JPH0742520B2 - Sintered ore manufacturing method - Google Patents

Sintered ore manufacturing method

Info

Publication number
JPH0742520B2
JPH0742520B2 JP3027186A JP3027186A JPH0742520B2 JP H0742520 B2 JPH0742520 B2 JP H0742520B2 JP 3027186 A JP3027186 A JP 3027186A JP 3027186 A JP3027186 A JP 3027186A JP H0742520 B2 JPH0742520 B2 JP H0742520B2
Authority
JP
Japan
Prior art keywords
sintering
ratio
raw material
sintering raw
sintered ore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3027186A
Other languages
Japanese (ja)
Other versions
JPS62188733A (en
Inventor
四郎 ▲樽▼本
富也 福田
文秋 下茂
晴美 石井
晋 亀尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP3027186A priority Critical patent/JPH0742520B2/en
Publication of JPS62188733A publication Critical patent/JPS62188733A/en
Publication of JPH0742520B2 publication Critical patent/JPH0742520B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は焼結鉱の製造法に関する。より詳しくは,高炉
操業の安定性や燃料比に大きな影響を与える焼結鉱の低
温還元粉化性や被還元性などの品質について,原料配合
等が変化しても,これらの焼結鉱の品質特性が所望の範
囲に収まるように制御する焼結鉱の製造法に関する。
TECHNICAL FIELD The present invention relates to a method for producing a sinter. More specifically, regarding the quality of sinter ore that has a large effect on the stability of the blast furnace operation and fuel ratio, such as low-temperature reduction powderability and reducibility, even if the raw material composition changes, etc. The present invention relates to a method for producing a sintered ore in which quality characteristics are controlled to fall within a desired range.

〔従来の技術〕[Conventional technology]

高炉に装入される鉄鉱石類中,焼結鉱がその大半を占め
るので,焼結鉱の低温還元粉化性や被還元性は高炉操業
の安定性や燃料比を大きく左右する。すなわち,焼結鉱
の低温還元粉化が著しいと高炉の低温領域(シャフト上
層部の300〜700℃の領域)で還元されて粉化し,この焼
結鉱粉により炉内の通気性が損なわれてスリップや棚吊
り等の不安定な炉況を誘発する。また,被還元性が低い
と,塊状状態のままでガス還元される量が少なくなり,
高炉のガス利用率が低下し,ひいては高炉燃料比が増大
することになる。したがって,焼結鉱の低温還元粉化性
および被還元性は高炉操業にとって重要な品質特性であ
り,従来よりその管理目標値を設定して操業を行ってい
る。
Since most of the iron ore loaded into the blast furnace is sinter, the low-temperature reductive pulverizability and reducibility of sinter greatly affect the stability of the blast furnace operation and the fuel ratio. That is, if the low-temperature reductive pulverization of the sinter is remarkable, it is reduced and pulverized in the low-temperature region of the blast furnace (the region of the shaft upper layer of 300 to 700 ° C), and this sintered ore powder impairs the air permeability in the furnace. It causes unstable furnace conditions such as slipping and hanging. In addition, if the reducibility is low, the amount of gas reduced in the bulk state is reduced,
This means that the gas utilization rate of the blast furnace decreases, which in turn increases the blast furnace fuel ratio. Therefore, the low-temperature reductive pulverization property and the reducibility of sinter are important quality characteristics for blast furnace operation, and operation has been conventionally performed by setting the control target value.

従来,この管理目標値を満足しているか否かを知るため
に,生産された焼結鉱の一部を周期的にサンプリング
し,低温還元粉化性は低温還元粉化指数(以後RDIとい
う)として,また被還元性は還元率(以後,RIという)
として測定する試験を行っている。この場合,低温還元
粉化指数(RDI)は,焼結鉱試料500gを,COが30%で残部
がN2の還元性ガスで550℃×30分の還元処理後,これを1
30mmφ×200mmLのバレルに装入し,30rpmで30分間回転し
て粉化させ,その−3mm(%)を測定するものである。
また,還元率(RI)は,JIS M 8713に準拠した試験が実
施されている。
Conventionally, in order to know whether or not this control target value is satisfied, a part of the produced sinter is periodically sampled, and the low temperature reduction powderability is the low temperature reduction powdering index (hereinafter referred to as RDI). Also, the reducibility is the rate of reduction (hereinafter referred to as RI)
We are conducting a test to measure as. In this case, the low temperature reduction dusting index (RDI) was calculated as follows: 500g of sinter ore sample was treated with reducing gas containing 30% of CO and the balance of N 2 after reducing treatment at 550 ° C for 30 minutes.
It is placed in a barrel of 30 mmφ x 200 mmL, rotated at 30 rpm for 30 minutes to be pulverized, and its -3 mm (%) is measured.
The reduction rate (RI) has been tested in accordance with JIS M 8713.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

