JPS62188733A - Manufacture of sintered ore - Google Patents
Manufacture of sintered oreInfo
- Publication number
- JPS62188733A JPS62188733A JP3027186A JP3027186A JPS62188733A JP S62188733 A JPS62188733 A JP S62188733A JP 3027186 A JP3027186 A JP 3027186A JP 3027186 A JP3027186 A JP 3027186A JP S62188733 A JPS62188733 A JP S62188733A
- Authority
- JP
- Japan
- Prior art keywords
- sintering
- ratio
- sintered ore
- ore
- value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 11
- 238000005245 sintering Methods 0.000 claims abstract description 105
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 22
- 229910052742 iron Inorganic materials 0.000 claims abstract description 11
- 238000000227 grinding Methods 0.000 claims abstract description 8
- 239000000126 substance Substances 0.000 claims abstract description 6
- 239000002994 raw material Substances 0.000 claims description 60
- 238000002156 mixing Methods 0.000 claims description 39
- 239000002245 particle Substances 0.000 claims description 33
- 238000005469 granulation Methods 0.000 claims description 30
- 230000003179 granulation Effects 0.000 claims description 30
- 239000000203 mixture Substances 0.000 claims description 10
- 229910052500 inorganic mineral Inorganic materials 0.000 claims description 9
- 239000011707 mineral Substances 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 7
- WETINTNJFLGREW-UHFFFAOYSA-N calcium;iron;tetrahydrate Chemical compound O.O.O.O.[Ca].[Fe].[Fe] WETINTNJFLGREW-UHFFFAOYSA-N 0.000 claims description 6
- 238000013459 approach Methods 0.000 claims description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 5
- 229910052595 hematite Inorganic materials 0.000 claims description 4
- 239000011019 hematite Substances 0.000 claims description 4
- LIKBJVNGSGBSGK-UHFFFAOYSA-N iron(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Fe+3].[Fe+3] LIKBJVNGSGBSGK-UHFFFAOYSA-N 0.000 claims description 4
- 238000011068 loading method Methods 0.000 claims description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 10
- 239000000463 material Substances 0.000 abstract description 7
- 239000000377 silicon dioxide Substances 0.000 abstract description 4
- 238000005453 pelletization Methods 0.000 abstract 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract 2
- 229910052681 coesite Inorganic materials 0.000 abstract 2
- 229910052593 corundum Inorganic materials 0.000 abstract 2
- 229910052906 cristobalite Inorganic materials 0.000 abstract 2
- 235000012239 silicon dioxide Nutrition 0.000 abstract 2
- 229910052682 stishovite Inorganic materials 0.000 abstract 2
- 229910052905 tridymite Inorganic materials 0.000 abstract 2
- 229910001845 yogo sapphire Inorganic materials 0.000 abstract 2
- 239000008188 pellet Substances 0.000 abstract 1
- 238000012360 testing method Methods 0.000 description 13
- 239000011800 void material Substances 0.000 description 13
- 238000002844 melting Methods 0.000 description 10
- 230000008018 melting Effects 0.000 description 10
- 239000007771 core particle Substances 0.000 description 9
- 239000000843 powder Substances 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 229920006395 saturated elastomer Polymers 0.000 description 5
- 238000010298 pulverizing process Methods 0.000 description 4
- 239000000446 fuel Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- 235000019738 Limestone Nutrition 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 239000000571 coke Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 239000006028 limestone Substances 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 238000009423 ventilation Methods 0.000 description 2
- 101100298225 Caenorhabditis elegans pot-2 gene Proteins 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 210000003323 beak Anatomy 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 230000000930 thermomechanical effect Effects 0.000 description 1
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は焼結鉱の製造法に関する。より詳しくは、高炉
操業の安定性や燃料比に大きな影口金与える焼結鉱の低
敲還元↑5)化性や被a元性などの品質について、原料
配合等が変化しても、これらの焼結鉱の品質特性が所望
の■n囲に収まるように制御する焼結鉱の製造法に関す
る。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing sintered ore. In more detail, the low reduction of sintered ore has a large impact on the stability of blast furnace operation and the fuel ratio. The present invention relates to a method for producing sintered ore in which the quality characteristics of sintered ore are controlled to fall within a desired range.
〔従来の技術]
高炉に装入される鉄鉱石類中、焼結鉱がその大半を占め
るので、焼結鉱の低温還元粉化性や被還元性は高炉操業
の安定性や燃料比を大きく左右する。すなわち、焼結鉱
の低温還元粉化が著しいと高炉の低温領域(シャフト上
層部の300〜700℃の領域)で還元されて粉化し、
この焼結鉱粉により炉内の通気性が撰なわれてスリップ
や棚吊り等の不安定な炉況を誘発する。また、被還元性
が低いと、塊状状態のままでガス還元される量が少なく
なり、高炉のガス利用率が低下し、ひいては高炉燃料比
が増大することになる。したがって、焼結鉱の低温還元
粉化性および被還元性は高炉操業にとって重要な品質特
性であり、従来よりその管理目標値を設定して操業を行
っている。[Prior art] Since sintered ore makes up the majority of the iron ore charged into a blast furnace, the low-temperature reduction pulverizability and reducibility of sintered ore greatly affect the stability of blast furnace operation and the fuel ratio. Left and right. In other words, if the sintered ore undergoes significant low-temperature reduction and powdering, it will be reduced and powdered in the low-temperature region of the blast furnace (300 to 700°C region in the upper part of the shaft).
This sintered ore powder affects the ventilation inside the furnace, causing unstable furnace conditions such as slipping and hanging. Furthermore, if the reducibility is low, the amount of gas that is reduced in the lump state will be reduced, the gas utilization rate of the blast furnace will be reduced, and the blast furnace fuel ratio will be increased. Therefore, the low-temperature reduction pulverizability and reducibility of sintered ore are important quality characteristics for blast furnace operation, and operations have traditionally been conducted by setting management target values for these.
