JP6665972B2 - Sinter production method - Google Patents

Sinter production method Download PDF

Info

Publication number
JP6665972B2
JP6665972B2 JP2019551040A JP2019551040A JP6665972B2 JP 6665972 B2 JP6665972 B2 JP 6665972B2 JP 2019551040 A JP2019551040 A JP 2019551040A JP 2019551040 A JP2019551040 A JP 2019551040A JP 6665972 B2 JP6665972 B2 JP 6665972B2
Authority
JP
Japan
Prior art keywords
raw material
sintering
ore
sinter
sintered ore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019551040A
Other languages
Japanese (ja)
Other versions
JPWO2019082749A1 (en
Inventor
友司 岩見
友司 岩見
俊輔 野中
俊輔 野中
祥和 早坂
祥和 早坂
直幸 竹内
直幸 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JPWO2019082749A1 publication Critical patent/JPWO2019082749A1/en
Application granted granted Critical
Publication of JP6665972B2 publication Critical patent/JP6665972B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/02Dephosphorising or desulfurising
    • C21C1/025Agents used for dephosphorising or desulfurising
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating
    • C22B1/22Sintering; Agglomerating in other sintering apparatus
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/008Composition or distribution of the charge
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating
    • C22B1/20Sintering; Agglomerating in sintering machines with movable grates
    • C22B1/205Sintering; Agglomerating in sintering machines with movable grates regulation of the sintering process
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/242Binding; Briquetting ; Granulating with binders
    • C22B1/244Binding; Briquetting ; Granulating with binders organic
    • C22B1/245Binding; Briquetting ; Granulating with binders organic with carbonaceous material for the production of coked agglomerates
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/26Cooling of roasted, sintered, or agglomerated ores

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、焼結鉱の製造方法に関するものであり、具体的には、焼結鉱の成分濃度を測定し、当該成分濃度を用いてパレット台車の進行速度を調整する焼結鉱の製造方法に関する。   The present invention relates to a method for producing a sintered ore, specifically, a method for measuring a component concentration of a sintered ore and adjusting a traveling speed of a pallet truck using the component concentration. About.

高炉製鉄法では、鉄源として、焼結鉱や塊鉄鉱石、ペレットなどの鉄含有原料を高炉原料として主に用いている。ここで、焼結鉱は、粒径が10mm以下の鉄鉱石と製鉄所内で発生する各種ダスト等の雑鉄源に、石灰石や生石灰、製鋼スラグなどのCaO含有原料と、粉コークスや無煙炭などの凝結材と、任意配合原料として精錬ニッケルスラグ、ドロマイト、蛇紋岩などからなるMgO含有原料と、精錬ニッケルスラグ、硅石(硅砂)などからなるSiO含有原料を配合した焼結原料をドラムミキサーで水を添加しながら混合、造粒し、焼成した塊成鉱の一種である。In the blast furnace ironmaking method, iron-containing raw materials such as sintered ore, lump ore, and pellets are mainly used as blast furnace raw materials as iron sources. Here, sinter is used as a source of iron ore having a particle size of 10 mm or less and various iron sources such as dust generated in steel works, a CaO-containing raw material such as limestone, quicklime, and steelmaking slag, and a coke fine or anthracite. Using a drum mixer, a sintering raw material obtained by mixing a coagulant, an MgO-containing raw material such as smelted nickel slag, dolomite, and serpentine as an optional mixing raw material and a SiO 2 -containing raw material such as smelted nickel slag and silica stone is mixed with a drum mixer. Is a kind of agglomerate that is mixed, granulated, and fired while adding lime.

近年、焼結鉱の原料である焼結原料に含まれる鉄鉱石の鉄分濃度が低下し、代わりにSiOやAlといった脈石成分濃度が増加しており、同種の鉄鉱石内においても、輸入時の船ごとに成分濃度が異なる場合もあるほど、産出される鉄鉱石の成分濃度が不安定になっている。In recent years, the iron concentration of iron ore contained in the sintering raw material that is the raw material of the sinter has decreased, and instead the concentration of gangue components such as SiO 2 and Al 2 O 3 has increased. In addition, the concentration of components in iron ore produced is so unstable that the concentration of components may differ from ship to ship at the time of import.

製鉄所内で発生する各種ダストは、発生量のばらつきや含まれるカーボンの変動量が大きい。焼結原料に含まれるカーボン量の変動が大きくなると、焼結の反応温度が変動する。   Various kinds of dust generated in a steel mill have a large variation in the amount of generation and a large amount of variation in the contained carbon. When the amount of carbon contained in the sintering material fluctuates greatly, the reaction temperature of sintering fluctuates.

焼結の反応温度の変動は、成品である成品焼結鉱(以後、単に「焼結鉱」とも記載する)の品質の変動に繋がり、焼結鉱の品質を大きく左右する。例えば、熱量が過剰である場合、焼結の反応温度が上昇し、焼結鉱にガラス質の低強度組織が形成されたり、マグネタイト組織が増加して被還元性が低下するなど、焼結鉱の品質の低下を招く。一方、熱量が不足している場合は、焼結の反応温度が低下し、そもそも焼結反応が起きない可能性があり、その場合には焼結鉱自体が得られない。したがって、焼結の反応温度を管理することは、安定した焼結鉱品質の維持には不可欠である。   Fluctuations in the sintering reaction temperature lead to fluctuations in the quality of the product sinter (hereinafter simply referred to as “sinter”), which greatly affects the quality of the sinter. For example, when the calorific value is excessive, the sintering reaction temperature rises, a vitreous low-strength structure is formed in the sinter, or the magnetite structure increases, and the reducibility decreases. Quality of the product. On the other hand, when the calorific value is insufficient, the reaction temperature of the sintering decreases, and there is a possibility that the sintering reaction does not occur in the first place, and in that case, the sintered ore itself cannot be obtained. Therefore, controlling the reaction temperature of sintering is indispensable for maintaining stable sinter quality.