従来の焼結鉱の低温還元粉化性と被還元性に対する管理
は,生産された焼結鉱の実測値をもとにするものである
から,つまり,目標値と実測値とを比較し,その差が域
値を外れた場合に焼結鉱の製造条件を目標値に近くなる
ように調整するというフィードバック制御を行うもので
あるから,大きな時間的遅れが生じ,また実測値を得る
にも時間と労力を要する。例えば,焼結鉱の製造には原
料配合,混合,焼結,粉砕,冷却などの多数の工程を経
るので,実測値が得られた時点で工程を調整しても,そ
の時間的遅れのために,その間に不良品が発生すること
になり歩留りが低下するし,その調整操作も正確を期す
ることはなかなか困難である。そして,低温還元粉化指
数や還元率の実測値においてもそれが異常値かどうかを
知るためには多数の試験を行わねばならない。したがっ
て従来の焼結鉱の低温還元粉化性と被還元性の管理は極
めて煩雑で労力の要する仕事であり,しかもその焼結鉱
の製造歩留りや精度の面でも多くの問題をかかえてい
た。
Conventional control of low-temperature reductive pulverization property and reducibility of sinter is based on the measured value of the produced sinter, that is, the target value is compared with the measured value. If the difference deviates from the threshold value, feedback control is performed so that the manufacturing conditions of the sintered ore are adjusted so as to be close to the target value. Therefore, there is a large time delay, and the measured value is also obtained. It takes time and effort. For example, since many steps such as raw material mixing, mixing, sintering, crushing, and cooling are performed in the production of sinter, even if the process is adjusted at the time when the actual measurement value is obtained, there is a time delay. In addition, defective products will be generated during that period, and the yield will decrease, and it will be difficult to make accurate adjustments. In addition, even in the measured values of the low temperature reduction powdering index and the reduction rate, many tests must be performed to know whether they are abnormal values. Therefore, the conventional control of low-temperature reductive pulverization property and reducibility of sinter is a very complicated and labor-intensive task, and moreover, there have been many problems in terms of production yield and accuracy of the sinter.

本発明の目的はこのような問題を解決しようとするもの
である。
The object of the present invention is to solve such a problem.

〔問題点を解決する手段〕[Means for solving problems]

本発明は,前記の目的を達成するために,焼結鉱の製造
の段階で成品焼結鉱のRDI値とRI値を予測し,この予測
値が目標値に近づくように操作することによって,前記
の目的を達成しようとするものであり,操作量として
は,焼結原料の配合割合と造粒時の水分量を使用したフ
ィードフォワード制御による焼結鉱の製造法を提供する
ものである。
In order to achieve the above-mentioned object, the present invention predicts the RDI value and RI value of the product sintered ore at the stage of manufacturing the sintered ore, and operates by making the predicted values approach the target values. The present invention aims to achieve the above-mentioned object, and provides a method for producing a sintered ore by feed-forward control using a mixing ratio of sintering raw materials and an amount of water at the time of granulation as an operation amount.

すなわち本発明は,焼結原料を所定の焼結機に装填し,
その焼結機のパレットスピード,吸引風量,焼結原料装
填層厚等の稼動条件を設定値範囲に維持しながら鉄鉱石
の焼結鉱を製造するにあたり, (1)焼結原料の配合割合と造粒時の水分量とから造粒
後の疑似粒径を算出し,この疑似粒径から焼結時の高温
保持時間を予測し,そして焼結原料の配合割合と化学組
成から焼結時の溶融部のAl2O3/SiO2比を求め,該高温保
持時間とAl2O3/SiO2比から焼結鉱の低温還元粉化指数を
予測し,この低温還元粉化指数の予測値が目標値に近づ
くように焼結原料の配合割合および/または造粒時の水
分量を調整することを特徴とする焼結鉱の製造法,およ
び, (2)焼結原料の配合割合と造粒時の水分量とから造粒
後の疑似粒径を算出し,この疑似粒径から焼結時の最高
温度を算出し,この最高温度と焼結時の空隙減少量との
関係から焼結後の空隙率を予測し,そして,焼結原料の
配合割合から焼結鉱鉱物中のカルシウムフエライト相の
面積率および一次ヘマタイトの面積率を算出し,該空隙
率,焼結鉱鉱物中のカルシウムフエライト相の面積率お
よび一次ヘマタイトの面積率から焼結鉱の還元率を予測
し,この還元率の予測値が目標値に近づくように焼結原
料の配合割合および/または造粒時の水分量を調整する
ことを特徴とする焼結鉱の製造法を提供するものであ
る。
That is, in the present invention, the sintering raw material is loaded into a predetermined sintering machine,
When manufacturing iron ore sinter while maintaining operating conditions such as the pallet speed of the sinter, suction air volume, and sintering raw material loading layer thickness within the set range, (1) mixing ratio of sintering raw materials The pseudo-particle size after granulation was calculated from the water content during granulation, the high temperature holding time during sintering was predicted from this pseudo-particle size, and the mixing ratio and chemical composition of the sintering raw materials were used to predict the sintering temperature. The Al 2 O 3 / SiO 2 ratio of the molten part is calculated, and the low temperature reduced powdering index of the sinter is predicted from the high temperature holding time and the Al 2 O 3 / SiO 2 ratio. Of the sintering raw material and / or the amount of water at the time of granulation are adjusted so that the value of the sintering raw material approaches the target value. The pseudo particle size after granulation was calculated from the water content at the time of granulation, and the maximum temperature during sintering was calculated from this pseudo particle size. The porosity after sintering was predicted from the relationship with the amount of void reduction, and the area ratio of the calcium ferrite phase and the area ratio of primary hematite in the sinter mineral were calculated from the mixing ratio of the sintering raw materials. Predict the reduction rate of sinter from the porosity, the area rate of the calcium ferrite phase in the sintered ore mineral, and the area rate of primary hematite, and mix the sintering raw materials so that the predicted reduction rate approaches the target value. The present invention provides a method for producing a sinter, which is characterized by adjusting the ratio and / or the water content during granulation.

以下に本発明者らの行なった試験に基づいて本発明の内
容を具体的に説明する。
The contents of the present invention will be specifically described below based on the tests conducted by the present inventors.

