following formula.

(口)切出し終了時 第4図aは切出値前の状態を、第4図.b.は切出後の
貯鉱槽内の状態を夫々模式.的に示している。
(Opening) At the end of cutting, Figure 4a shows the state before the cutting value. b. are schematic diagrams of the conditions inside the ore storage tank after quarrying. It shows.

図中左下りの斜線部分が切出された部分である。The diagonally shaded part on the lower left side of the figure is the cut out part.

この図を参照すると、そして また と計算されJ才心の値をもとに貯鉱槽内の各水平層KJ
JdるRDIは次の計算式にて求めることができる。
Referring to this figure, each horizontal layer KJ in the ore storage tank is calculated based on the value of J Saishin.
Jd RDI can be calculated using the following formula.

このようにして貯鉱槽内の焼結鉱のRDI値はトラッキ
ングされることになる力ζ切出に与る水平層のRDIは
RDI.(j−”l−2=Nout) であるから、高
炉に装入される焼結鉱の1チャージの平均的RDIは として求められ、これらの焼結鉱が(切出し時刻+TB
)の時刻に高炉に装入されるとしてトラッキングが行わ
れる。
In this way, the RDI value of the sintered ore in the ore storage tank will be tracked.The RDI of the horizontal layer that affects the force ζ cutting is RDI. (j-"l-2=Nout), the average RDI of one charge of sintered ore charged into the blast furnace is calculated as (cutting time + TB
) Tracking is performed assuming that the material is charged into the blast furnace at the time.

以上焼結鉱のRDIのトラッキングについて述べたが、
焼結鉱の他の物理性状、或は化学成分、更にはコークス
等の他の原料の成分・性状についても全く同様に行える
I have described the RDI tracking of sintered ore above, but
The same process can be applied to other physical properties or chemical components of the sintered ore, and even to the components and properties of other raw materials such as coke.

なお貯鉱槽が各原料につき複数基用意されている場合は
、各貯鉱槽につきトラッキングを行うことは勿論である
が、各槽についてトラッキングされた性状値を各槽から
の切出量によって加重平均した値を用いればよい。
If multiple ore storage tanks are prepared for each raw material, it goes without saying that tracking is performed for each ore storage tank, but the property values tracked for each tank are weighted by the amount cut from each tank. An average value may be used.

なお原料の成分・性状については一般には連続的に、又
はリアルタイムでは測定し得ないが、上述の説明でとり
上げたRDIについては連続的且つリアルタイムで測定
することが可能である。
Although the components and properties of raw materials cannot generally be measured continuously or in real time, it is possible to measure the RDI mentioned in the above explanation continuously and in real time.

即ち焼結鉱の透磁率とRDIとの間には強い相関が在る
ことが知られている。
That is, it is known that there is a strong correlation between the magnetic permeability of sintered ore and RDI.

従って第1図に示す如く磁気測定装置15を貯鉱槽12
の出口、装入コンベヤ13の中途等に配して、これによ
り通過焼結鉱の透磁率を連続的に測定することにより、
間接的にRDIを連続的、且つリアルタイムで測定する
ことができる。
Therefore, as shown in FIG.
By placing it at the exit of the charging conveyor 13, etc., and continuously measuring the magnetic permeability of the passing sintered ore,
Indirect RDI can be measured continuously and in real time.

従って磁気測定装置15の配設位置から高炉までの搬送
所要時間(略一定)を与えると、RDIに関する限りは
極めて簡単にトラッキングできることになる。
Therefore, if the time required for transportation from the location of the magnetic measuring device 15 to the blast furnace (approximately constant) is given, tracking can be performed extremely easily as far as RDI is concerned.

さて高炉のステップ応答実験又は高炉データの解析によ
って、原料の成分・性状の変化に対する溶銑温度のステ
ップ応答性を予め求めておく。
Now, the step response of the hot metal temperature to changes in the composition and properties of the raw material is determined in advance by a blast furnace step response experiment or by analysis of blast furnace data.

すなわち第5図aに示すように成分又は性状(炉熱に影
響を及ぼすとして測定項目に選択されたもの。
That is, as shown in Figure 5a, the components or properties (those selected as measurement items because they affect the furnace heat).