しかし、焼結の反応温度を連続的に測定することは非常に難しい。このため、焼結鉱の成分を分析することで、焼結の反応温度を推定し、熱量管理を行うのが一般的である。具体的には、焼結鉱のFeO濃度や残留したC濃度を測定する。焼結反応において、焼結鉱のヘマタイトは温度上昇とともにマグネタイトへと熱解離を生じる。反応後の温度低下とともに、再度、マグネタイトからヘマタイトに転移するが、熱解離したマグネタイトの全量がヘマタイトに戻らないので、焼結の反応温度が高いと焼結鉱中にマグネタイトが多く残留する。マグネタイトは2価のFeを含むので、焼結鉱のFeO濃度が、焼結の反応温度を示す指標となる。焼結鉱に残留したCは、焼結反応において熱源として使用されなかったことを示すので、焼結鉱に残留したC濃度が高い場合には、焼結反応時の熱量の不足が疑われる。   However, it is very difficult to continuously measure the sintering reaction temperature. For this reason, it is common to estimate the reaction temperature of sintering and analyze the calorific value by analyzing the components of the sinter. Specifically, the FeO concentration and the residual C concentration of the sinter are measured. In the sintering reaction, the sinter ore hematite undergoes thermal dissociation into magnetite with increasing temperature. As the temperature decreases after the reaction, the magnetite changes from hematite to hematite again, but the entire amount of thermally dissociated magnetite does not return to hematite. Therefore, when the sintering reaction temperature is high, a large amount of magnetite remains in the sintered ore. Since magnetite contains divalent Fe, the FeO concentration of the sinter serves as an index indicating the reaction temperature of sintering. Since C remaining in the sinter indicates that it was not used as a heat source in the sintering reaction, if the concentration of C remaining in the sinter is high, shortage of heat during the sintering reaction is suspected.

焼結鉱の成分測定と、焼結反応の熱量調整は従来から行われている。例えば、特許文献1には、焼結鉱のFeO濃度を測定し、焼結鉱のFeO濃度を用いて焼結原料の凝結材や造粒水分、排風量を調整する技術が開示されている。また、特許文献2には、焼結鉱のFeO濃度を測定し、焼結鉱のFeO濃度を用いて、焼結機において吹き込む都市ガス量を調整する技術が開示されている。   Conventionally, the measurement of the components of the sinter and the adjustment of the calorific value of the sintering reaction have been performed. For example, Patent Literature 1 discloses a technique in which the FeO concentration of a sinter is measured, and the coagulant, granulated moisture, and exhaust air volume of a sintering raw material are adjusted using the FeO concentration of the sinter. Patent Literature 2 discloses a technique in which the FeO concentration of a sinter is measured, and the amount of city gas blown in a sintering machine is adjusted using the FeO concentration of the sinter.

また、特許文献3には、焼結機上にレーザー式成分計測機を設置し、当該成分計測機を用いて測定されたパレット内に装入された原料装入層表層の成分濃度を用いて焼結鉱の成分濃度を推測し、これを用いて焼結原料の配合量を調整する技術が開示されている。   Further, in Patent Document 3, a laser-type component measuring device is installed on a sintering machine, and the component concentration of a raw material charged layer surface layer charged in a pallet measured using the component measuring device is used. There is disclosed a technique of estimating the component concentration of a sinter ore and adjusting the compounding amount of a sintering raw material using the guess.

特許第1464203号公報Japanese Patent No. 1464203 特許第5544784号公報Japanese Patent No. 5544784 特開昭60−262926号公報JP-A-60-262926

特許文献1および特許文献2に開示された技術は、焼結鉱のFeO濃度を測定し、目標値となるように凝結材量、造粒水分、排風量、都市ガス吹込み量を調整する技術である。しかしながら、これらの調整結果を焼結鉱の成分に反映させるまでに時間を要し、焼結の反応温度が高くなった場合に、冷却機の異常停止や冷却機よりも下流側の設備の故障などの設備トラブルを招く可能性がある。   The techniques disclosed in Patent Literature 1 and Patent Literature 2 measure the FeO concentration of the sinter and adjust the amount of the coagulant, the amount of granulated water, the amount of exhaust air, and the amount of city gas blown so as to be the target values. It is. However, it takes time for the results of these adjustments to be reflected in the components of the sinter, and if the reaction temperature for sintering rises, the cooler stops abnormally or the equipment downstream of the cooler fails. There is a possibility of causing equipment trouble such as.

特許文献3に開示された技術は、原料装入層表層の成分濃度から焼結鉱の成分濃度を推測しているが、装入層表層の成分濃度は、焼結原料の装入装置や焼結原料の粒度に伴う偏析によって変動する。このため、装入層表層の成分濃度と焼結鉱の成分濃度との関係は一様ではなく、装入層表層の成分濃度から焼結鉱の成分濃度を実際に推測するのは困難である。   The technology disclosed in Patent Document 3 estimates the component concentration of the sintered ore from the component concentration of the raw material charging layer surface layer. It fluctuates due to segregation that accompanies the particle size of the binding material. For this reason, the relationship between the component concentration of the charging layer surface layer and the component concentration of the sintered ore is not uniform, and it is difficult to actually estimate the component concentration of the sintered ore from the component concentration of the charging layer surface layer. .

本発明は、このような従来技術の問題点を鑑みてなされたものであり、その目的は、焼結の反応温度が変動したとしても、その変動を検出して焼結鉱製造装置の設備トラブルを抑制できる焼結鉱の製造方法を提供することにある。   The present invention has been made in view of such a problem of the related art, and an object of the present invention is to detect the fluctuation of the reaction temperature of sintering and detect the fluctuation of the reaction temperature even if the reaction temperature of sintering changes. An object of the present invention is to provide a method for producing a sintered ore capable of suppressing the occurrence of sinter.