第1図は試験に供した焼結鍋装置を示す。1は焼結鍋で
あり,ロストル2の上に焼結原料3を装填し,このロス
トル2の下方より排風機4によって吸引する。そのさい
ロストル2の下方の空気チャンバー5にダンパー6を介
装しておき,このダンパー6の装置によって吸引風量を
調節する。焼結にあたっては,焼結原料3の上表面に存
在するコークスにプロパンガスによって着火し,排風機
3の駆動により下向き吸引を行いながら焼結原料を焼き
固め焼結する。かような試験装置で数多くの焼結試験を
実施した結果,まず,低温還元粉化指数(RDI)は,焼
結時の焼結温度保持時間および溶融部のAl2O3/SiO2比に
密接な関係を有することがわかった。
FIG. 1 shows the sintering pot apparatus used for the test. Reference numeral 1 denotes a sintering pot, in which a sintering raw material 3 is loaded on a rostrur 2 and is sucked by an air blower 4 from below the rostrur 2. At that time, a damper 6 is provided in the air chamber 5 below the rustle 2, and the suction air volume is adjusted by the device of the damper 6. In sintering, the coke existing on the upper surface of the sintering raw material 3 is ignited by propane gas, and the sintering raw material is fired and solidified while being sucked downward by driving the exhaust fan 3. As a result of conducting many sintering tests with such a test apparatus, first, the low temperature reduction powdering index (RDI) was determined by the sintering temperature holding time during sintering and the Al 2 O 3 / SiO 2 ratio of the molten part. It was found to have a close relationship.

第2図は,焼結原料の配合条件は一定にして焼結時にお
ける高温保持時間とRDIとの関係を調べた結果を示した
ものである。すなわち,焼結原料の配合条件は同一にし
て,ダンパー6の操作による吸引風量と,造粒条件(焼
結原料の疑似粒径)を変えることにより,焼結時におい
て1100℃以上の高温に保持される時間(以下,+1100℃
保持時間という)を変化させ,この+1100℃保持時間と
RDI(既述の試験による−3mm%)との関係をプロットし
たものである。第2図から,RDIは+1100℃保持時間
(分)が延長するほど一定の関係をもって増大すること
がわかる。
Figure 2 shows the results of examining the relationship between the high temperature holding time during sintering and RDI with the mixing conditions of the sintering raw materials kept constant. That is, by keeping the mixing conditions of the sintering raw materials the same and changing the suction air volume by the operation of the damper 6 and the granulation conditions (pseudo grain size of the sintering raw materials), the sintering raw materials are maintained at a high temperature of 1100 ° C or higher. Time (below, + 1100 ℃
(Holding time) is changed and this + 1100 ° C holding time
It is a plot of the relationship with RDI (-3 mm% by the above-mentioned test). It can be seen from Fig. 2 that RDI increases with a certain relationship as the holding time (min) of + 1100 ° C increases.

第3図は,焼結原料中の鉄鉱石各銘柄の粒度毎の焼結時
の溶融割合の測定結果を示したものである。第3図に見
られるように,粒度によって溶融割合が異なり,またそ
の程度も銘柄によって異なる。通常,焼結時の高温域に
おける融液の生成は焼結原料の表層面から開始し,微粒
子は溶融が完了しても粗粒子は中心部が未溶融で焼結が
終了することになる。第3図の結果は,微粒子ほど溶融
割合が増加することを示しており,また,各銘柄の溶融
割合は,同一粒子径でも鉱石の緻密さや含有成分の差異
等の構成の成因によって,銘柄毎に異なっていることを
示している。本発明者らは,試験に供した各種焼結原料
の粒度毎の溶融割合と化学組成から,焼結時の溶融部の
化学組成を算出し,この算出した化学組成とRDIとの関
係を詳細に検討した結果,RDIは溶融部のAl2O3/SiO2比と
密接な関係を有している事実を見出した。第4図はその
関係を示したものである。
FIG. 3 shows the measurement results of the melting ratio at the time of sintering for each grain size of each iron ore brand in the sintering raw material. As can be seen in Fig. 3, the melting ratio differs depending on the particle size, and the degree of melting also differs depending on the brand. Usually, the generation of the melt in the high temperature region during sintering starts from the surface layer surface of the sintering raw material, and even if the fine particles are completely melted, the coarse particles are not melted in the central part and the sintering is completed. The results in Fig. 3 show that the finer particles increase the melting rate, and the melting rate of each brand varies depending on the cause of the composition such as the density of the ore and the difference in the content even if the grain size is the same. Shows that they are different. The present inventors calculated the chemical composition of the fusion part at the time of sintering from the melting ratio and the chemical composition for each particle size of various sintering raw materials used in the test, and detailed the relationship between the calculated chemical composition and RDI. As a result, it was found that RDI has a close relationship with the Al 2 O 3 / SiO 2 ratio in the fusion zone. FIG. 4 shows the relationship.

第4図に見られるように,+1100℃保持時間を一定にし
て各種の焼結原料を焼結した場合に,そのRDIは溶融部
のAl2O3/SiO2比が増加するにつれて一定の関係をもって
増大する。したがって,この第4図の関係と前記第2図
との関係から,焼結鉱の低温還元粉化指数(RDI)は,
+1100℃保持時間と溶融部のAl2O3/SiO2比をもとにして
予測することが可能である。
As can be seen in Fig. 4, when various sintering raw materials were sintered at a constant + 1100 ° C holding time, the RDI of the sintered material had a constant relationship as the Al 2 O 3 / SiO 2 ratio in the melt increased. Increase with. Therefore, from the relationship between this FIG. 4 and the above-mentioned FIG. 2, the low temperature reduction powdering index (RDI) of the sinter is
It is possible to make a prediction based on the + 1100 ° C holding time and the Al 2 O 3 / SiO 2 ratio of the fusion zone.

一方,+1100℃保持時間は通風量や層厚などの焼結条件
が不変であれば,焼結原料の疑似粒径と相関を有してい
る。第5図はこの相関を示したものである。ここで,焼
結原料を混合造粒したあとの疑似粒径は,以下の手順に
よって求めることができる。
On the other hand, the + 1100 ° C holding time has a correlation with the pseudo grain size of the sintering raw material if the sintering conditions such as the air flow rate and layer thickness are unchanged. FIG. 5 shows this correlation. Here, the pseudo particle size after the mixing and granulation of the sintering raw material can be obtained by the following procedure.