例えば焼結鉱のRDI、鉄含有量、回転強度、平均粒径
、コークスの冷間強度、熱間強度、平均粒径等)Un
がΔUnだけステップ的に変化した場合において、第5
図bに示すように時間遅れをもって、しかも徐々に変化
する溶銑温度Tpigの変動分 Tpigを求める。
For example, RDI of sintered ore, iron content, rotational strength, average particle size, cold strength of coke, hot strength, average particle size, etc.) Un
changes stepwise by ΔUn, the fifth
As shown in Figure b, the fluctuation amount Tpig of the hot metal temperature Tpig which changes gradually with a time delay is determined.

そして応答が定常状態に達すると考えられる時刻T迄の
応答係数杼を下記(l6)式にて求める。
Then, the response coefficient up to time T when the response is considered to reach a steady state is determined using the following equation (16).

第5図Cはその結果を示している。Figure 5C shows the results.

なお!は成分・性状のステップ変化時点をOとする時間
軸七において図中の・の横軸座標値たる離散的時刻を示
し、K!,Tメ 及び後述のU!n plg
n等はその時刻における値である
ことを意味している。
In addition! K! indicates the discrete time that is the horizontal axis coordinate value of . , Tme and U! mentioned below. nplg
n, etc. means the value at that time.

さてこのようにしてK7′を求めておくと、トラッキン
グにより把握されているU の変化を用いることによっ
て、原料の成分・性状の変化にて惹起される溶銑温度T
・ の変化分が予測できることになる。
Now, when K7' is determined in this way, by using the changes in U that are known through tracking, the temperature T of hot metal caused by changes in the ingredients and properties of the raw material
・The change in can be predicted.

すなわち成分・性状によって生じる、j 未来時刻月でのTpigの変化量ΔTpigはにて表わ
される。
That is, the amount of change ΔTpig in Tpig in j future time months, which is caused by the components and properties, is expressed by ΔTpig.

なおΣは、成分・性状の全項目についての()内の演算
結果の総和をとることを意味している。
Note that Σ means taking the sum of the calculation results in parentheses for all items of ingredients and properties.

なお、ここでは溶銑温度のステップ応答性を予め求めて
おき、これとトラッキング結果とから時刻jにおける溶
銑温度の変化量を予測することとしたが、溶銑Si値の
ステップ応答性を求めておき、同様にして時刻jにおけ
るその変化量を予測することとしてもよい。
Note that here, the step response of the hot metal temperature was determined in advance, and the amount of change in the hot metal temperature at time j was predicted from this and the tracking results, but the step response of the hot metal Si value was determined, Similarly, the amount of change at time j may be predicted.

このようにして原料の成分・性状の変化に伴う炉熱変動
の予測、換言すれば未来時刻での溶銑温度、溶銑Si値
の変化量の予測が行われる。
In this way, the furnace heat fluctuations due to changes in the ingredients and properties of the raw materials are predicted, or in other words, the amount of change in the hot metal temperature and hot metal Si value at a future time is predicted.

一方、送風条件及び炉頂ガス成分によって推定される現
時刻の炉熱及び過去の操作量に基く炉熱推移の予測は既
に本願発明者が完成、提案した特願昭52−10600
3号の発明により実施することができる。
On the other hand, the prediction of the furnace heat transition based on the current furnace heat estimated from the blowing conditions and the top gas components and the past operation amount has already been completed and proposed by the inventor of the present invention in Japanese Patent Application No. 10600/1983.
This can be carried out according to invention No. 3.

まず炉熱の現時刻推定及び未来予測に用いる数式モデル
につき説明する。
First, the mathematical model used for current estimation and future prediction of furnace heat will be explained.

数式モデルは第6図に示す如く、炉最上部の予熱帯(第
1層)、F e 2 Q 3の還元帯(第2層)、Fe
3Q4の還元帯(第3層)、FeQの還元及び直接還元
反応帯(第4層)、及びカーボン燃焼帯(第5層)の5
つの層に分割して、各層について物質、圧力、熱収支式
を立てた数式モデルであり、炉内部の物質の分布、物質
の移動は第7図のように表わされる。
As shown in Figure 6, the mathematical model consists of a preheating zone (first layer) at the top of the furnace, a Fe 2 Q 3 reduction zone (second layer), and a Fe 2 Q 3 reduction zone (second layer).
3Q4 reduction zone (third layer), FeQ reduction and direct reduction reaction zone (fourth layer), and carbon combustion zone (fifth layer).
This is a mathematical model that is divided into two layers and formulas for material, pressure, and heat balance are established for each layer, and the distribution of materials and movement of materials inside the furnace are expressed as shown in Figure 7.