このような課題を解決する本発明の特徴は、以下の通りである。
(1)鉄含有原料、CaO含有原料および凝結材が配合された焼結原料に水を添加して造粒し、焼結機で焼結して焼結鉱を製造する焼結鉱の製造方法であって、前記焼結鉱の成分濃度を連続測定する測定工程と、前記測定工程で測定された前記焼結鉱の成分濃度を用いて、パレット台車の進行速度を調整するパレット台車速度の調整工程と、
を有する、焼結鉱の製造方法。
(2)前記焼結原料には、さらにMgO含有原料およびSiO含有原料の少なくとも一方が配合される、(1)に記載の焼結鉱の製造方法。
(3)前記測定工程では、前記焼結鉱のFeOおよびCの少なくとも1種以上の成分濃度を連続測定する、(1)または(2)に記載の焼結鉱の製造方法
(4)前記焼結鉱の成分濃度を用いて、焼結原料の凝結材の配合量を調整する配合量の調整工程をさらに有する、(1)から(3)の何れか1つに記載の焼結鉱の製造方法。
(5)前記焼結機では、気体燃料および酸素の少なくとも一方を吹込んで焼結原料を焼結し、前記焼結鉱の成分濃度を用いて、前記気体燃料および前記酸素の少なくとも一方の吹込み量を調整する吹込み量の調整工程をさらに有する、(1)から(4)の何れか1つに記載の焼結鉱の製造方法。
The features of the present invention for solving such a problem are as follows.
(1) A method for producing a sintered ore in which water is added to a sintering raw material in which an iron-containing raw material, a CaO-containing raw material and a coagulant are blended, granulated, and sintered by a sintering machine to produce a sintered ore. A measuring step of continuously measuring the component concentration of the sinter, and adjusting the speed of the pallet truck to adjust the traveling speed of the pallet truck using the component concentration of the sinter measured in the measuring step. Process and
A method for producing a sintered ore, comprising:
(2) The method for producing a sintered ore according to (1), wherein the sintering raw material further contains at least one of an MgO-containing raw material and a SiO 2 -containing raw material.
(3) The method for producing a sintered ore according to (1) or (2), wherein in the measuring step, the concentration of at least one or more components of FeO and C in the sintered ore is continuously measured. The production of the sintered ore according to any one of (1) to (3), further including a blending amount adjusting step of adjusting the blending amount of the coagulant of the sintering raw material using the component concentration of the ore. Method.
(5) In the sintering machine, at least one of gaseous fuel and oxygen is blown to sinter the sintering raw material, and at least one of the gaseous fuel and the oxygen is blown using the component concentration of the sinter. The method for producing a sintered ore according to any one of (1) to (4), further comprising a step of adjusting a blowing amount for adjusting the amount.

本発明の焼結鉱の製造方法を実施により、焼結鉱の成分濃度を連続測定して、焼結機パレット台車の進行速度を変更する。これにより、冷却機出側の焼結鉱の温度上昇を抑制でき、焼結機の設備故障などの設備トラブルを抑制できる。   By carrying out the method for producing a sintered ore of the present invention, the component concentration of the sintered ore is continuously measured, and the traveling speed of the pallet truck of the sintering machine is changed. Thereby, the temperature rise of the sintered ore on the outlet side of the cooler can be suppressed, and equipment troubles such as equipment failure of the sintering machine can be suppressed.

図1は、本実施形態に係る焼結鉱の製造方法が実施できる焼結鉱製造装置10の一例を示す模式図である。FIG. 1 is a schematic diagram illustrating an example of a sinter ore manufacturing apparatus 10 that can perform the method of manufacturing a sinter according to the present embodiment. 図2は、実施例における焼結鉱のFeO濃度、パレット台車の進行速度、粉コークスの配合率および冷却機出側の焼結鉱温度の時間変化を示すグラフである。FIG. 2 is a graph showing the time change of the FeO concentration of the sinter, the traveling speed of the pallet truck, the mixing ratio of the coke breeze, and the temperature of the sinter at the outlet of the cooler in the example. 図3は、比較例における焼結鉱のFeO濃度、パレット台車の進行速度、粉コークスの配合率および冷却機出側の焼結鉱温度の時間変化を示すグラフである。FIG. 3 is a graph showing the time change of the FeO concentration of the sinter, the traveling speed of the pallet truck, the mixing ratio of the coke breeze, and the temperature of the sinter at the outlet of the cooler in the comparative example.

以下、発明の実施形態を通じて本発明を説明する。図1は、本実施形態に係る焼結鉱の製造方法が実施できる焼結鉱製造装置10の一例を示す模式図である。ヤード11に保管された鉄含有原料12は、搬送コンベア14によって配合槽22に搬送される。鉄含有原料12は、種々の銘柄の鉄鉱石および製鉄所内発生ダストを含む。   Hereinafter, the present invention will be described through embodiments of the present invention. FIG. 1 is a schematic diagram illustrating an example of a sinter ore manufacturing apparatus 10 that can perform the method of manufacturing a sinter according to the present embodiment. The iron-containing raw material 12 stored in the yard 11 is transported to the mixing tank 22 by the transport conveyor 14. The iron-containing raw material 12 includes various brands of iron ore and dust generated in steel works.

原料供給部20は、複数の配合槽22、24、25、26、28を備える。配合槽22には、鉄含有原料12が貯留される。配合槽24には、石灰石や生石灰等を含むCaO含有原料16が貯留される。配合槽25には、ドロマイトや精錬ニッケルスラグ等を含むMgO含有原料17が貯留される。配合槽26には、ロッドミルを用いて粒径1mm以下に破砕された粉コークスや無煙炭を含む凝結材18が貯留される。配合槽28には、焼結鉱の篩下となった粒径5mm以下の返鉱74(焼結鉱篩下粉)が貯留される。原料供給部20の配合槽22、24、25、26、28から、各原料が所定量切り出されて配合され、搬送コンベア30で焼結原料とされる。焼結原料は、搬送コンベア30によってドラムミキサー36に搬送される。焼結原料には、SiO含有原料が配合されてもよい。この場合にSiO含有原料は、ヤード11に保管された鉄含有原料12に所定量配合されてよく、SiO含有原料を貯留する配合槽を別に設け、当該配合槽から所定量切り出されて配合されてもよい。