配合割合から求まる焼結原料の粒度構成の内,付着する
−0.25mm部分,0.25〜0.5mm部分は経験的にそれぞれ次の
(1)式および(2)式で表すことができる。
In the grain size composition of the sintering raw material obtained from the mixing ratio, the −0.25 mm portion and the 0.25 to 0.5 mm portion that adhere can be empirically expressed by the following equations (1) and (2), respectively.

焼結原料中の−0.25mm部分が混合造粒によって付着粉と
なる 割合(%)=0.49X+2.69 ……(1) 焼結原料中の0.25〜0.5mm部分が混合造粒によって付着
粉となる 割合(%)=1.79X−285.04 ……(2) ここで,X=190+19a−11a2であり, である。
Proportion (%) = 0.49X + 2.69 of -0.25 mm part in sintering raw material due to mixed granulation. (1) 0.25 to 0.5 mm part in sintering raw material becomes adhering powder due to mixed granulation. The ratio (%) = 1.79X−285.04 (2) where X = 190 + 19a−11a 2 and Is.

焼結原料中の核粒子の粒度構成 =焼結原料の粒度構成−付着粉の粒度構成 ……(3) であり,疑似粒径は, 疑似粒径=核粒子の平均径+18.13 ×核粒子の単位表面積当りの付着量(g/cm2) ……
(4) によっ求めることができる。
The particle size composition of the core particles in the sintering raw material = the particle size composition of the sintering raw material-the particle size composition of the adhering powder (3), and the pseudo particle size is the pseudo particle size = the average diameter of the core particles + 18.13 x nuclei. Adhesion amount of particles per unit surface area (g / cm 2 ) ...
(4) can be obtained by

したがって,焼結原料の配合割合と混合造粒時の水分値
から疑似粒径が算出でき,この疑似粒径から+1100℃保
持時間を算出でき,この算出した+1100℃保持時間並び
に前記の溶融部のAl2O3/SiO2比とからRDIが予測でき
る。
Therefore, the pseudo particle size can be calculated from the mixing ratio of the sintering raw materials and the water value at the time of the mixed granulation, and the + 1100 ° C holding time can be calculated from this pseudo particle size. RDI can be predicted from the Al 2 O 3 / SiO 2 ratio.

他方,焼結鉱の他の品質特性である被還元性について,
これを予測する手段について鋭意研究したところ,RIは
焼結鉱の鉱物相と空隙率とで記述できることが判明し
た。すなわち本発明者らは種々の焼結鉱について詳細な
試験と解析を重ねた結果,RIは次の(5)式で記述でき
ることを見い出した。
On the other hand, regarding the reducibility, which is another quality characteristic of sinter,
As a result of diligent research on means for predicting this, it was found that RI can be described by the mineral phase and porosity of sinter. That is, the present inventors have found that RI can be described by the following equation (5) as a result of detailed tests and analyzes of various sintered ores.

RI(%)=a+bx+cy+dz ……(5) ただし, x:焼結鉱の鉱物相中のカルシウムフエライトの面積率
(%) y:焼結鉱の鉱物相中の一次ヘマタイトの面積率(%) Z:空隙率(%)であり, a=15.246,b=0.193,c=−0.303,d=0.967である。
RI (%) = a + bx + cy + dz (5) where x: area ratio of calcium ferrite in the mineral phase of the sintered ore (%) y: area ratio of primary hematite in the mineral phase of the sintered ore (%) Z : Porosity (%), a = 15.246, b = 0.193, c = -0.303, d = 0.967.

したがって,独立変数であるx,y,zが焼結原料の配合割
合や造粒時の水分値などの操作量によって推定できれば
RI値は予測できることになる。
Therefore, if the independent variables x, y, and z can be estimated by the manipulated variables such as the mixing ratio of sintering raw materials and the moisture value during granulation,
RI values will be predictable.

本発明者らの数多くの試験によると,焼結鉱の鉱物相中
のカルシウムフエライトの面積率(以下c.f.(%)と記
す)と焼結鉱の鉱物相中の一次ヘマタイトの面積率(以
下p.r.(%)と記す)は以下の手順によって推定できる
ことが判明した。
According to a number of tests conducted by the present inventors, the area ratio of calcium ferrite in the mineral phase of the sintered ore (hereinafter referred to as cf (%)) and the area ratio of primary hematite in the mineral phase of the sintered ore (hereinafter pr It has been found that (%) is estimated by the following procedure.

第6図は,焼結原料中の鉄鉱石として単銘柄だけを使用
し,SiO2=5.5%,塩基度=1.6となるように珪砂と石灰
石を加え,さらに粉コークスを4%配合して焼結した時
に得られた焼結鉱のc.f.(%)とp.r.(%)を銘柄毎に
示したものである。第6図に見られるように,c.f.
(%)やp.r.(%)の鉱物相の割合は鉄鉱石銘柄によっ
て異なった或る一定の値をもつことから,これら各種の
銘柄の鉄鉱石の配合時にその銘柄の配合割合に応じた所
定の重みを付加することにより,焼結鉱中のc.f.(%)
やp.r.(%)は算出できる。
Figure 6 shows that using only a single brand of iron ore in the sintering raw material, adding silica sand and limestone so that SiO 2 = 5.5% and basicity = 1.6, and further mixing 4% of powder coke and firing. It shows the cf (%) and pr (%) of the sintered ore obtained by binding each brand. As seen in Figure 6, cf
(%) And pr (%) of mineral phases have a certain value that varies depending on the iron ore brand. Therefore, when blending iron ore of these various brands, a predetermined amount according to the blending ratio of that brand is specified. By adding weight, cf (%) in sinter
And pr (%) can be calculated.