従来、この管理目標値を満足しているか否かを知るため
に、生産された焼結鉱の一部を周期的にサンプリングし
、低温還元粉化性は低温還元粉化指数(以後RDIとい
う)として、また被還元性は還元率(以後、 Il+と
いう)として測定する試験を行っている。この場合、低
温還元粉化指数(IIDI)は、焼結鉱試料500gを
、 COが30%で残部がN2の還元性ガスで550℃
×30分の還元処理後、これを130mmφX 200
mmLのバレルに装入し、 30rpmで30分間回転
して粉化させ、その−3mm(X)を測定するもノテす
る。また、還元率(Il+)は、 JIS M 871
3ニ準拠した試験が実施されている。Conventionally, in order to find out whether or not this management target value is satisfied, a part of the produced sintered ore is periodically sampled, and the low-temperature reduction powdering property is measured using the low-temperature reduction powdering index (hereinafter referred to as RDI). We also conduct tests to measure the reducibility as the reduction rate (hereinafter referred to as Il+). In this case, the Low Temperature Reduction Indication Index (IIDI) is determined by heating 500 g of a sintered ore sample at 550°C with a reducing gas containing 30% CO and the balance N2.
× After 30 minutes of reduction treatment, this was made into 130mmφX 200
Pour it into a mmL barrel, rotate at 30 rpm for 30 minutes to powder, and measure -3 mm (X) and note it down. In addition, the return rate (Il+) is based on JIS M 871
Tests have been conducted in accordance with 3D.
従来の焼結鉱の低4還元扮化性と被1元性に対する管理
は、生産された焼結鉱の実測値をもとにするものである
から、つまり、目標値と実測値とを比較し、その差が域
値を外れた場合に焼結鉱の製造条件を目標値に近(なる
ように調整するというフィードバック制御を行うもので
あるから、大きな時間的遅れが生じ、また実測値を得る
にも時間と労力を要する。例えば、焼結鉱の製造には原
料配合、混合、焼結、粉砕3 冷却などの多数の工程を
経るので、実測値が得られた時点で工程を調整しても、
その時間的遅れのために1 その間に不良品が発生する
ことになり歩留りが低下するし。Conventional management of low 4-reducibility and unidimensionality of sintered ore is based on the actual measured values of the produced sintered ore, that is, the target value and the actual measured value are compared. However, if the difference is outside the threshold value, feedback control is performed to adjust the sinter manufacturing conditions so that they are close to the target value, which causes a large time delay and makes it difficult to calibrate the actual measured value. For example, the production of sintered ore involves many steps such as raw material blending, mixing, sintering, pulverization, and cooling, so it is necessary to adjust the process once the actual measured values are obtained. Even though
Because of this time delay, defective products will occur during that time, resulting in a decrease in yield.
その調整操作も正確を期することはなかなか困難である
。そして、低温還元粉化指数や還元率の実測値において
もそれが異常値かどうかを知るためには多数の試験を行
わねばならない。したがって従来の焼結鉱の低温還元粉
化性と被還元性の管理は極めて煩雑で労力の要する仕事
であり、しがちその焼結鉱の製造歩留りや精度の面でも
多くの問題をかかえていた。It is quite difficult to ensure accuracy in the adjustment operation. Furthermore, in order to find out whether or not the measured values of the low-temperature reduction pulverization index and reduction rate are abnormal values, it is necessary to conduct a large number of tests. Therefore, the conventional management of the low-temperature reduction powderability and reducibility of sintered ore is an extremely complicated and labor-intensive task, and it tends to have many problems in terms of the production yield and precision of sintered ore. .
本発明の目的はこのような問題を解決しようとするもの
である。The object of the present invention is to solve such problems.
本発明は、前記の目的を達成するために、焼結鉱の製造
の段階で成品焼結鉱のl?DI値とIll値を予測し2
この予測値が目標値に近づくように操作することによ
って、前記の目的を達成しようとするものであり、操作
量としては、焼結原料の配合割合と造粒時の水分量を使
用したフィードフォワード制御による焼結鉱の製造法を
提供するものである。In order to achieve the above-mentioned object, the present invention provides l? Predict the DI value and Ill value 2
The purpose is to achieve the above objective by manipulating this predicted value so that it approaches the target value, and the manipulated variables are feedforward using the blending ratio of sintering raw materials and the amount of water during granulation. The present invention provides a controlled method for producing sintered ore.
すなわち本発明は、焼結原料を所定の焼結機に装填し、
その焼結機のパレットスピード、吸引風量、焼結原料装
填層厚等の稼動条件を設定値範囲に維持しながら鉄鉱石
の焼結鉱を製造するにあたり。That is, in the present invention, a sintering raw material is loaded into a predetermined sintering machine,
In producing sintered iron ore while maintaining the operating conditions of the sintering machine, such as pallet speed, suction air volume, and sintering material loading layer thickness, within the set value range.
(1)焼結原料の配合割合と造粒時の水分量とがら造粒
後の疑似粒、径を算出し、この疑似粒径がら焼結時の高
温保持時間を予測し、そして焼結原料の配合割合と化学
組成から焼結時の溶融部のA 7!20*1SiOt比
を求め、該高温保持時間とA e zo3/5iOz比
から焼結鉱の低温還元粉化指数を予測し、この低4還元
扮化指数の予測値が目標値に近づくように焼結原料の配
合割合および/または造粒時の水分量を調整することを
特徴とする焼結鉱の製造法。(1) Calculate the pseudo grains and diameter after granulation from the blending ratio of the sintering raw materials and the moisture content during granulation, predict the high temperature holding time during sintering from this pseudo grain size, and The A7!20*1SiOt ratio of the molten part during sintering is determined from the blending ratio and chemical composition, and the low-temperature reduction powdering index of the sintered ore is predicted from the high-temperature holding time and the Ae zo3/5iOz ratio. A method for producing sintered ore, which comprises adjusting the blending ratio of sintering raw materials and/or the amount of water during granulation so that the predicted value of the 4-reduction morphing index approaches the target value.
および。and.