ドラムミキサー36に搬送された焼結原料は、ドラムミキサー36に投入され、適量の水34が添加されて、例えば、平均粒径3.0〜6.0mmの擬似粒子に造粒される。造粒された焼結原料は、搬送コンベア38によって焼結機40の焼結原料供給装置42に搬送される。ドラムミキサー36は、焼結原料を造粒する造粒装置の一例であり、ドラムミキサー36を複数用いてもよく、ドラムミキサー36に代えて、ペレタイザー造粒機を用いてもよい。ドラムミキサー36とぺレタイザー造粒機の両方を用いてもよく、ドラムミキサー36の上流に高速撹拌機を設置して、ドラムミキサー36に投入する前に焼結原料を撹拌してもよい。本実施形態において、平均粒径は、算術平均粒径であって、Σ(Vi×di)(但し、Viはi番目の粒度範囲の中にある粒子の存在比率であり、diはi番目の粒度範囲の代表粒径である。)で定義される粒径である。 焼結機40では、ドラムミキサー36で造粒された焼結原料が焼結される。焼結機40は、例えば、下方吸引式のドワイトロイド焼結機である。焼結機40は、焼結原料供給装置42と、循環移動する無端移動式のパレット台車44と、点火炉46と、ウインドボックス48とを有する。焼結原料供給装置42から造粒された焼結原料がパレット台車44のパレットに装入され、焼結原料の装入層が形成される。装入層は、点火炉46で点火されるとともに、ウインドボックス48を通じて装入層内の空気を下方へ吸引することで装入層内の燃焼、溶融帯を装入層の下方へ移動させる。これにより、装入層は焼結されて、焼結ケーキが形成される。ウインドボックス48を通じて装入層内の空気を下方へ吸引する際、装入層の上方から気体燃料および酸素の少なくとも一方を吹込んでもよい。気体燃料は、高炉ガス、コークス炉ガス、転炉ガス、都市ガス、天然ガス、メタンガス、エタンガス、プロパンガス、シェールガスおよびこれらの混合ガスのうちから選ばれるいずれかの可燃性ガスである。
The raw material supply unit 20 includes a plurality of compounding tanks 22, 24, 25, 26, 28. The iron-containing raw material 12 is stored in the mixing tank 22. A CaO-containing raw material 16 containing limestone, quicklime, and the like is stored in the mixing tank 24. In the mixing tank 25, an MgO-containing raw material 17 containing dolomite, refined nickel slag, and the like is stored. The coagulant 18 containing coke breeze or anthracite crushed to a particle size of 1 mm or less using a rod mill is stored in the mixing tank 26. In the mixing tank 28, returned ore 74 (sinter ore sieved powder) having a particle size of 5 mm or less that has been sieved from the sinter is stored. A predetermined amount of each raw material is cut out from the mixing tanks 22, 24, 25, 26, and 28 of the raw material supply unit 20, mixed and formed into a sintering raw material on the conveyor 30. The sintering raw material is transported to the drum mixer 36 by the transport conveyor 30. A raw material containing SiO 2 may be blended with the raw material for sintering. In this case, the SiO 2 -containing raw material may be mixed with the iron-containing raw material 12 stored in the yard 11 in a predetermined amount, and a mixing tank for storing the SiO 2 -containing raw material is separately provided. May be done.

The sintering raw material conveyed to the drum mixer 36 is charged into the drum mixer 36, and an appropriate amount of water 34 is added to the sintering material, for example, to be granulated into pseudo particles having an average particle diameter of 3.0 to 6.0 mm. The granulated sintering raw material is conveyed by a conveyor 38 to a sintering raw material supply device 42 of a sintering machine 40. The drum mixer 36 is an example of a granulator for granulating the sintering raw material, and a plurality of drum mixers 36 may be used, and a pelletizer granulator may be used instead of the drum mixer 36. Both the drum mixer 36 and the pelletizer granulator may be used, or a high-speed stirrer may be installed upstream of the drum mixer 36 to stir the sintering raw material before the drum mixer 36 is charged. In the present embodiment, the average particle size is an arithmetic average particle size, Σ (Vi × di) (where, Vi is an abundance ratio of particles in the i-th particle size range, and di is the i-th particle size). It is a particle size defined by the following formula: In the sintering machine 40, the sintering raw material granulated by the drum mixer 36 is sintered. The sintering machine 40 is, for example, a downward suction type Dwyroid sintering machine. The sintering machine 40 includes a sintering raw material supply device 42, an endlessly movable pallet truck 44 circulating and moving, an ignition furnace 46, and a wind box 48. The sintering raw material granulated from the sintering raw material supply device 42 is charged into the pallet of the pallet truck 44, and a charged layer of the sintering raw material is formed. The charged bed is ignited by the ignition furnace 46, and the air in the charged bed is sucked downward through the wind box 48, thereby moving the combustion and melting zones in the charged bed below the charged bed. Thereby, the charging layer is sintered to form a sintered cake. When the air in the bed is sucked downward through the wind box 48, at least one of gaseous fuel and oxygen may be blown from above the bed. The gaseous fuel is any combustible gas selected from blast furnace gas, coke oven gas, converter gas, city gas, natural gas, methane gas, ethane gas, propane gas, shale gas, and a mixture thereof.

焼結ケーキは、破砕機50によって破砕され焼結鉱にされる。破砕機50で破砕された焼結鉱は、冷却機60によって冷却される。冷却機60によって冷却された焼結鉱は、複数の篩を有する篩分け装置70によって篩分けされ、粒径5mm超の成品焼結鉱72と、粒径5mm以下の返鉱74とに篩分けされる。   The sinter cake is crushed by the crusher 50 to be sinter. The sintered ore crushed by the crusher 50 is cooled by the cooler 60. The sintered ore cooled by the cooler 60 is sieved by a sieving apparatus 70 having a plurality of sieves, and sieved into a product sintered ore 72 having a particle size of more than 5 mm and a returned ore 74 having a particle size of 5 mm or less. Is done.

成品焼結鉱72は、搬送コンベア76によって高炉82に搬送される。成品焼結鉱72を搬送する搬送コンベア76には、赤外線分析計80が設けられている。赤外線分析計80では測定工程が実施される。測定工程では、赤外線分析計80を用いて、成品焼結鉱72のFeOおよびCの少なくとも1種以上の成分濃度を連続測定する。   The product sintered ore 72 is transported to the blast furnace 82 by the transport conveyor 76. An infrared spectrometer 80 is provided on a conveyor 76 for conveying the sintered product ore 72. In the infrared spectrometer 80, a measurement process is performed. In the measuring step, the concentration of at least one or more components of FeO and C in the product sintered ore 72 is continuously measured using the infrared spectrometer 80.