また空隙率については,焼結時には融液が生成し,この
融液が空隙に浸入することから焼結原料の装入時よりも
焼結鉱は空隙は減少することになる。原料装入時の空隙
率は装入量(体積,重量)と原料の真比重から算出でき
るが,焼結後の焼結鉱の空隙率を推定するには,焼結時
の融液生成による空隙の減少量を定量化する必要があ
る。
Regarding the porosity, since a melt is generated during sintering and this melt penetrates into the voids, the voids in the sintered ore are smaller than when the sintering raw material was charged. The porosity at the time of charging the raw material can be calculated from the charging amount (volume, weight) and the true specific gravity of the raw material. To estimate the porosity of the sintered ore after sintering, it is necessary to use the melt generation during sintering. It is necessary to quantify the amount of void reduction.

第7図に本発明者らが空隙時の実測に使用した装置の概
略を示した。本装置は,電気炉10の内部に設置した標準
試料11と供試試料12に対して一定の荷重を加えながら加
熱し,温度上昇に伴う空隙減少量を比較測定するもので
あり,13は試料を上から押さえる支持管,14は検出棒,15
はマイクロメータ,16はバランスウエイト,17は分銅,18
はコア,そして19は差動トランスフィールドを示してい
る。
FIG. 7 shows an outline of the apparatus used by the present inventors for the actual measurement in the void. This equipment is for heating the standard sample 11 and the sample under test 12 installed inside the electric furnace 10 while applying a constant load, and comparatively measuring the amount of void reduction with temperature rise. A support tube that holds the
Is a micrometer, 16 is a balance weight, 17 is a weight, 18
Indicates the core, and 19 indicates the differential transformer field.

第8図は,この試験機により,鉄鉱石銘柄毎にSiO2=5.
5%,塩基度=1.6となるように珪砂と石灰石を配合して
各温度における空隙減少量を測定した結果を示してい
る。第8図に示されるように,焼結温度に伴う空隙減少
量は鉱石の緻密さや含有成分の差異等の鉱石の成因によ
って銘柄間で異なるが銘柄毎に一定の値を示す。したが
って,種々の鉱石の配合時には,鉱石銘柄の配合割合に
応じた重みを付加することにより,焼結時の空隙減少量
が算出でき,上述した原料装入時の空隙率と焼結時の空
隙減少量とから,焼結鉱の空隙率を推定することができ
る。
Fig. 8 shows that this tester used SiO 2 = 5 for each iron ore brand.
The results of measuring the amount of void reduction at each temperature by mixing silica sand and limestone so that the basicity is 5% and 1.6 are shown. As shown in FIG. 8, the amount of void reduction with sintering temperature varies depending on the origin of the ore such as the density of the ore and the difference in the content of the ore, but shows a constant value for each brand. Therefore, when compounding various ores, the amount of void reduction during sintering can be calculated by adding weights according to the compounding ratio of the ore brand, and the porosity during raw material charging and voids during sintering described above can be calculated. The porosity of the sintered ore can be estimated from the amount of decrease.

なお,焼結時の最高温度の推定は第9図に示すごとく,
焼結原料の混合造粒時の疑似粒径との間で一定の相関が
認められる。したがって,既述のように疑似粒径が焼結
原料の配合割合と水分値から算出できることからこの疑
似粒径から焼結時の最高温度が推定できる。
The maximum temperature during sintering is estimated as shown in Fig. 9,
A certain correlation is observed with the pseudo particle size at the time of mixed granulation of the sintering raw materials. Therefore, as described above, since the pseudo particle size can be calculated from the mixing ratio of the sintering raw material and the water content, the maximum temperature during sintering can be estimated from this pseudo particle size.

以上のことから,RIについても,焼結原料の配合割合か
ら求まるc.f.(%)およびp.r.(%),更に,配合割合
と混合造粒時の水分値から算出される焼結時の最高温度
を用いて求まる焼結鉱の空隙率とを用いて予測すること
ができる。
From the above, also for RI, the cf (%) and pr (%) obtained from the mixing ratio of the sintering raw materials, and the maximum temperature during sintering calculated from the mixing ratio and the water content during mixed granulation were used. It can be predicted by using the porosity of the sintered ore obtained by using.

実施例1 表1に示す配合割合の焼結原料を水分6.0%で造粒後,
これを焼結すれば得られるであろう焼結鉱のRDIとRIを
予測し,実際に焼結して得た焼結鉱のRDIとRIの実測値
と比較する。
Example 1 A sintering raw material having a mixing ratio shown in Table 1 was granulated with a water content of 6.0%,
The RDI and RI of the sintered ore that would be obtained by sintering this are predicted and compared with the measured values of the RDI and RI of the sintered ore obtained by actual sintering.

焼結原料の飽和水分値は,予め求めておいた各銘柄の飽
和水分値と配合割合を用いて,加重平均によって(6)
式に従って算出すると,12.80%が得られる。
The saturated moisture content of the sintering raw material is calculated by weighted average using the saturated moisture content and the blending ratio of each brand that was obtained in advance (6)
Calculated according to the formula, 12.80% is obtained.

したがって,この飽和水分値から,本文の(1)式およ
び(2)式中のaの値を計算すると−0.4となり,また,
Xの値が180.6となる。したがって,(1)式に従う焼結
原料中の−0.25mm部分が混合造粒によって付着粉となる
割合(%)は91.20%,そして,(2)に従う焼結原料
中の0.25〜0.5mm部分が混合造粒によって付着粉となる
割合は49.14%と算出される。
Therefore, when the value of a in equations (1) and (2) in the text is calculated from this saturated moisture value, it becomes -0.4, and
The value of X becomes 180.6. Therefore, the proportion (%) of the −0.25 mm portion in the sintering raw material according to the equation (1) that becomes the adhering powder by the mixed granulation is 91.20%, and the 0.25 to 0.5 mm portion in the sintering raw material according to (2) is The ratio of adhering powder due to mixed granulation is calculated to be 49.14%.