現時刻炉内部温度計算の手順は、刻々現時刻操作量、す
なわち羽口操作量(送風量、富化酸素、湿分、送風温度
、液体燃料)、ore/coke及び炉頂装入物組成と
、炉頂ガス組成とにより反応速度R1〜R1o(第6図
参照)を求め、R1〜Rloより各段物質移動流量を計
算し熱収支式(一階の微分方程式)を解いて各段固体温
度TSi、ガス温度TGiを計算する。
The procedure for calculating the current furnace internal temperature is based on the current operating variables, that is, the tuyere operating variables (air flow rate, enriched oxygen, moisture, air temperature, liquid fuel), ore/coke, and top charge composition. , the reaction rate R1 to R1o (see Figure 6) is calculated from the top gas composition, the mass transfer flow rate at each stage is calculated from R1 to Rlo, and the heat balance equation (first-order differential equation) is solved to determine the solid temperature at each stage. Calculate TSi and gas temperature TGi.

反応速度R1〜RIOは、第6図の反応式にて定義義さ
れる量であるが、現時刻のRl〜Rtoは次式のように
して求まる。
The reaction rates R1 to RIO are quantities defined by the reaction equation shown in FIG. 6, and the current times R1 to Rto are determined by the following equation.

(R6*R7*RBは送風条件から直ちに求められる)
( R 4 1 R 5 * R 9は炉頂ガス分析値
を用いて次のように求まる) (さらにストツクライン一定という装入速度を保って操
業下では次式が成り立つ) 但し 反応速度R1〜R’toが求まると、各段物質移動量(
S)i、ガス移動量(C) iが(27).(28)を
用いて求まる。
(R6*R7*RB can be found immediately from the air blowing conditions)
(R 4 1 R 5 * R 9 is determined as follows using the furnace top gas analysis value) (Furthermore, the following formula holds true during operation while maintaining the charging speed at a constant stock line) However, the reaction rate R1 to R 'to is determined, the amount of mass transfer at each stage (
S) i, gas movement amount (C) i is (27). It is found using (28).

但し なおS。however Furthermore, S.

はストツクライン一定操業下ではR5および装入物組成
より計算できる。
can be calculated from R5 and the charge composition under constant stock line operation.

またG5については送風条件より求まる。Further, G5 can be determined from the air blowing conditions.

各段物移動流量が定まると各段の熱収支式(29)(3
0)を解くことによって現時刻でのTS i * TG
tが求められる。
Once the moving flow rate of each stage is determined, the heat balance equation for each stage (29) (3
0) at the current time, TS i * TG
t is found.

ここで、 次に未来時刻での炉内部温度計算の手順は、未来時刻の
反応速度を予測する他は物質移動流量熱収支式の解法に
わたり先に説明した現時刻推定とまったく同じ計算方式
を適用する。
Here, the procedure for calculating the furnace internal temperature at the future time is to apply exactly the same calculation method as the current time estimation explained earlier, except for predicting the reaction rate at the future time, and solving the mass transfer flow rate heat balance equation. do.

本予測方式で特徴的な反応速度の予測方法は以下に述べ
るとおりである。
The reaction rate prediction method that is characteristic of this prediction method is as described below.

すなわち第5図に基いて説明した如き原料の成分・性状
の変化に対する応答性を求めた手法と同様にして、まず
あらかじめ高炉データ解析又はステップ応答実験等によ
り操作量Un(n:重油、送風量、富化酸素、装入コー
クス比、送風温度、湿分、炉頂圧)に対する反応速度R
4・R5の応答を調べ (3l)・(32)式で表わさ
れる反応速度式の応答係数K7,K4を定める。
That is, in the same way as the method of determining the responsiveness to changes in the ingredients and properties of raw materials as explained based on Fig. 5, first, the manipulated variable Un (n: heavy oil, air flow rate) is determined by blast furnace data analysis or step response experiment, etc. , enriched oxygen, charging coke ratio, blast temperature, moisture, furnace top pressure)
4. Examine the response of R5 and determine the response coefficients K7 and K4 of the reaction rate equation expressed by equations (3l) and (32).

n n これらより操作変更量ΔUnによる時刻jでのRA.R
ヤは次式(33). (34)の如くになる。
n n From these, RA at time j based on the operation change amount ΔUn. R
Y is the following formula (33). It becomes like (34).