赤外線分析計80は、0.5〜50.0μmの範囲内の波長の赤外線を成品焼結鉱72に照射して、成品焼結鉱72からの反射光を受光する。成品焼結鉱72に含まれるFeOの分子振動は、照射された赤外線の固有の波長成分を吸収するので、FeOは反射赤外線に固有の波長成分を付与する。Cのような単原子分子の結晶構造も赤外線の照射によって振動し始め、反射赤外線に固有の波長成分を付与する。このため、照射赤外線と反射赤外線とを分析することで成品焼結鉱72におけるFeOおよびCの成分濃度を測定できる。   The infrared spectrometer 80 irradiates the product sintered ore 72 with infrared light having a wavelength in the range of 0.5 to 50.0 μm, and receives reflected light from the product sintered ore 72. Since the molecular vibration of FeO contained in the product sintered ore 72 absorbs a specific wavelength component of the irradiated infrared ray, FeO gives the reflected infrared ray a specific wavelength component. The crystal structure of a monoatomic molecule such as C also starts to vibrate due to the irradiation of infrared rays, and imparts a unique wavelength component to the reflected infrared rays. Therefore, the component concentrations of FeO and C in the sintered product ore 72 can be measured by analyzing the irradiation infrared rays and the reflected infrared rays.

赤外線分析計80は、例えば、1分間に128回の頻度で20以上の波長の赤外線を照射して、成品焼結鉱72に反射された反射光を受光する。このように短時間に赤外線を照射、受光できるので、赤外線分析計80は、搬送コンベア76によって搬送される成品焼結鉱72の成分濃度をオンラインで連続測定できる。赤外線分析計80は、焼結原料の成分濃度を測定する分析装置の一例であり、赤外線分析計80に代えて、レーザーを測定対象に照射するレーザー分析計、中性子を測定対象に照射する中性子分析計、または、マイクロ波を測定対象に照射するマイクロ波分析計を用いてもよい。   The infrared spectrometer 80 irradiates infrared rays having a wavelength of 20 or more at a frequency of, for example, 128 times per minute, and receives the reflected light reflected on the product sinter 72. Since infrared rays can be emitted and received in such a short time, the infrared spectrometer 80 can continuously measure the component concentration of the product sinter 72 conveyed by the conveyor 76 online. The infrared spectrometer 80 is an example of an analyzer that measures the component concentration of the sintering raw material. Instead of the infrared spectrometer 80, a laser spectrometer that irradiates a laser to a measurement target, a neutron analysis that irradiates a neutron to a measurement target, A meter or a microwave analyzer that irradiates a measurement target with microwaves may be used.

粒径5mm超の成品焼結鉱72は、搬送コンベア76によって高炉82に搬送され、高炉原料として高炉に装入される。一方、粒径5mm以下の返鉱74は、搬送コンベア78によって原料供給部20の配合槽28に搬送される。   The sintered product ore 72 having a particle size of more than 5 mm is transported to the blast furnace 82 by the transport conveyor 76 and charged into the blast furnace as blast furnace raw material. On the other hand, the returned ore 74 having a particle size of 5 mm or less is transported by the transport conveyor 78 to the mixing tank 28 of the raw material supply unit 20.

成品焼結鉱72は、破砕機50によって破砕された焼結鉱が冷却され、篩分けされたものであるので、成品焼結鉱72と破砕機50によって破砕された焼結鉱および返鉱74は同じ成分濃度の焼結鉱である。このため、赤外線分析計80を、冷却機60と篩分け装置70の間に設けてもよく、搬送コンベア78に設けてもよい。冷却機60と篩分け装置70の間に赤外線分析計80を設けた場合には、測定工程では冷却後の焼結鉱の成分濃度を測定する。搬送コンベア78に赤外線分析計80を設けた場合には、測定工程では返鉱74の成分濃度を測定する。   Since the product sintered ore 72 is obtained by cooling and sieving the sintered ore crushed by the crusher 50, the product sintered ore 72 and the sintered ore crushed by the crusher 50 and the ore return 74 Are sintered ores having the same component concentration. For this reason, the infrared spectrometer 80 may be provided between the cooler 60 and the sieving device 70, or may be provided on the transport conveyor 78. When the infrared spectrometer 80 is provided between the cooler 60 and the sieving device 70, the component concentration of the sintered ore after cooling is measured in the measuring step. When the infrared analyzer 80 is provided on the conveyor 78, the component concentration of the returned ore 74 is measured in the measuring step.

本実施形態において、成品焼結鉱72の粒径および返鉱74の粒径は、篩によって篩分けられる粒径を意味し、例えば、粒径5mm超とは、目開き5mmの篩を用いて篩上に篩分けされる粒径であり、粒径5mm以下とは、目開き5mmの篩を用いて篩下に篩分けされる粒径である。成品焼結鉱72および返鉱74の粒径の各値は、あくまで一例であり、この値に限定するものではない。   In the present embodiment, the particle size of the product sintered ore 72 and the particle size of the ore return 74 mean a particle size sieved by a sieve. For example, a particle size of more than 5 mm means that a sieve having a mesh size of 5 mm is used. The particle size to be sieved on the sieve, and the particle size of 5 mm or less is the particle size to be sieved under the sieve using a sieve having an opening of 5 mm. Each value of the particle diameter of the product sintered ore 72 and the returned ore 74 is merely an example, and is not limited to this value.

本実施形態に係る焼結鉱の製造方法は、パレット台車の進行速度を調整するパレット台車速度の調整工程を有する。パレット台車速度の調整工程では、例えば、測定工程で測定された成品焼結鉱72のFeO濃度を用いてパレット台車の進行速度が調整される。   The method for producing a sintered ore according to the present embodiment includes a pallet truck speed adjusting step of adjusting the traveling speed of the pallet truck. In the step of adjusting the speed of the pallet truck, for example, the traveling speed of the pallet truck is adjusted using the FeO concentration of the product sintered ore 72 measured in the measuring process.