表1の配合割合の造粒前の粒度構成(真粒度)は測定に
よって得られ,これは表2に示す如くである。混合造粒
によって付着粉となる割合が既知となることから,付着
する−0.25mm,0.25〜0.5mm部分を表2の真粒度から除い
た部分が核粒子となり,したがって,核粒子の粒度構成
は表3のように表すことができる。そして,核粒子の調
和平均粒径は次の(7)式より1.116mmと求まる。
The particle size composition (true particle size) before granulation with the compounding ratios in Table 1 was obtained by measurement, and is as shown in Table 2. Since the ratio of the adhering powder due to the mixed granulation is known, the part excluding the adhering −0.25 mm and 0.25 to 0.5 mm parts from the true particle size in Table 2 becomes the core particle. Therefore, the particle size composition of the core particle is It can be expressed as in Table 3. Then, the harmonic mean particle size of the core particles is calculated as 1.116 mm from the following equation (7).

いま,焼結原料100gを6.0%水分で混合造粒したとする
と,付着する−0.5mm部分の付着量と核粒子の表面積は
次の(8)式および(9)式からそれぞれ24.3gおよび1
017.7cm2と算出できる。
Now, assuming that 100 g of the sintering raw material is mixed and granulated with 6.0% moisture, the amount of the attached −0.5 mm portion and the surface area of the core particles are 24.3 g and 1 from the following equations (8) and (9), respectively.
It can be calculated as 017.7 cm 2 .

−0.5mm部分の付着量 =8.9×0.492+21.8×0.912=24.3(g) ……(8) 核粒子の表面積=πd2n≒1017.7cm2 ……(9) ただし,n(個数)=6W/(πd3ρ)であり,W(重量)=1
00−24.3,ρ(比重)=3.9,d(粒径)=0.1116cmであ
る。
-0.5mm adhesion amount = 8.9 x 0.492 + 21.8 x 0.912 = 24.3 (g) ... (8) Surface area of core particles = πd 2 n ≈ 1017.7cm 2 ...... (9) where n (number) = 6W / (πd 3 ρ), W (weight) = 1
00-24.3, ρ (specific gravity) = 3.9, d (particle size) = 0.1116 cm.

したがって,単位面積当りの付着量は24.3/1017.7=0.0
23g/cm2となり,本文の(4)式から造粒後の疑似粒径
は1.116+0.43=1.546mmと算出でき,この疑似粒径を用
いて第5図および第9図から+1100℃保持時間が約1.52
分,最高温度が1260℃と推定できる。
Therefore, the adhered amount per unit area is 24.3 / 1017.7 = 0.0
It becomes 23 g / cm 2 , and the pseudo particle size after granulation can be calculated as 1.116 + 0.43 = 1.546 mm from the formula (4) in this text, and using this pseudo particle size, hold + 1100 ° C from Fig. 5 and Fig. 9. Time is about 1.52
The maximum temperature can be estimated to be 1260 ℃.

他方,表1の焼結原料が焼結された時の溶融部のAl2O3/
SiO2比は分析によると0.293であった。この溶融部のAl2
O3/SiO2比と前記の+1100℃保持時間とから,次の(1
0)式によりRDIは32.96と算出される。
On the other hand, Al 2 O 3 / in the fusion zone when the sintering materials in Table 1 were sintered
The SiO 2 ratio was 0.293 by analysis. Al 2 in this fusion zone
From the O 3 / SiO 2 ratio and the above + 1100 ° C holding time, the following (1
The RDI is calculated as 32.96 by the equation (0).

RDI=(Al2O3/SiO2)×27.7+27.0+2.9 ×(+1100℃保持時間−2.25) ……(10) =32.96 次にRIを予測する。RDI = (Al 2 O 3 / SiO 2 ) × 27.7 + 27.0 + 2.9 × (+ 1100 ° C holding time −2.25) (10) = 32.96 Next, predict RI.

まず,焼結鉱のc.f.(%)とp.r.(%)の推定は(11)
式および(12)式により得られる。
First, the estimation of cf (%) and pr (%) of sinter is (11)
Equation (12) and equation (12).

c.f.(%)=a×0.458+b×0.346+c×0.341 +d×0.287+e×0.222 ……(11) p.r.(%)=a×0.038+b×0.044+c×0.032 +d×0.117+e×0.211 ……(12) ただし,a,b,c,d,eは主原料である鉄鉱石の各銘柄が主原
料に占める割合である。
cf (%) = a x 0.458 + b x 0.346 + c x 0.341 + d x 0.287 + e x 0.222 ...... (11) pr (%) = a x 0.038 + b x 0.044 + c x 0.032 + d x 0.117 + e x 0.211 ...... (12) However, a, b, c, d, and e are the proportions of each brand of iron ore, which is the main raw material, in the main raw material.

焼結原料の最高温度は前述のように疑似粒径から1260℃
と推定されるから,(11)式のa,b,c,d,eの値を用いて
第8図の焼結温度と空隙減少量との関係から空隙減少量
を求めると空隙減少量は5.21%となる。一方,焼結原料
装入時の空隙率は実測により55.5%であった。したがっ
て,焼結鉱の空隙率は50.3%であると推定できる。
The maximum temperature of the sintering raw material is 1260 ° C from the pseudo grain size as described above.
Therefore, if the void reduction amount is calculated from the relationship between the sintering temperature and the void reduction amount in Fig. 8 using the values of a, b, c, d, and e in Eq. (11), the void reduction amount is It becomes 5.21%. On the other hand, the porosity when charging the sintering raw material was 55.5% by actual measurement. Therefore, it can be estimated that the porosity of the sinter is 50.3%.

よって,(5)式にc.f.(%)=32.567,p.r.(%)=
7.864,空隙率=50.3%を代入することによってRI=67.7
9%の予測値が得られる。
Therefore, cf (%) = 32.567, pr (%) =
7.864, RI = 67.7 by substituting porosity = 50.3%
A predicted value of 9% is obtained.