(2)焼結原料の配合割合と造粒時の水分量とがら造粒
後の疑似粒径を算出し、この疑似粒径がら焼結時の最高
温度を1γ出し、この最高温度と焼結時の空隙減少量と
の関係から焼結後の空隙率を予測し、そして、焼結原料
の配合割合から焼結鉱ifL吻中のカルシウムフェライ
ト相の面積率および一次ヘマタイトの面積率を算出し、
該空隙率、焼結鉱鉱物中のカルシウムフェライト相の面
積率および一次ヘマタイトの面積率から焼結鉱の還元率
を予41!I L 、 この還元率の予測値が目標値
に近づくように焼結原料の配合割合および/または造粒
時の水分量を調整することを特徴とする焼結鉱の製造法
を従供するものである。(2) Calculate the pseudo particle size after granulation from the blending ratio of the sintering raw materials and the moisture content during granulation, calculate the maximum temperature during sintering from this pseudo particle size to 1γ, and calculate the maximum temperature during sintering. The porosity after sintering is predicted from the relationship with the amount of void reduction, and the area ratio of the calcium ferrite phase and the area ratio of the primary hematite in the sintered ore ifL are calculated from the blending ratio of the sintered raw materials.
The reduction rate of the sintered ore can be predicted from the porosity, the area ratio of the calcium ferrite phase in the sintered ore mineral, and the area ratio of the primary hematite. IL, a method for producing sintered ore characterized by adjusting the blending ratio of sintering raw materials and/or the amount of water during granulation so that the predicted value of the reduction rate approaches the target value. be.
以下に本発明者らの行なった試験に基づいて本発明の内
容を具体的に説明する。The contents of the present invention will be specifically explained below based on tests conducted by the present inventors.
第1図は試験に供した焼結鍋装置を示す。1は焼結鍋で
あり、ロスドル2の上に焼結原料3を装填し、このロス
ドル2の下方より排風a4によって吸引する。そのさい
ロスドル2の下方の空気チャンバー5にダンパー6を介
装しておき、このダンパー6の装置によって吸引風量を
調節する。焼結にあたっては、焼結原料3の上表面に存
在するコークスにプロパンガスによって着火し、排風機
3の駆動により下向き吸引を行いながら焼結原料を焼き
固め焼結する。かような試験装置で数多くの焼結試験を
実施した結果、まず、低温還元粉化指数(RDI) は
、焼結時の焼結温度保持時間および溶融部のA 120
3/SiO□比に密接な関係を有することがわかった。Figure 1 shows the sintering pot device used in the test. Reference numeral 1 designates a sintering pot, in which a sintering raw material 3 is loaded onto a rostrum 2 and sucked from below the sintering pot 2 by exhaust air a4. At this time, a damper 6 is interposed in the air chamber 5 below the Rosdol 2, and the amount of suction air is adjusted by the device of the damper 6. During sintering, the coke present on the upper surface of the sintering raw material 3 is ignited by propane gas, and the sintering raw material is sintered and sintered while downward suction is performed by driving the exhaust fan 3. As a result of conducting numerous sintering tests using such test equipment, we found that the low-temperature reduction index (RDI) was determined by the sintering temperature holding time during sintering and the A120 of the molten part.
It was found that there is a close relationship with the 3/SiO□ ratio.
第2図は、焼結原料の配合条件は一定にして焼結時にお
ける高温保持時間とRDIとの関係を調べた結果を示し
たものである。すなわち、焼結原料の配合条件は同一に
して、ダンパー6の操作による吸引風量と、造粒条件(
焼結原料の疑似粒径)を変えることにより、焼結時にお
いてll00°C以上の高温に保持される時間(以下、
+1100℃保持時間という)を変化させ、この+
1100℃保持時間とRDI(既述の試験による一31
%)との関係をプロットしたものである。第2図から、
RDIは+1100℃保持時間(分)が延長するほ
ど一定の関係をもって増大することがわかる。FIG. 2 shows the results of investigating the relationship between high temperature retention time during sintering and RDI while keeping the blending conditions of the sintering raw materials constant. In other words, the blending conditions of the sintering raw materials are the same, and the suction air volume by operating the damper 6 and the granulation conditions (
By changing the pseudo particle size of the sintering raw material, the time for which it is held at a high temperature of 1100°C or higher during sintering (hereinafter referred to as
+1100℃ holding time) is changed, and this +
1100°C holding time and RDI (according to the test described above)
%) is plotted. From Figure 2,
It can be seen that the RDI increases with a constant relationship as the holding time (minutes) at +1100°C increases.
第3図は、焼結原料中の鉄鉱石各銘柄の粒度毎の焼結時
の溶融割合の測定結果を示したものである。第3図に見
られるように2粒度によって溶融割合が異なり、またそ
の程度も銘柄によって異なる。通常、焼結時の高温域に
おける融液の生成は焼結原料の表層面から開始し、微粒
子は溶融が完了しても粗粒子は中心部が未溶融で焼結が
終了することになる。第3図の結果は、微粒子はど溶融
割合が増加することを示しており、また、各銘柄の溶融
割合は、同一粒子径でも鉱石の緻密さや含有成分の差異
等の構成の成因によって、銘柄毎に異なっていることを
示している。本発明者らは。FIG. 3 shows the measurement results of the melting ratio during sintering for each particle size of each brand of iron ore in the sintering raw material. As shown in Figure 3, the melting ratio differs depending on the two particle sizes, and the degree of melting also differs depending on the brand. Normally, the generation of melt in the high temperature range during sintering starts from the surface layer of the sintering raw material, and even if the fine particles are completely melted, the sintering ends with the center of the coarse particles unmelted. The results in Figure 3 show that the melting ratio of fine particles increases, and that the melting ratio of each brand varies depending on the composition of the ore, such as the density of the ore and differences in the content, even if the particle size is the same. It shows that each is different. The inventors.
試験に供した各種焼結原料の粒度毎の溶融割合と化学組
成から、焼結時の溶融部の化学組成を算出し、この算出
した化学組成とRDIとの関係を詳細に検討した結果、
RDIは溶融部のA’ zos/SiO□比と密接
な関係を存している事実を見出した。第4図はその関係
を示したものである。As a result of calculating the chemical composition of the molten part during sintering from the melting ratio and chemical composition of each particle size of the various sintering raw materials used in the test, and examining the relationship between the calculated chemical composition and RDI in detail,
It has been found that RDI has a close relationship with the A'zos/SiO□ ratio of the molten zone. FIG. 4 shows this relationship.
第4図に見られるように、 +1100℃保持時間を
一定にして各種の焼結原料を焼結した場合に、そのI?