成品焼結鉱72のFeO濃度が高いことは、成品焼結鉱72にマグネタイトが多く残留していることを示しており、このことから、焼結の反応温度が高く、焼結ケーキが高温になっていることが予測される。このため、当該焼結ケーキを粉砕し冷却機60で冷却しても、冷却機60出側の上限温度以下に焼結鉱を冷却できず、これにより、冷却機60の異常停止や、冷却機60より下流側の設備の故障などの設備トラブルを招く可能性がある。   The high FeO concentration of the product sinter 72 indicates that a large amount of magnetite remains in the product sinter 72, which indicates that the sintering reaction temperature is high and the sinter cake is heated to a high temperature. It is expected to be. For this reason, even if the sintered cake is pulverized and cooled by the cooler 60, the sintered ore cannot be cooled below the upper limit temperature on the outlet side of the cooler 60. There is a possibility that equipment trouble such as a failure of equipment downstream of 60 will be caused.

このため、パレット台車の進行速度ごとに焼結鉱のFeO濃度と冷却機60出側の焼結鉱温度との対応関係を予め把握し、冷却機60の出側の上限温度を超えるFeO濃度の管理値を予め定めておく。パレット台車の調整工程では、成品焼結鉱72のFeO濃度が管理値よりも上昇し、上記対応関係から算出される冷却機60出側の焼結鉱温度が上限温度を超えると予測される場合に、パレット台車の進行速度を調整して、パレット台車の進行速度を遅くする。パレット台車の進行速度を遅くすると、冷却機60で冷却される時間が長くなるので、冷却機60出側の焼結鉱の温度は低くなる。このように、冷却機60出側の焼結鉱の温度を下げることができるので、冷却機60の異常停止や、冷却機60より下流側の設備の故障などの設備トラブルの発生を抑制できる。   For this reason, the correspondence between the FeO concentration of the sinter and the sinter temperature at the outlet of the cooler 60 is grasped in advance for each traveling speed of the pallet truck, and the FeO concentration exceeding the upper limit temperature at the outlet of the cooler 60 is determined. A management value is determined in advance. In the adjustment process of the pallet truck, when the FeO concentration of the product sintered ore 72 is higher than the control value, and the sinter ore temperature at the outlet side of the cooler 60 calculated from the above correspondence is predicted to exceed the upper limit temperature. Then, the traveling speed of the pallet truck is adjusted to reduce the traveling speed of the pallet truck. If the traveling speed of the pallet truck is reduced, the cooling time of the chiller 60 becomes longer, so that the temperature of the sintered ore on the exit side of the chiller 60 becomes lower. As described above, since the temperature of the sintered ore on the exit side of the cooler 60 can be lowered, occurrence of equipment troubles such as abnormal stop of the cooler 60 and failure of equipment on the downstream side of the cooler 60 can be suppressed.

上記例では、測定工程で成品焼結鉱72のFeO濃度を連続測定し、成品焼結鉱72のFeO濃度が管理値よりも上昇し、上記対応関係から算出された冷却機60出側の焼結鉱温度が上限温度を超える場合に、パレット台車の進行速度を調整する例を示したが、測定工程ではFeO濃度に代えて、成品焼結鉱72のC濃度を測定してもよい。焼結鉱のC濃度と冷却機60出側の焼結鉱温度との対応関係を予め把握し、冷却機60の出側の上限温度を超えるC濃度の管理値を予め定めておき、C濃度が管理値よりも上昇した場合にパレット台車の進行速度を遅くする。これは焼結機幅方向の温度が不均一になってCが未燃焼となり、これによりC濃度が高くなったものであり、焼成されていない焼結鉱が排出されていることを示している。このため、パレット台車の進行速度を遅くして焼結機上でCを完全燃焼させ、冷却機60内でのCの燃焼による冷却機60の異常停止や、冷却機60より下流側の設備内でのCの燃焼などによる設備トラブルの発生を抑制できる。   In the above example, the FeO concentration of the product sintered ore 72 is continuously measured in the measurement process, and the FeO concentration of the product sintered ore 72 rises above the control value. Although the example in which the traveling speed of the pallet truck is adjusted when the condensing temperature exceeds the upper limit temperature has been described, the C concentration of the product sintered ore 72 may be measured instead of the FeO concentration in the measurement process. The correspondence between the C concentration of the sinter and the sinter temperature at the outlet of the cooler 60 is grasped in advance, and a control value of the C concentration exceeding the upper limit temperature of the outlet of the cooler 60 is determined in advance. If the value rises above the control value, the traveling speed of the pallet truck is reduced. This indicates that the temperature in the width direction of the sintering machine was not uniform and C was not burned, thereby increasing the C concentration, indicating that unsintered ore was discharged. . For this reason, the traveling speed of the pallet truck is reduced to completely burn C on the sintering machine, and abnormal stoppage of the cooling machine 60 due to the combustion of C in the cooling machine 60 or in the equipment downstream of the cooling machine 60. The occurrence of equipment trouble due to the combustion of C at the time can be suppressed.

本実施形態に係る焼結鉱の製造方法は、測定工程で測定された成品焼結鉱72のFeOおよびCの少なくとも1種以上の成分濃度を用いて焼結原料の凝結材の配合量を調整する配合量の調整工程をさらに有してもよい。例えば、成品焼結鉱72のFeO濃度が管理値よりも上昇し、焼結反応温度が高いことが予測される場合であっても、配合量の調整工程によって凝結材の配合量を少なくすることで、焼結の反応温度を下げることができる。焼結の反応温度を下げた後には、パレット台車速度の調整工程で遅くしたパレット台車の進行速度を戻すことができるので、パレット台車の進行速度を遅くしたことによる焼結鉱の生産性の低下を抑制できる。凝結材の配合量を調整することで焼結の反応温度の変動を抑制できれば、焼結鉱のFeO濃度の変動が抑制され、焼結鉱の品質が高くなる。   The method for producing a sintered ore according to the present embodiment adjusts the blending amount of the coagulant as a sintering raw material using the concentration of at least one or more of FeO and C of the product sintered ore 72 measured in the measuring step. The method may further include a step of adjusting the blending amount. For example, even if the FeO concentration of the product sinter 72 is higher than the control value and the sintering reaction temperature is expected to be high, the compounding amount of the coagulant should be reduced by the compounding amount adjusting step. Thus, the sintering reaction temperature can be lowered. After lowering the sintering reaction temperature, the pallet truck speed can be returned in the process of adjusting the speed of the pallet truck, so the productivity of sinter decreases due to the slower pallet truck speed. Can be suppressed. If the change in the reaction temperature of sintering can be suppressed by adjusting the blending amount of the coagulant, the change in the FeO concentration of the sinter is suppressed, and the quality of the sinter increases.