実際に焼結鉱を製造し,得られた成品焼結鉱のRDIとRI
を測定したところRDIの実測値=33.4%,RIの実測値=6
8.2%であった。
RDI and RI of the product sinter obtained by actually manufacturing sinter
The measured value of RDI = 33.4%, the measured value of RI = 6
It was 8.2%.

実施例2 焼結原料の配合条件と造粒時の水分値を種々変化させた
以外は実施例1と同様の処法を繰り返してRDIとRIの予
測値を求め,且つ得られた焼結鉱のRDIとRIの実測値を
測定した。これらの予測値と実測値を第10図および第11
図に示した。これらの結果から明らかなように,予測値
は実績値に非常に良く一致しており,したがって,本発
明によれば,焼結原料の配合割合や造粒時の水分値を操
作量としてフィードフオワード制御により目標とするRD
I値およびRI値をもつ焼結鉱成品を製造することができ
ることがわかる。
Example 2 The same procedure as in Example 1 was repeated except that the mixing conditions of the sintering raw materials and the water content at the time of granulation were changed to obtain the predicted values of RDI and RI, and the obtained sintered ore was obtained. The measured values of RDI and RI were measured. These predicted and measured values are shown in Figs. 10 and 11
As shown in the figure. As is clear from these results, the predicted value agrees very well with the actual value. Therefore, according to the present invention, the mixing ratio of the sintering raw material and the water content at the time of granulation are used as the manipulated variables for the feed value. Target RD by word control
It can be seen that it is possible to produce sintered mineral products with I and RI values.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明法の試験に使用した焼結鍋装置の略断面
図,第2図は+1100℃保持時間と低温還元粉化指数(RD
I)との関係図,第3図は鉄鉱石各銘柄の粒度毎の焼結
時の溶融割合を示す図,第4図は溶融部のAl2O3/SiO2
と低温還元粉化指数(RDI)との関係図,第5図は焼結
原料造粒時の疑似粒径と+1100℃保持時間との関係図,
第6図は焼結原料中の鉄鉱石を単銘柄のみとした場合の
銘柄毎のc.f.(%)とp.r.(%)を示す図,第7図は焼
結時の空隙減少量を測定する熱機械分析装置の略断面
図,第8図は鉄鉱石各銘柄毎の焼結温度と空隙減少量と
の関係図,第9図は疑似粒径と焼結時の最高温度との関
係図,第10図は予測RDI値と実測RDI値との関係図,第11
図は予測RI値と実測RI値との関係図である。
Fig. 1 is a schematic cross-sectional view of a sintering pot device used in the test of the method of the present invention, and Fig. 2 is a holding time at + 1100 ° C and low temperature reduction powdering index (RD).
Fig. 3 is a diagram showing the melting ratio at the time of sintering of iron ore brands for each grain size, and Fig. 4 is the Al 2 O 3 / SiO 2 ratio and low-temperature reduction powdering index of the molten part. Fig. 5 is a relational diagram with (RDI), Fig. 5 is a relational diagram between pseudo particle size and + 1100 ° C holding time during granulation of sintering raw material,
Fig. 6 shows the cf (%) and pr (%) for each brand when the iron ore in the sintering raw material is a single brand, and Fig. 7 is the heat used to measure the void reduction during sintering. A schematic cross-sectional view of a mechanical analyzer, FIG. 8 is a relationship diagram between the sintering temperature and the amount of void reduction for each iron ore brand, and FIG. 9 is a relationship diagram between the pseudo grain size and the maximum temperature during sintering, Figure 10 shows the relationship between the predicted RDI value and the measured RDI value, No. 11
The figure shows the relationship between the predicted RI value and the measured RI value.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石井 晴美 広島県呉市昭和町11番1号 日新製鋼株式 会社呉研究所内 (72)発明者 亀尾 晋 広島県呉市昭和町11番1号 日新製鋼株式 会社呉研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Harumi Ishii 11-1 Showa-cho, Kure City, Hiroshima Prefecture Nisshin Steel Co., Ltd. Kure Research Institute (72) Inventor Susumu Kamio 11-11 Showa-cho, Kure City, Hiroshima Prefecture Kure Research Institute, New Steel Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】焼結原料を所定の焼結機に装填し,その焼
結機のパレットスピード,吸引風量,焼結原料装填層厚
等の稼動条件を設定値範囲に維持しながら鉄鉱石の焼結
鉱を製造するにあたり,焼結原料の配合割合と造粒時の
水分量とから造粒後の疑似粒径を算出し,この疑似粒径
から焼結時の高温保持時間を予測し,そして焼結原料の
配合割合と化学組成から焼結時の溶融部のAl2O3/SiO2
を求め,該高温保持時間とAl2O3/SiO2比から焼結鉱の低
温還元粉化指数を予測し,この低温還元粉化指数の予測
値が目標値に近づくように焼結原料の配合割合および/
または造粒時の水分量を調整することを特徴とする焼結
鉱の製造方法。
1. A sintering machine is loaded with a sintering raw material, and the operating conditions such as the pallet speed of the sintering machine, the suction air volume, and the thickness of the sintering raw material loading layer are maintained within a set value range. In producing a sinter, the pseudo particle size after granulation is calculated from the mixing ratio of sintering raw materials and the water content at the time of granulation, and the high temperature holding time during sintering is predicted from this pseudo particle size. Then, determine the Al 2 O 3 / SiO 2 ratio of the molten part during sintering from the mixing ratio and chemical composition of the sintering raw material, and from the high temperature holding time and the Al 2 O 3 / SiO 2 ratio, the low-temperature reduced powder of the sintered ore. Of the sintering index and predict the low-temperature reduction powdering index to approach the target value.
Alternatively, a method for producing a sintered ore, which comprises adjusting the amount of water during granulation.
【請求項2】焼結原料を所定の焼結機に装填し,その焼
結機のパレットスピード,吸引風量,焼結原料装填層厚
等の稼動条件を設定値範囲に維持しながら鉄鉱石の焼結
鉱を製造するにあたり,焼結原料の配合割合と造粒時の
水分量とから造粒後の疑似粒径を算出し,この疑似粒径
から焼結時の最高温度を算出し,この最高温度と焼結時
の空隙減少量との関係から焼結後の空隙率を予測し,そ
して,焼結原料の配合割合から焼結鉱鉱物中のカルシウ
ムフエライト相の面積率および一次ヘマタイトの面積率
を算出し,該空隙率,焼結鉱鉱物中のカルシウムフエラ
イト相の面積率および一次ヘマタイトの面積率から焼結
鉱の還元率を予測し,この還元率の予測値が目標値に近
づくように焼結原料の配合割合および/または造粒時の
水分量を調整することを特徴とする焼結鉱の製造方法。
2. The sintering raw material is loaded into a predetermined sintering machine, and the operating conditions such as the pallet speed of the sintering machine, the suction air volume, the thickness of the sintering raw material loading layer, etc. are maintained within a set value range. In producing sinter, the pseudo particle size after granulation was calculated from the mixing ratio of the sintering raw materials and the water content during granulation, and the maximum temperature during sintering was calculated from this pseudo particle size. The porosity after sintering was predicted from the relationship between the maximum temperature and the amount of void reduction during sintering, and the area ratio of the calcium ferrite phase and the area of primary hematite in the sintered ore mineral were estimated from the mixing ratio of the sintering raw materials. The reduction ratio of the sintered ore is calculated from the porosity, the area ratio of the calcium ferrite phase in the sintered ore mineral, and the area ratio of the primary hematite so that the predicted value of this reduction ratio approaches the target value. Adjust the mixing ratio of sintering raw materials and / or the water content during granulation Method for producing sintered ore according to claim and.
JP3027186A 1986-02-14 1986-02-14 Sintered ore manufacturing method Expired - Lifetime JPH0742520B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3027186A JPH0742520B2 (en) 1986-02-14 1986-02-14 Sintered ore manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3027186A JPH0742520B2 (en) 1986-02-14 1986-02-14 Sintered ore manufacturing method