I)Iは?8融部のA j2 zo*1SIOz比が増
加するにつれて一定の関係をもって増大する。したがっ
て。As shown in Figure 4, when various sintering raw materials are sintered with a constant holding time of +1100°C, the I?
I) What about I? As the A j2 zo*1 SIOz ratio of the 8 melting zone increases, it increases with a certain relationship. therefore.
この第4図の関係と前記第2図との関係から、焼結鉱の
低温還元粉化指数(1101)は、 +1100°C
保持時間と溶融部のA 1 zoi/SiO□比をもと
にして予測することが可能である。From the relationship in Figure 4 and the relationship in Figure 2 above, the low temperature reduction pulverization index (1101) of sintered ore is +1100°C.
It can be predicted based on the holding time and the A 1 zoi/SiO□ ratio of the melted zone.
一方、 +1100℃保持時間は通風量や層厚などの
焼結条件が不変であれば、焼結原料の疑似粒径と相関を
有している。第5図はこの相関を示したちのである。こ
こで、焼結原料を混合造粒したあとの疑似粒径は、以下
の手順によって求めることができる。On the other hand, the holding time at +1100°C has a correlation with the pseudo particle size of the sintering raw material, as long as the sintering conditions such as ventilation amount and layer thickness remain unchanged. Figure 5 shows this correlation. Here, the pseudo particle size after mixing and granulating the sintering raw materials can be determined by the following procedure.
配合割合から求まる焼結原料の粒度構成の内。Of the particle size composition of the sintering raw material determined from the blending ratio.
付着する−0.25mm部分、 0.25〜0.5mm
部分は経験的にそれぞれ次の(1)式および(2)弐で
表すことかできる。Adhering -0.25mm part, 0.25~0.5mm
The parts can be empirically expressed by the following equations (1) and (2), respectively.
焼結原料中の−0,25mm部分が混合造粒によって付
着粉となる割合(χ) = 0.49 X + 2.6
9 ・・fi+焼結原料中の0.25〜0.5m
m部分が混合造粒によって付着粉となる割合(χ) =
1.79 X −285,04・・(2)ここで、
X = 190+19.+ −11a2 であり。Proportion of the -0.25 mm portion of the sintered raw material becoming adhered powder by mixing and granulation (χ) = 0.49 X + 2.6
9...fi+0.25~0.5m in sintering raw material
Proportion of part m becoming adhered powder due to mixed granulation (χ) =
1.79 X -285,04...(2) Here,
X = 190+19. + -11a2.
焼結原料の飽和水分値 a−混合造粒時の水分値−□ である。Saturated moisture value of sintered raw material a-Moisture value during mixed granulation-□ It is.
焼結原料中の核粒子の粒度構成
一焼結原料の粒度構成−付着粉の粒度構成 ・・(3)
であり、疑似粒径は。Particle size composition of core particles in sintering raw material - Particle size composition of sintering raw material - Particle size composition of attached powder... (3)
and the pseudo particle size is.
疑似粒径=核粒子の平均径+18.13X核粒子の単位
表面積当りの付着量(g/cm2)・・(4)によっ求
めることができる。Pseudo particle size=average diameter of core particles+18.13X amount of adhered core particles per unit surface area (g/cm2) (4).
したがって、焼結原料の配合割合と混合造粒時の水分値
から疑似粒径が算出でき、この疑イ以粒径から+110
0℃保持時間を算出でき、この算出した+1lOO℃保
持時間並びに前記の溶融部のA 1 zox/SiO□
比とからROTが予測できる。Therefore, the pseudo particle size can be calculated from the blending ratio of the sintering raw materials and the moisture value at the time of mixing and granulation, and from this pseudo particle size +110
The 0°C holding time can be calculated, and the calculated +1lOO°C holding time and the A 1 zox/SiO□ of the molten part
ROT can be predicted from the ratio.
他方1焼結鉱の他の品質特性である被還元性について、
これを予測する手段について鋭意研究したところ、
R1は焼結鉱の鉱物相と空隙率とで記述できることが判
明した。すなわち本発明者らは種々の焼結鉱について詳
細な試験と解析を重ねた結果、 R1は次の(5)式
で記述できることを見い出した。On the other hand, regarding reducibility, which is another quality characteristic of sintered ore,
After conducting extensive research into methods for predicting this,
It was found that R1 can be described by the mineral phase and porosity of the sintered ore. That is, as a result of repeated detailed tests and analyzes of various sintered ores, the present inventors found that R1 can be described by the following equation (5).
R1(χ) = a+bx+cy+dz
・・(5まただし。R1(χ) = a+bx+cy+dz
...(5 squares.
× :焼結鉱の鉱物相中のカルシウムフェライトの面積
率(%)
y :焼結鉱の鉱物相中の一次へマクイトの面積率(%
)
Z :空隙率(%)であり。×: Area ratio of calcium ferrite in the mineral phase of sintered ore (%) y: Area ratio of primary maquito in the mineral phase of sintered ore (%)
) Z: Porosity (%).
a = 15.246. b ==0.193. c
= −0,303゜d = 0.967である。a = 15.246. b==0.193. c.
= −0,303°d = 0.967.
したがって、独立変数であるX+y+2が焼結原料の配
合割合や造粒時の水分値などの操作量によって推定でき
ればRI値は予測できることになる。Therefore, if the independent variable X+y+2 can be estimated from manipulated variables such as the blending ratio of the sintering raw materials and the moisture value during granulation, the RI value can be predicted.
本発明者らの数多くの試験によると、焼結鉱の鉱物相中
のカルシウムフェライトの面積率(以下c、f、(χ)
と記す)と焼結鉱の鉱物相中の一次へマクイトの面積率
(以下p、乙(X)と記す)は以下の手順によって推定
できることか判明した。According to numerous tests conducted by the present inventors, the area ratio of calcium ferrite in the mineral phase of sintered ore (hereinafter c, f, (χ)
It was found that the area ratio of primary maquito in the mineral phase of sintered ore (hereinafter referred to as p, Otsu (X)) can be estimated by the following procedure.