本実施形態に係る焼結鉱の製造方法は、測定工程で測定された焼結鉱のFeOおよびCの少なくとも1種以上の成分濃度を用いて、気体燃料および酸素の少なくとも一方の吹込み量を調整する吹込み量の調整工程を有してもよい。例えば、焼結鉱のFeO濃度が管理値よりも上昇し、焼結反応温度が高いことが予測される場合であっても、吹込み量の調整工程によって気体燃料および酸素の少なくとも一方の吹込み量を少なくすることで、焼結の反応温度の高温保持時間を短くすることができる。焼結の反応温度の高温保持時間を短くした後には、パレット台車速度の調整工程で遅くしたパレット台車の進行速度を戻すことができるので、パレット台車の進行速度を遅くしたことによる生産性の低下を抑制できる。気体燃料および酸素の少なくとも一方の吹込み量を調整することで焼結の反応温度変動を抑制できれば、焼結鉱のFeO濃度の変動も抑制され、焼結鉱の品質も高くなる。   The method for producing a sintered ore according to the present embodiment uses the concentration of at least one or more components of FeO and C in the sintered ore measured in the measuring step to determine a blowing amount of at least one of gaseous fuel and oxygen. The method may include a step of adjusting the blowing amount to be adjusted. For example, even when the FeO concentration of the sinter is higher than the control value and the sintering reaction temperature is expected to be high, at least one of the gaseous fuel and oxygen is injected by the injection amount adjusting step. By reducing the amount, the time during which the sintering reaction temperature is maintained at a high temperature can be shortened. After shortening the high-temperature holding time of the sintering reaction temperature, the progress speed of the pallet truck slowed down in the process of adjusting the speed of the pallet truck can be returned. Can be suppressed. If the reaction temperature fluctuation of sintering can be suppressed by adjusting at least one of the injection amounts of the gaseous fuel and oxygen, the fluctuation of the FeO concentration of the sinter is suppressed, and the quality of the sinter increases.

本実施形態において、原料供給部20の配合槽22、24、25、26、28から各原料を切り出して配合し、搬送コンベア30で焼結原料とし、ドラムミキサー36で造粒された焼結原料にする例を示したが、これに限られない。例えば、鉄含有原料12、CaO含有原料16、MgO含有原料17および返鉱74を配合した焼結原料をドラムミキサー36に投入し、焼結原料に水を添加して造粒し、造粒時後半に凝結材18を投入することで、表層に凝結材18を存在させた炭材外装粒子を、造粒された焼結原料として用いてもよい。   In the present embodiment, each raw material is cut out from the mixing tanks 22, 24, 25, 26, and 28 of the raw material supply unit 20 and mixed, and the raw material is converted into a sintering raw material by the transport conveyor 30 and granulated by the drum mixer 36. However, the present invention is not limited to this. For example, a sintering raw material including the iron-containing raw material 12, the CaO-containing raw material 16, the MgO-containing raw material 17, and the ore return 74 is put into the drum mixer 36, water is added to the sintering raw material, and granulation is performed. By charging the coagulant 18 in the latter half, the carbon material exterior particles having the coagulant 18 in the surface layer may be used as the granulated sintering raw material.

鉄含有原料12、CaO含有原料16、MgO含有原料17および返鉱74と、凝結材18の一部とを配合した焼結原料をドラムミキサー36に投入し、当該焼結原料に水を添加して造粒し、造粒時後半に凝結材18の残部を投入することで、造粒した焼結原料の表層に凝結材18を存在させた炭材外装粒子を、造粒された焼結原料として用いてもよい。凝結原料に水を添加して造粒時後半に配合する凝結材としては、粉コークスや無煙炭が使用される。   The sintering raw material obtained by mixing the iron-containing raw material 12, the CaO-containing raw material 16, the MgO-containing raw material 17, and the ore return 74, and a part of the coagulant 18 is charged into the drum mixer 36, and water is added to the sintering raw material. In the latter half of the granulation, the remaining part of the coagulant 18 is added, and the carbon material exterior particles in which the coagulant 18 is present on the surface layer of the granulated sintering raw material are converted into the granulated sintering raw material. May be used. Coke powder or anthracite is used as a coagulant added in the latter half of granulation by adding water to the coagulation raw material.

ドラムミキサー36を複数設けた場合であって、表層に凝結材18を存在させた炭材外装粒子を用いる場合においては、一部または全部の凝結材18を最後のドラムミキサー36の後半に投入し、焼結原料を上述した方法でドラムミキサー36に投入することで表層に凝結材18を存在させた炭材外装粒子を造粒してもよい。さらに、ドラムミキサー36を複数用いた場合に焼結原料に添加する水は、1台目のドラムミキサー36で全ての水を添加してもよく、1台目のドラムミキサー36で一部の水を添加し、残部を他のドラムミキサー36で添加してもよい。   In the case where a plurality of drum mixers 36 are provided, and in the case of using carbon-coated particles in which the coagulant 18 is present in the surface layer, a part or all of the coagulant 18 is put into the latter half of the last drum mixer 36. Alternatively, the sintering raw material may be charged into the drum mixer 36 by the above-described method to granulate the carbon material exterior particles having the coagulant 18 in the surface layer. Furthermore, when a plurality of drum mixers 36 are used, all of the water to be added to the sintering raw material may be added to the first drum mixer 36, and some of the water may be added to the first drum mixer 36. And the rest may be added by another drum mixer 36.