Publications (2)

Publication Number Publication Date
JPS62188733A JPS62188733A (en) 1987-08-18
JPH0742520B2 true JPH0742520B2 (en) 1995-05-10

Family

ID=12299037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3027186A Expired - Lifetime JPH0742520B2 (en) 1986-02-14 1986-02-14 Sintered ore manufacturing method

Country Status (1)

Country Link
JP (1) JPH0742520B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101455457B1 (en) * 2012-08-29 2014-11-03 현대제철 주식회사 Method for predicting reducibility index of sintered ore
KR101505288B1 (en) * 2013-05-31 2015-03-23 현대제철 주식회사 Method for producing sintered ore
CN109165793A (en) * 2018-09-14 2019-01-08 东北大学 A kind of blending ore sintering basic characteristic forecasting procedure based on PSO-ELM algorithm

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006063444A (en) * 2004-07-30 2006-03-09 Jfe Steel Kk Sintered ore for blast furnace
JP7159720B2 (en) * 2018-09-11 2022-10-25 日本製鉄株式会社 Method for evaluating relative strength of multiple types of sintered ore

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101455457B1 (en) * 2012-08-29 2014-11-03 현대제철 주식회사 Method for predicting reducibility index of sintered ore
KR101505288B1 (en) * 2013-05-31 2015-03-23 현대제철 주식회사 Method for producing sintered ore
CN109165793A (en) * 2018-09-14 2019-01-08 东北大学 A kind of blending ore sintering basic characteristic forecasting procedure based on PSO-ELM algorithm

Also Published As

Publication number Publication date
JPS62188733A (en) 1987-08-18

Similar Documents

Publication Publication Date Title
Oyama et al. Development of coating granulation process at commercial sintering plant for improving productivity and reducibility
KR20180119664A (en) Method of analysis of slag and refining method of molten iron
JP2017128794A (en) Method for inputting raw material to blast furnace
Lu et al. Sintering characteristics of iron ore blends containing high proportions of Goethitic ores
JP6680369B2 (en) Sintered ore manufacturing method
JPH0742520B2 (en) Sintered ore manufacturing method
JP2005290511A (en) Method for operating blast furnace
Loo et al. Fundamental factors determining laboratory sintering results
EP2851434A1 (en) Method for loading raw material into blast furnace
JP6519036B2 (en) Blast furnace operation method
JP6489092B2 (en) Sinter ore manufacturing method and sintered ore manufacturing equipment line
RU2185444C2 (en) Method of blast-furnace smelting
JP2021139037A (en) Smelting method of ferronickel
JP6866856B2 (en) Sintered ore manufacturing method and blast furnace operation method
JP4767388B2 (en) Method for producing sintered ore with excellent high-temperature properties
Babaievska et al. Influence of the size of hematite and magnetite ores on the parameters of the sintering process and the quality of the sinter
EP3670685B1 (en) Method for manufacturing sintered ore
JP6763412B2 (en) Sintered ore manufacturing method
JP2018172704A (en) Manufacturing method of granulated sintering raw material and manufacturing method of sintered ore
JP6558519B1 (en) Raw material charging method for blast furnace
Tolymbekova et al. Technologies for the production of non-annealed pellets
JP3952871B2 (en) Manufacturing method of high-strength sintered ore
JP2023089461A (en) Method for estimating high temperature region reduction rate of sintered ore and method for manufacturing sintered ore
JP2002285209A (en) Method for charging raw material into blast furnace
JPH02179804A (en) Method for operating blast furnace