次に先に説明したとおり現時刻反応速度はf1頂ガス組
成より計算可能であるので輿侍刻RXe R’5及びK
j * K’jを用いて反応速度式を(35). (
36)の如く修正する。
Next, as explained earlier, since the current reaction rate can be calculated from the f1 top gas composition, the
Using j * K'j, the reaction rate equation is expressed as (35). (
36).

さらにその他の反応速度については(37)〜(43)
式を用いて予測計算を行う。
Regarding other reaction rates, (37) to (43)
Perform predictive calculations using formulas.

以上のようにして未来の反応速度を予測した後、物質流
量計算、熱収支計算を行い未来時刻の内部温度T81%
ガス温度TGiを予測計算する。
After predicting the future reaction rate as described above, the material flow rate calculation and heat balance calculation are performed, and the internal temperature at the future time is T81%.
Predictively calculate the gas temperature TGi.

上に述べた計算値のうち計算炉下部固体温度TS5は実
績溶銑温度及び実績溶銑Si値ときわめてよく対応して
おり、精度の良い溶銑温度又は溶銑Si値の予測が可能
であることが証明されている。
Among the calculated values mentioned above, the calculated furnace lower solid temperature TS5 corresponds extremely well to the actual hot metal temperature and the actual hot metal Si value, proving that it is possible to predict the hot metal temperature or hot metal Si value with high accuracy. ing.

計算固体温度TS5と実績溶銑温度Tpig又は実績溶
銑Si値はよく対応しているが、長期的に観ると計測値
のドリフトや高炉熱損失の変化のためTS5とT,j,
XはSiとにVペルの差を生じてくることがある。
The calculated solid temperature TS5 and the actual hot metal temperature Tpig or the actual hot metal Si value correspond well, but in the long term, due to drift in the measured value and changes in blast furnace heat loss, TS5 and T, j,
X may cause a difference in V pel from Si.

したがって浴銑温度又は溶銑Si値を制御するためには
レベルの差を適切に修正してやる必要がある。
Therefore, in order to control the bath iron temperature or hot metal Si value, it is necessary to appropriately correct the level difference.

例えば、溶銑温度を指標として制御する場合を説明する
と、測定溶銑温度Tpig”その測定時刻における計算
現時刻炉下部温度TS5との差分δTpigを用いて予
測溶銑温度を(44ル(45)式のごとく修正する。
For example, to explain the case of controlling using the hot metal temperature as an index, the predicted hot metal temperature is calculated using the difference δTpig between the measured hot metal temperature Tpig and the calculated current furnace lower temperature TS5 at the measurement time, as shown in equation (44) (45). Fix it.

(第8図参照)但し なおδTpigは測定誤差の影響を除くため数タップの
平均値を用いることもできる。
(See FIG. 8) However, for δTpig, an average value of several taps can be used to eliminate the influence of measurement errors.

このようにして得られた♀! は、場寺刻の操作量を未
来まで維持した場合の時刻jでの溶銑温度の予測値を表
わす。
This is how I got it! represents the predicted value of the hot metal temperature at time j when the manipulated variable of the base time is maintained into the future.

このように(44)式にて未来時刻jでの予測溶銑温度
T ノ が求められるが、本発明では原料の成分・性状
による未来時刻jでの溶銑温度変化量予測値、即ち(l
7)式で表わされるΔTJ を加味して補正し、その
未来時刻jにおける溶銑温度と推定する。
In this way, the predicted hot metal temperature T ノ at future time j is obtained using equation (44), but in the present invention, the predicted value of the change in hot metal temperature at future time j based on the ingredients and properties of the raw material, that is, (l
7) It is corrected by taking into account ΔTJ expressed by the formula, and the temperature of the hot metal at that future time j is estimated.