第6図は、焼結原料中の鉄鉱石として単銘柄だけを使用
し、 5iOz=5.5%、塩基度−1,6となるよう
に珪砂と石灰石を加え、さらに粉コークスを4%配合し
て焼結した時に得られた焼結鉱のc、f。Figure 6 shows that only a single brand of iron ore is used as the sintering raw material, silica sand and limestone are added so that 5iOz = 5.5%, basicity is -1.6, and 4% coke powder is added. c, f of the sintered ore obtained when sintering.
(χ)とp、r、 (χ)を銘柄毎に示したものである
。第6図に見られるように、 c、f、(χ)やp、乙
(χ)の鉱物相の割合は鉄鉱石銘柄によって異なった成
る一定の値をもつことから、これら各種の銘柄の鉄鉱石
の配合時にその銘柄の配合割合に応じた所定の重みを付
加することにより、焼結鉱中のc、f、(χ)やp、乙
(χ)は算出できる。(χ) and p, r, (χ) are shown for each brand. As shown in Figure 6, the proportions of c, f, (χ) and p, otsu (χ) mineral phases have fixed values that vary depending on the brand of iron ore. By adding a predetermined weight according to the blending ratio of the brand when blending stones, c, f, (χ), p, and (χ) in the sintered ore can be calculated.
また空隙率については、焼結時には融液が生成し、この
融液が空隙に浸入することから焼結原料の装入時よりも
焼結鉱は空隙は減少することになる。原料装入時の空隙
率は装入ff1(体積9重量)と原料の真比重から算出
できるが、焼結後の焼結鉱の空隙率を推定するには、焼
結時の融液生成による空隙の減少量を定量化する必要が
ある。Regarding the porosity, a melt is generated during sintering and this melt enters the voids, so the voids in the sintered ore are reduced compared to when the sintering raw material is charged. The porosity at the time of raw material charging can be calculated from the charging ff1 (volume 9 weight) and the true specific gravity of the raw material, but in order to estimate the porosity of the sintered ore after sintering, it is necessary to calculate the porosity based on the melt generation during sintering. It is necessary to quantify the amount of void reduction.
第7図に本発明者らが空隙率の実測に使用した装置の概
略を示した。本装置は、電気炉10の内部に設置した標
準試料11と供試試料12に対して一定の荷重を加えな
がら加熱し、温度上昇に伴う空隙減少量を比較測定する
ものであり、13は試料を上から押さえる支持管、14
は検出棒、 15はマイクロメータ、16はバランスウ
ェイト、17は分1同、 18はコア、そして19は
差動トランスフィールドを示している。FIG. 7 shows an outline of the apparatus used by the present inventors to actually measure the porosity. This device heats a standard sample 11 and a test sample 12 placed inside an electric furnace 10 while applying a constant load, and compares and measures the amount of void reduction due to temperature rise. Support tube that holds down from above, 14
15 is a detection rod, 15 is a micrometer, 16 is a balance weight, 17 is a minute weight, 18 is a core, and 19 is a differential transformer field.
第8図は、この試験機により、鉄鉱石銘柄毎にSiO□
=5.5%、塩基度=1.6となるように珪砂と石灰石
を配合して各温度における空隙減少量を測定した結果を
示している。第8図に示されるように、焼結温度に伴う
空隙減少量は鉱石の緻密さや含存成分の差異等の鉱石の
成因によって銘柄間で異なるが銘柄毎に一定の値を示す
。したがって。Figure 8 shows the SiO□
The graph shows the results of measuring the amount of void reduction at each temperature by blending silica sand and limestone so that basicity = 5.5% and basicity = 1.6. As shown in FIG. 8, the amount of void reduction with sintering temperature varies between brands depending on the origin of the ore, such as the density of the ore and differences in contained components, but shows a constant value for each brand. therefore.
種々の鉱石の配合時には2鉱石銘柄の配合割合に応じた
重みを付加することにより、焼結時の空隙減少量が算出
でき、上述した原料装入時の空隙率と焼結時の空隙減少
量とから、焼結鉱の空隙率を推定することができる。When blending various ores, the amount of void reduction during sintering can be calculated by adding weights according to the blending ratio of the two ore brands, and the amount of void reduction during sintering can be calculated by combining the porosity at the time of raw material charging and the amount of void reduction during sintering. From this, the porosity of the sintered ore can be estimated.
なお、焼結時の最高温度の推定は第9図に示すごとく、
焼結原料の混合造粒時の疑イ以粒径との間で一定の相関
が認められる。したがって、既述のように疑イ以粒径が
焼結原料の配合割合と水分値から算出できることからこ
の疑似粒径がら焼結時の最高温度が推定できる。The maximum temperature during sintering is estimated as shown in Figure 9.
A certain correlation is observed between the particle size of the sintered raw materials and the particle size during mixing and granulation. Therefore, as described above, since the pseudo-i particle size can be calculated from the blending ratio of the sintering raw materials and the moisture content, the maximum temperature during sintering can be estimated from this pseudo-particle size.
以上のことから、 Ill についても、Vl結原料
の配合01合から求まるc、f、(χ)およびp、乙(
χ)、更に、配合割合と混合造粒時の水分値から算出さ
れる焼結時の最高温度を用いて求まる焼結鉱の空隙率と
を用いて予測することができる。From the above, for Ill, c, f, (χ) and p, O (
χ) can be further predicted using the blending ratio and the porosity of the sintered ore, which is determined using the maximum temperature during sintering calculated from the moisture value during mixing and granulation.
実施例1
表1に示す配合割合の焼結原料を水分6.0%で造粒後
、これを焼結すれば得られるであろう焼結鉱のRDIと
RIを予測し、実際に焼結して得た焼結鉱のRDIとR
1の実測値と比較する。Example 1 The RDI and RI of the sintered ore that would be obtained by sintering the sintered raw materials with the blending ratio shown in Table 1 after granulating them with a moisture content of 6.0% were predicted, and the RDI and R of the sintered ore obtained by
Compare with the actual measurement value of 1.
表1
旧 : へ〜コークスの各m和水分値(%)焼結原料の
飽和水分値は、予め求めておいた各銘柄の飽和水分値と
配合割合を用いて、加重平均によって(6)式に従って
算出すると、 12.80%が得られる。Table 1 Old: Each m-hydrated moisture value (%) of coke The saturated moisture value of the sintering raw material is determined by formula (6) using the weighted average using the saturated moisture value and blending ratio of each brand determined in advance. When calculated according to the following, 12.80% is obtained.