而して炉熱安定化の為の操作量は、上述の如き溶銑温度
の補正予測値、即ちT J,+ΔT.jと目標溶銑温度
Ttとの偏差に基、髭一記(ptg式によって決定され
る。
The manipulated variable for stabilizing the furnace heat is the corrected predicted value of the hot metal temperature as described above, that is, TJ, +ΔT. Based on the deviation between j and the target hot metal temperature Tt, it is determined by the ptg formula.

但し 但し、変更すべき操作量としては送風温度・湿分・重油
吹込量・o r e/c o ke等のうち操業方針で
決定された操作量を任意に選ぶことができる。
However, as the manipulated variables to be changed, the manipulated variables determined by the operating policy can be arbitrarily selected from among the air blowing temperature, humidity, heavy oil injection amount, ore/coke, etc.

第8図及び第9図は重油吹込量を例にとった場合の本発
明に係る操業方法の概念図である。
FIGS. 8 and 9 are conceptual diagrams of the operating method according to the present invention, taking the amount of heavy oil injection as an example.

即ち種々の操作量のうち重油吹込量を第8図Aに示す如
く変更した場合において、未来時刻の溶銑温度を目標値
に制御する為に更に重油吹込量を変更する必要があるが
、この変更量を決定する。
That is, when the amount of heavy oil injection among the various manipulated variables is changed as shown in Figure 8A, it is necessary to further change the amount of heavy oil injection in order to control the hot metal temperature at the future time to the target value. Determine the amount.

これは予め求めたKIK” よりR ,R の変
動量ΔR ,ΔR を式(35). (37)に計算し
〔第8図B〕、これらから未来の下部固体温度及び溶銑
温度令シ△.91g を予測し〔第8図C〕、更にこの溶銑温度Tp’i g
にΔTp1igを加えて補正した温度がより正確な未来
溶銑温度であるとして、この未来溶銑温度が目標温度と
なるように(46)式に従って現在時刻に2ける重油吹
込量の変更量を決定するものである。
This is done by calculating the fluctuation amounts ΔR and ΔR of R and R using equations (35) and (37) from the previously determined KIK'' [Fig. 91g [Fig. 8C], and furthermore, this hot metal temperature Tp'i g
Assuming that the temperature corrected by adding ΔTp1ig to is a more accurate future hot metal temperature, the amount of change in the heavy oil injection amount at the current time is determined according to equation (46) so that this future hot metal temperature becomes the target temperature. It is.

なお第9図中の(460式は前掲(46成に2ける操作
量を重油吹込量とLU※,UOを夫々Oil※s O
r 1 0と表わしたものであり、実質的に(46)弐
同様である。
In Figure 9, (Formula 460 is shown above,
It is expressed as r 1 0, and is substantially the same as (46)2.

このように本発明においては従来から炉熱変動の主要因
の一つであるとされながら、系統立ててはその影響を炉
熱変動の解析に反映させ得なかった装入原料の化学成分
及び物理性状は、原料搬送過程におけるトラッキングを
行うことにより、その刻々の値を求めることとして、そ
の変化に基く炉熱変動を事前に予測し、更に他の要因に
よる炉熱変動は別途手段にて予測することとし、両予測
結果に基き、より正確な炉熱変動予測を行うものである
から精度のよい炉熱制御が可能となり、銑鉄品位の均一
化、目標熱レベルの低減による省エネルギ等に極めて有
効である。
In this way, the present invention focuses on the chemical composition and physical properties of charging materials, which have been considered to be one of the main factors of furnace heat fluctuations, but whose effects could not be systematically reflected in the analysis of furnace heat fluctuations. As for the properties, by tracking the raw material transportation process, we obtain the momentary values and predict the furnace heat fluctuations based on the changes in advance, and further predict the furnace heat fluctuations due to other factors by separate means. Based on the results of both predictions, more accurate predictions of furnace heat fluctuations are made, which enables highly accurate furnace heat control, and is extremely effective in equalizing pig iron grade and saving energy by reducing the target heat level. It is.

な訃前述の実施例では溶銑温度を炉熱制御又は監視の指
標としたが、これに替えて溶銑Si値を採用しても全く
同様に本発明を実施し得る。
In the embodiments described above, the hot metal temperature was used as an index for furnace heat control or monitoring, but the present invention can be carried out in exactly the same way even if the hot metal Si value is used instead.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は原料搬送系を示す模式図、第2図は原料装入後
の貯鉱槽の状態を示す概念図、第3図はRDI平均饋の
求め方を概念的に示す説明図、第4図a及びbは夫々原
料切出前及び切出後の貯鉱槽の状態を示す概念図、第5
図A,B及びCは夫夫Un・Tp,g&びK《の時間的
推移を示すグラフ、第6図は高炉内部の反応モデルを示
す説明図、第7図は第6図に示す高炉内部における物質
の分布及び移動を示す模式図、第8図は未来時刻の予測
TS と実測溶銑温度とから未来時刻の溶銑温度の予
測を行う方法の説明図、第9図は未来時刻の溶銑温度の
補正予測値から制御に必要な操作量の変更量を求める方
法を示す説明図である。 10・・・・・・焼結工411・・・・・・ベルトコン
ベヤ、12・・・・・・貯鉱槽、13・・・・・・装入
コンベヤ、14・・・・・・高炉、15・・・・・・磁
気測定装置。
Figure 1 is a schematic diagram showing the raw material conveyance system, Figure 2 is a conceptual diagram showing the state of the ore storage tank after raw material is charged, Figure 3 is an explanatory diagram conceptually showing how to calculate the RDI average feed rate, Figures 4a and 4b are conceptual diagrams showing the state of the ore storage tank before and after raw material cutting, respectively.
Figures A, B, and C are graphs showing the time trends of Fufu Un, Tp, g, and K《, Figure 6 is an explanatory diagram showing a reaction model inside the blast furnace, and Figure 7 is the inside of the blast furnace shown in Figure 6. Figure 8 is an explanatory diagram of a method for predicting the hot metal temperature at a future time from the predicted TS at a future time and the actually measured hot metal temperature. Figure 9 is a schematic diagram showing the distribution and movement of materials at a future time. FIG. 7 is an explanatory diagram showing a method of determining the amount of change in the operation amount necessary for control from the corrected predicted value. 10... Sintering work 411... Belt conveyor, 12... Ore storage tank, 13... Charging conveyor, 14... Blast furnace , 15...Magnetic measuring device.

Claims (1)

【特許請求の範囲】 1 高炉へ装入されるべき原料の化学成分及び物理性状
を原料製造工場から高炉へ至る迄の間にて経時的に実測
し且つ高炉へ至る迄の搬送過程における原料の移動をト
ラッキングすることにより、刻々と高炉へ装入されてい
く原料の化学成分及び物理性状を求め、 予め求めておいた、原料の化学成分及び物理性状の変化
に対する溶銑温度又は溶銑Si値の応答特性を基に、前
述の如くして求めた化学成分及び物理性状の変化に因る
溶銑温度又は溶銑Si値の変化量を予測する一方、 予め求めておいた、操作量変更に対する炉内反応速度の
応答特性を基に、刻々得られる炉頂ガス分析値と前記炉
内反応速度の応答特性とから未来時刻での炉内反応速度
及び炉内部温度を予測し、この予測値と、溶銑温度又は
溶銑Si値の実測値とから未来時刻での溶銑温度又は溶
銑Si値を予測し、 この予測値に、前記溶銑温度又は溶銑Si値の変化量の
予測値を加えて得られる溶銑温度又は溶銑Si値の補正
予測値を得、次式に従い溶銑温度又は溶銑Si値を制御
することを特徴とする高炉の操業方法。 但し U※ :変更後操作量 UO :現時刻操作量 GJ:定数 X※ :溶銑温度又は溶銑Si値の目標値Xj :奥
来時刻jにおける溶銑温度又は溶銑Si値の補正予測値
[Claims] 1. The chemical composition and physical properties of the raw material to be charged into the blast furnace are actually measured over time from the raw material manufacturing factory to the blast furnace, and the raw material is By tracking the movement, the chemical composition and physical properties of the raw material being charged into the blast furnace are determined moment by moment, and the response of hot metal temperature or hot metal Si value to changes in the chemical composition and physical properties of the raw material, which have been determined in advance, is determined. Based on the characteristics, while predicting the amount of change in the hot metal temperature or hot metal Si value due to changes in the chemical composition and physical properties determined as described above, Based on the response characteristics of the furnace top gas analysis values obtained every moment and the response characteristics of the furnace reaction speed, the furnace reaction rate and furnace internal temperature at a future time are predicted, and this predicted value and the hot metal temperature or The hot metal temperature or hot metal Si value obtained by predicting the hot metal temperature or hot metal Si value at a future time from the actual measured value of the hot metal Si value, and adding the predicted value of the amount of change in the hot metal temperature or hot metal Si value to this predicted value. A method for operating a blast furnace, comprising: obtaining a corrected predicted value, and controlling the hot metal temperature or the hot metal Si value according to the following equation. However, U*: Post-change manipulated variable UO: Current time manipulated variable GJ: Constant X*: Target value of hot metal temperature or hot metal Si value Xj: Corrected predicted value of hot metal temperature or hot metal Si value at time j
JP54126199A 1979-09-28 1979-09-28 How to operate a blast furnace Expired JPS5910966B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54126199A JPS5910966B2 (en) 1979-09-28 1979-09-28 How to operate a blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54126199A JPS5910966B2 (en) 1979-09-28 1979-09-28 How to operate a blast furnace