焼結原料の飽和水分値=
=Σ−4−M1 x 0.01 = 12.80
・・・(6)したがって、この飽和水分値から1本
文の(1)弐および(2)式中のaの値を計算すると−
0,4となり。Saturated moisture value of sintering raw material = =Σ-4-M1 x 0.01 = 12.80
...(6) Therefore, when calculating the value of a in formulas (1) and (2) of the main text from this saturated moisture value, -
It becomes 0.4.
また、Xの値が180.6 となる。したがって、(1
)弐に従う焼結原料中の−0,25mm部分が混合造粒
によって付着粉となる割合(χ)は91.20%、そし
て。Also, the value of X is 180.6. Therefore, (1
) The proportion (χ) in which the -0.25 mm portion of the sintered raw material becomes adhered powder by mixing and granulation is 91.20%.
(2)に従う焼結原料中の0.25〜0.5mm部分が
混合造粒によって付着粉となる割合は49.14.%と
算出される。The proportion of the 0.25 to 0.5 mm portion of the sintered raw material according to (2) that becomes adhered powder by mixing and granulation is 49.14. It is calculated as %.
表1の配合割合の造粒前の粒度構成(真粒度)は測定に
よって得られ、これは表2に示す如くである。混合造粒
によって付着粉となる割合が既知となることから、付着
する−0.25mm、 0.25〜0,5mm部分を表
2の真粒度から除いた部分が核粒子となり、したがって
、核粒子の粒度構成は表3のように表すことができる。The particle size structure (true particle size) before granulation with the blending ratio shown in Table 1 was obtained by measurement, and is as shown in Table 2. Since the proportion of adhering powder due to mixed granulation is known, the part obtained by excluding the -0.25 mm and 0.25 to 0.5 mm adhering parts from the true particle size in Table 2 becomes the core particle, and therefore, the core particle The particle size structure of can be expressed as shown in Table 3.
そして、核粒子の調和平均粒径は次の(7)式より 1
.116mmと求まる。Then, the harmonic mean particle diameter of the core particles is given by the following equation (7): 1
.. It is found to be 116mm.
表2 (造粒前の粒度分布)
表3 (核粒子の粒度分布)
いま、焼結原料100gを6.0%水分で混合造粒した
とすると、付着する−0.5mm部分の付着量と核粒子
の表面積は次の(8)式および(9)式からそれぞれ2
4.3gおよび1017.7cm2 と算出できる。Table 2 (Particle size distribution before granulation) Table 3 (Particle size distribution of core particles) Now, if 100g of sintering raw material is mixed and granulated with 6.0% moisture, the amount of adhesion at the -0.5mm portion The surface area of the core particle is 2 from the following equations (8) and (9), respectively.
It can be calculated as 4.3g and 1017.7cm2.
−0,5mm部分の付着量
= 8.9 X O,492+ 21.8 x O,9
12= 24.3(g) ・・(8)核粒子の表面積
−rc d2n ’= 1o17.7cm2・・(9ま
ただし、n(個数)=6W/(πd1ρ)であり。-Amount of adhesion at 0.5mm portion = 8.9 x O,492+ 21.8 x O,9
12 = 24.3 (g) (8) Surface area of core particle - rc d2n' = 1o17.7 cm2 (9 squares, n (number) = 6W/(πd1ρ).
W(重量) =100−24.3. ρ(比重’)
= 3.9゜d(粒径) =0.1116cm
である。W (weight) = 100-24.3. ρ (specific gravity')
= 3.9°d (particle size) = 0.1116cm
It is.
したがって、単位面積当りの付着量は
24.3/1017.7 = 0.023g/cm”と
なり2本文の(4)式から造粒後の疑似粒径は1.11
6 + 0.43 = 1.546 mmと算出でき、
この疑似粒径を用いて第5図および第9図から+11(
10°C保持時間が約1.52分、最高温度が126(
IcとIIn定できる。Therefore, the adhesion amount per unit area is 24.3/1017.7 = 0.023 g/cm", and from equation (4) in the main text, the pseudo particle size after granulation is 1.11
It can be calculated as 6 + 0.43 = 1.546 mm,
Using this pseudo particle size, +11(
10°C holding time is approximately 1.52 minutes, maximum temperature is 126 (
Ic and IIn can be determined.
他方1表1の焼結原料が焼結された時の溶融部のA 1
zox/SiO□比は分析によると0.293であっ
た。On the other hand, A 1 of the melted part when the sintering raw materials in Table 1 are sintered
The zox/SiO□ ratio was 0.293 according to analysis.
この溶融部のへ7!zO:+/5i02比と前記の+1
100℃保持時間とから1次の00式により RDIは
32.96 と算出される。To this melting part 7! zO:+/5i02 ratio and the above +1
The RDI is calculated as 32.96 using the first-order 00 equation based on the 100°C holding time.
RDI = (^2□O:+/SiO□) X 27.
7 + 27.0 +2.9 X (+ 1100℃保
持時間−2,25) ・・0φ=32.96
次にR1を予測する。RDI = (^2□O:+/SiO□) X 27.
7 + 27.0 + 2.9
まず、焼結鉱のc、f、(χ)とρ、乙(χ)の推定は
00式およびαδ式により得られる。First, c, f, (χ) and ρ, (χ) of sintered ore are estimated using the 00 formula and the αδ formula.
c、f、(χ) = a Xo、458 + b Xo
、346 + c Xo、341+ d xo、287
+ e Xo、222 ・・αυp、r、(χ
) = a Xo、038 + b
Xo、044 + c Xo、032+
d xo、117 + e Xo、211 −−
(Jまただし、 aJ+C+d+8は主原料である鉄
鉱石の各銘柄が主原料に占める割合である。c, f, (χ) = a Xo, 458 + b Xo
, 346 + c Xo, 341 + d xo, 287
+ e Xo, 222 ... αυp, r, (χ
) = a Xo, 038 + b
Xo, 044 + c Xo, 032+
d xo, 117 + e xo, 211 --
(However, aJ + C + d + 8 is the ratio of each brand of iron ore, which is the main raw material, to the main raw material.
焼結原料の最高温度は前述のように疑似粒径がら126
0’cと推定されるから、09式のa、b、c、d、e
の値を用いて第8図の焼結温度と空隙減少量との関係
から空隙減少量を求めると空隙減少量は5.21%とな
る。一方、焼結原料装入時の空隙率は実測により55.
5%であった。したがって、焼結鉱の空隙率は50.3
%であ、ると推定できる。As mentioned above, the maximum temperature of the sintering raw material is 126
Since it is estimated to be 0'c, a, b, c, d, e of formula 09
When the amount of void reduction is calculated from the relationship between the sintering temperature and the amount of void reduction shown in FIG. 8 using the value of , the amount of void reduction is 5.21%. On the other hand, the porosity when charging the sintering raw material was actually measured to be 55.
It was 5%. Therefore, the porosity of sintered ore is 50.3
It can be estimated that %.
よって、(5)式にc、 f、 (χ) = 32.5
67、 p、r、 (χ)−7,864,空隙率=5
0.3%を代入することによってIN =67.79%
の予測値が得られる。Therefore, in equation (5), c, f, (χ) = 32.5
67, p, r, (χ)-7,864, porosity = 5
By substituting 0.3% IN = 67.79%
The predicted value is obtained.
実際に焼結鉱を製造し、得られた成品焼結鉱のRDIと
III を測定したところIl[lIの実測値−33,
4%、 R1の実測値=68.2%であった。When we actually produced sintered ore and measured the RDI and III of the obtained finished sintered ore, we found that Il[actual value of lI -33,
4%, and the actual value of R1 was 68.2%.
実施例2
焼結原料の配合条件と造粒時の水分値を種々変化させた
以外は実施例1と同様の処決を繰り返してRDrとRI
の予測値を求め、且つ得られた焼結鉱のROTとl?
I の実測値を測定した。これらの予測値と実測値を第
10図および第11図に示した。これらの結果から明ら
かなように、予測値は実績値に非常に良く一致しており
、したがって1本発明によれば、焼結原料の配合割合や
造粒時の水分値を操作量としてフィードフォワード制御
により目標とするR[)I値およびR1値をもつ焼結鉱
成品を製造することができることがわかる。Example 2 The same procedure as in Example 1 was repeated except that the blending conditions of the sintering raw materials and the moisture value during granulation were varied to obtain RDr and RI.
Calculate the predicted value of , and calculate the ROT and l? of the obtained sintered ore.
The actual value of I was measured. These predicted values and actual measured values are shown in FIGS. 10 and 11. As is clear from these results, the predicted values are in very good agreement with the actual values, and therefore, according to the present invention, feedforward is performed using the blending ratio of sintering raw materials and the moisture value during granulation as manipulated variables. It can be seen that a sintered ore product having the target R[)I value and R1 value can be manufactured by the control.
第1図は本発明法の試験に使用した焼結鍋装置の略断面
図、第2図は+1100℃保持時間と低温還元粉化指数
(RDI)との関係図、第3図は鉄鉱石各銘柄の粒度毎
の焼結時の熔融割合を示す図、第4図は溶融部のA j
! go3/5iOz比と低温還元粉化指数(RDI)
との関係図、第5図は焼結原料造粒時の疑イ以粒径
と+1100°C保・待時間との関係図、第6図は焼結
原料中の鉄鉱石を単銘柄のみとした場合の銘柄毎のc、
f、(χ)とp、r、 (χ)を示す図、第7図は焼結
時の空隙減少量を測定する熱機械分析装置の1a18断
面図、第8図は鉄鉱石各銘柄毎の焼結温度と空隙減少量
との関係圀、第9図は疑似粒径と焼結時の最高温度との
関係図、第1O図は予測RDI値と実測1101値との
関係図、第11図は予測R1値と実測III値との関係
図である。Figure 1 is a schematic cross-sectional view of the sintering pot device used in the test of the method of the present invention, Figure 2 is a relationship between +1100°C holding time and low temperature reduction index (RDI), and Figure 3 is a diagram of the relationship between iron ore A diagram showing the melting ratio during sintering for each brand particle size, Figure 4 shows the melting part A j
! go3/5iOz ratio and low temperature reduction pulverization index (RDI)
Figure 5 is a diagram showing the relationship between the grain size of the sintered raw material during granulation and +1100°C storage/waiting time, and Figure 6 is a diagram showing the relationship between the grain size during sintering raw material granulation and +1100°C holding/waiting time. c for each brand when
A diagram showing f, (χ) and p, r, (χ), Figure 7 is a 1a18 cross-sectional view of a thermomechanical analyzer that measures the amount of void reduction during sintering, and Figure 8 is a diagram showing the difference between each brand of iron ore. Figure 9 shows the relationship between the sintering temperature and the amount of void reduction; Figure 9 shows the relationship between the pseudo grain size and the maximum temperature during sintering; Figure 1O shows the relationship between the predicted RDI value and the measured 1101 value; Figure 11 shows the relationship between the predicted RDI value and the measured 1101 value. is a relationship diagram between the predicted R1 value and the actually measured III value.
Claims (2)
パレットスピード、吸引風量、焼結原料装填層厚等の稼
動条件を設定値範囲に維持しながら鉄鉱石の焼結鉱を製
造するにあたり、焼結原料の配合割合と造粒時の水分量
とから造粒後の疑似粒径を算出し、この疑似粒径から焼
結時の高温保持時間を予測し、そして焼結原料の配合割
合と化学組成から焼結時の溶融部のAl_2O_3/S
iO_2比を求め、該高温保持時間とAl_2O_3/
SiO_2比から焼結鉱の低温還元粉化指数を予測し、
この低温還元粉化指数の予測値が目標値に近づくように
焼結原料の配合割合および/または造粒時の水分量を調
整することを特徴とする焼結鉱の製造方法。(1) Load the sintering raw material into the specified sintering machine, and sinter the iron ore while maintaining the operating conditions of the sintering machine, such as pallet speed, suction air volume, and sintering raw material loading layer thickness, within the set value range. When producing ore, the pseudo grain size after granulation is calculated from the blending ratio of the sintering raw materials and the moisture content during granulation, the high temperature holding time during sintering is predicted from this pseudo particle size, and the sintering Al_2O_3/S in the melted part during sintering based on the blending ratio of sintering raw materials and chemical composition
Determine the iO_2 ratio and calculate the high temperature holding time and Al_2O_3/
Predicting the low temperature reduction powdering index of sintered ore from the SiO_2 ratio,
A method for producing sintered ore, which comprises adjusting the blending ratio of sintering raw materials and/or the water content during granulation so that the predicted value of the low-temperature reduction powdering index approaches a target value.