Publications (2)

Publication Number Publication Date
JPS5651507A JPS5651507A (en) 1981-05-09
JPS5910966B2 true JPS5910966B2 (en) 1984-03-13

Family

ID=14929150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54126199A Expired JPS5910966B2 (en) 1979-09-28 1979-09-28 How to operate a blast furnace

Country Status (1)

Country Link
JP (1) JPS5910966B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2787198A1 (en) * 2010-01-19 2011-07-28 Aditya Birla Science & Technology Co. Ltd. A system and method for monitoring and optimizing smelting operations of a furnace
JP6519036B2 (en) * 2016-12-16 2019-05-29 Jfeスチール株式会社 Blast furnace operation method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5439312A (en) * 1977-09-03 1979-03-26 Sumitomo Metal Ind Ltd Method of operating blast furnace

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5439312A (en) * 1977-09-03 1979-03-26 Sumitomo Metal Ind Ltd Method of operating blast furnace

Also Published As

Publication number Publication date
JPS5651507A (en) 1981-05-09

Similar Documents

Publication Publication Date Title
JP6531782B2 (en) Hot metal temperature prediction method, hot metal temperature prediction device, blast furnace operation method, operation guidance device, hot metal temperature control method, and hot metal temperature control device
Radhakrishnan et al. Neural networks for the identification and control of blast furnace hot metal quality
JPS6111289B2 (en)
JP6729514B2 (en) Hot metal temperature prediction method, hot metal temperature prediction device, blast furnace operating method, operation guidance device, hot metal temperature control method, and hot metal temperature control device
JP6930507B2 (en) Hot metal temperature prediction method, hot metal temperature prediction device, blast furnace operation method, operation guidance device, hot metal temperature control method, and hot metal temperature control device
US3719811A (en) Blast furnace computer control utilizing feedback corrective signals
JPS5910966B2 (en) How to operate a blast furnace
US4227921A (en) Method of controlling a blast furnace operation
EP3989013B1 (en) Method for controlling process, operation guidance method, method for operating blast furnace, method for producing hot metal, and device for controlling process
JPH11335710A (en) Method for predicting furnace heat in blast furnace
CN114662767A (en) Low-carbon blast furnace smelting cost control method and system
JP6375741B2 (en) Control method of molten steel temperature in steelmaking factory
JPS6055561B2 (en) How to operate a blast furnace
JP3287242B2 (en) Blast furnace heat prediction method
JPH11323412A (en) Detection of furnace temperature drop in blast furnace
EP4155421A1 (en) Method for controlling hot metal temperature, operation guidance method, method for operating blast furnace, method for producing hot metal, device for controlling hot metal temperature, and operation guidance device
JPH0317209A (en) Method for operating blast furnace
JP4244477B2 (en) Blast furnace operation method
RU2229074C1 (en) Method for controlling pellets roasting process on conveying machine
SU1553809A1 (en) Method of controlling iron-melting in cupola furnace
JPH0433846B2 (en)
JP2897363B2 (en) Hot metal production method
JPH06158268A (en) Method for continuous carburization and temperature control of metal strip
CN114817823A (en) Method for calculating molten steel calcium wire feeding amount based on minimum Gibbs free energy method
JPH06192814A (en) Continuous carburization method for metallic band