パレットスピード、吸引風量、焼結原料装填層厚等の稼
動条件を設定値範囲に維持しながら鉄鉱石の焼結鉱を製
造するにあたり、焼結原料の配合割合と造粒時の水分量
とから造粒後の疑似粒径を算出し、この疑似粒径から焼
結時の最高温度を算出し、この最高温度と焼結時の空隙
減少量との関係から焼結後の空隙率を予測し、そして、
焼結原料の配合割合から焼結鉱鉱物中のカルシウムフェ
ライト相の面積率および一次ヘマタイトの面積率を算出
し、該空隙率、焼結鉱鉱物中のカルシウムフェライト相
の面積率および一次ヘマタイトの面積率から焼結鉱の還
元率を予測し、この還元率の予測値が目標値に近づくよ
うに焼結原料の配合割合および/または造粒時の水分量
を調整することを特徴とする焼結鉱の製造方法。(2) Load the sintering raw material into the specified sintering machine, and sinter the iron ore while maintaining the operating conditions of the sintering machine, such as pallet speed, suction air volume, and sintering raw material loading layer thickness, within the set value range. When producing ore, the pseudo grain size after granulation is calculated from the blending ratio of the sintering raw materials and the moisture content during granulation, and the maximum temperature during sintering is calculated from this pseudo grain size. Predict the porosity after sintering from the relationship between and the amount of porosity reduction during sintering, and
Calculate the area ratio of the calcium ferrite phase and the area ratio of primary hematite in the sintered ore mineral from the blending ratio of the sintered raw materials, and calculate the porosity, the area ratio of the calcium ferrite phase and the area of primary hematite in the sintered ore mineral. Sintering characterized by predicting the reduction rate of sintered ore from the ratio, and adjusting the blending ratio of sintering raw materials and/or the water content during granulation so that the predicted value of the reduction rate approaches the target value. Method of producing ore.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3027186A JPH0742520B2 (en) | 1986-02-14 | 1986-02-14 | Sintered ore manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3027186A JPH0742520B2 (en) | 1986-02-14 | 1986-02-14 | Sintered ore manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62188733A true JPS62188733A (en) | 1987-08-18 |
JPH0742520B2 JPH0742520B2 (en) | 1995-05-10 |
Family
ID=12299037
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3027186A Expired - Lifetime JPH0742520B2 (en) | 1986-02-14 | 1986-02-14 | Sintered ore manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0742520B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006063444A (en) * | 2004-07-30 | 2006-03-09 | Jfe Steel Kk | Sintered ore for blast furnace |
JP2020041187A (en) * | 2018-09-11 | 2020-03-19 | 日鉄日新製鋼株式会社 | Method for estimating strength of sintered ore |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101455457B1 (en) * | 2012-08-29 | 2014-11-03 | 현대제철 주식회사 | Method for predicting reducibility index of sintered ore |
KR101505288B1 (en) * | 2013-05-31 | 2015-03-23 | 현대제철 주식회사 | Method for producing sintered ore |
CN109165793A (en) * | 2018-09-14 | 2019-01-08 | 东北大学 | A kind of blending ore sintering basic characteristic forecasting procedure based on PSO-ELM algorithm |
-
1986
- 1986-02-14 JP JP3027186A patent/JPH0742520B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006063444A (en) * | 2004-07-30 | 2006-03-09 | Jfe Steel Kk | Sintered ore for blast furnace |
JP2020041187A (en) * | 2018-09-11 | 2020-03-19 | 日鉄日新製鋼株式会社 | Method for estimating strength of sintered ore |
Also Published As
Publication number | Publication date |
---|---|
JPH0742520B2 (en) | 1995-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ringdalen et al. | Softening and melting of SiO 2, an important parameter for reactions with quartz in Si production | |
CN107130105A (en) | Method for improving stability rate of alkalinity of sinter and batching device used by method | |
JP6680369B2 (en) | Sintered ore manufacturing method | |
JPS62188733A (en) | Manufacture of sintered ore | |
JP6988712B2 (en) | Sintered ore manufacturing method | |
EP3517632A1 (en) | Method for operating blast furnace | |
JP6665972B2 (en) | Sinter production method | |
Muller et al. | A finite difference model of the iron ore sinter process | |
JP6866856B2 (en) | Sintered ore manufacturing method and blast furnace operation method | |
JP2021139037A (en) | Smelting method of ferronickel | |
Thomas et al. | Residence time investigation of a multiple hearth kiln using mineral tracers | |
Mežibrický et al. | Effect of alumina and silica content in the calcium aluminosilicoferrite Ca2 (Ca, Fe, Mg) 6 (Fe, Si, Al) 6O20 bonding phase on the strength of iron ore sinter | |
JP6763412B2 (en) | Sintered ore manufacturing method | |
WO2023189242A1 (en) | Sintered ore structure prediction method and sintered ore production method using same | |
KR100212026B1 (en) | Method for comtrol coke according to input volume of pulverized coal | |
JPS58727B2 (en) | Estimation method of cohesive zone shape in blast furnace | |
JPS5837132A (en) | Sintering operating method | |
JP2024077832A (en) | Method for predicting sintered ore quality and method for producing sintered ore therewith | |
JP2023145326A (en) | Manufacturing method of sinter and manufacturing apparatus | |
JP2023089461A (en) | Method for estimating high temperature region reduction rate of sintered ore and method for manufacturing sintered ore | |
Jayaweera et al. | Numerical Modeling of Drying Behavior of Sri Lankan Kaolin | |
Shiau et al. | Effect of magnesium oxide content on final slag fluidity of blast furnace | |
JPS634612B2 (en) | ||
JPH0317209A (en) | Method for operating blast furnace | |
JPH05222463A (en) | Manufacture of sintered ore |