本実施形態において、原料供給部20の配合槽22、24、25、26、28から各原料を切り出して配合し、搬送コンベア30で焼結原料とし、ドラムミキサー36で造粒された焼結原料にする例を示したが、これに限られない。例えば、鉄含有原料12、MgO含有原料17および返鉱74を配合した焼結原料をドラムミキサー36に投入し、焼結原料に水を添加して造粒し、造粒時後半にCaO含有原料16および凝結材18を投入することで、表層にCaO含有原料16および凝結材18を存在させた造粒粒子を、造粒された焼結原料として用いてもよい。   In the present embodiment, each raw material is cut out from the mixing tanks 22, 24, 25, 26, and 28 of the raw material supply unit 20 and mixed, and the raw material is converted into a sintering raw material by the transport conveyor 30 and granulated by the drum mixer 36. However, the present invention is not limited to this. For example, a sintering raw material containing the iron-containing raw material 12, the MgO-containing raw material 17 and the ore return 74 is put into the drum mixer 36, water is added to the sintering raw material, and granulation is performed. The granulated particles in which the CaO-containing raw material 16 and the coagulant 18 are present in the surface layer by adding the coagulant 16 and the coagulant 18 may be used as the granulated sintering raw material.

鉄含有原料12の一部と、MgO含有原料17および返鉱74と、凝結材18とを配合した焼結原料をドラムミキサー36に投入し、焼結原料に水を添加して造粒し、造粒時後半に鉄含有原料12の残部と、CaO含有原料16とを投入することで、表層に鉄含有原料12とCaO含有原料16を存在させた造粒粒子を、造粒された焼結原料として用いてもよい。   A sintering raw material obtained by mixing a part of the iron-containing raw material 12, the MgO-containing raw material 17 and the ore return 74, and the coagulant 18 is put into a drum mixer 36, and water is added to the sintering raw material to granulate the raw material. By charging the remainder of the iron-containing raw material 12 and the CaO-containing raw material 16 in the latter half of the granulation, the granulated particles having the iron-containing raw material 12 and the CaO-containing raw material 16 in the surface layer are granulated and sintered. It may be used as a raw material.

鉄含有原料12、返鉱74およびMgO含有原料17と、CaO含有原料16の一部を配合した焼結原料をドラムミキサー36に投入し、焼結原料に水を添加して造粒し、造粒時後半にCaO含有原料16の残部および凝結材18を配合することで、表層にCaO含有原料16および凝結材18を存在させた造粒粒子を、造粒された焼結原料として用いてもよい。   The sintering raw material obtained by mixing the iron-containing raw material 12, the ore return 74, the MgO-containing raw material 17, and a part of the CaO-containing raw material 16 is charged into a drum mixer 36, and the sintering raw material is granulated by adding water. By blending the remainder of the CaO-containing raw material 16 and the coagulant 18 in the latter half of the granulation, the granulated particles having the CaO-containing raw material 16 and the coagulant 18 present in the surface layer can be used as the granulated sintering raw material. Good.

鉄含有原料12、返鉱74およびMgO含有原料17と、CaO含有原料16の一部と、凝結材18の一部とを配合した焼結原料をドラムミキサー36に投入し、焼結原料に水を添加して造粒し、造粒時後半にCaO含有原料16の残部および凝結材18の残部を配合することで、表層にCaO含有原料16および凝結材18を存在させた造粒粒子を、造粒された焼結原料として用いてもよい。   A sintering raw material obtained by blending the iron-containing raw material 12, the ore return 74, the MgO-containing raw material 17, a part of the CaO-containing raw material 16, and a part of the coagulant 18 is put into a drum mixer 36, and water is added to the sintering raw material. Is added, and granulation is carried out. By mixing the remainder of the CaO-containing raw material 16 and the balance of the coagulant 18 in the latter half of the granulation, the granulated particles having the CaO-containing raw material 16 and the coagulant 18 in the surface layer are obtained. It may be used as a granulated sintering raw material.

ドラムミキサー36を複数用いた場合であって、表層にCaO含有原料16またはCaO含有原料16と凝結材18を存在させた造粒粒子を造粒する場合においては、一部または全部のCaO含有原料16および凝結材18を最後のドラムミキサー36の後半に投入し、焼結原料を上述した方法でドラムミキサー36に投入することで表層にCaO含有原料16および凝結材18を存在させた造粒粒子を造粒してもよい。   In the case where a plurality of drum mixers 36 are used and granulated particles in which the CaO-containing raw material 16 or the CaO-containing raw material 16 and the coagulant 18 are present in the surface layer, a part or all of the CaO-containing raw material is used. The granulated particles having the CaO-containing raw material 16 and the coagulant 18 in the surface layer by introducing the coke 16 and the coagulant 18 into the latter half of the last drum mixer 36 and charging the sintering raw material into the drum mixer 36 by the method described above. May be granulated.

本実施形態において、原料供給部20の配合槽22、24、25、26、28から各原料を切り出して配合し、搬送コンベア30で焼結原料とする例を示したが、これに限られない。例えば、原料供給部20の配合槽22、24、25、26、28から切り出される各原料の一部を直接搬送コンベア30でドラムミキサー36に搬送し、残部を搬送コンベア30とは異なる搬送コンベアで高速撹拌装置に搬送して撹拌処理した後、ドラムミキサー36またはペレタイザー等の造粒機で造粒し、必要であれば乾燥機で乾燥した後に、搬送コンベア30または搬送コンベア38に投入してもよい。撹拌処理された後にドラムミキサー36またはペレタイザー等の造粒機で造粒することなく直接搬送コンベア30に投入してもよい。さらに、高速撹拌装置で撹拌処理する前に破砕工程および篩工程の少なくとも一方を設けてもよい。ドラムミキサー36を複数用いる場合は、どのドラムミキサー間の搬送コンベアに投入してもよい。   In the present embodiment, an example has been shown in which the respective raw materials are cut out from the mixing tanks 22, 24, 25, 26, and 28 of the raw material supply unit 20 and mixed, and the raw materials are sintered on the conveyor 30. However, the present invention is not limited thereto. . For example, a part of each raw material cut out from the mixing tanks 22, 24, 25, 26, and 28 of the raw material supply unit 20 is transported directly to the drum mixer 36 by the transport conveyor 30, and the remaining part is transported by a transport conveyor different from the transport conveyor 30. After being conveyed to a high-speed stirring device and subjected to a stirring treatment, the mixture is granulated by a granulator such as a drum mixer 36 or a pelletizer and, if necessary, dried by a drier and then charged into the conveyor 30 or 38. Good. After the stirring process, the mixture may be directly charged into the conveyor 30 without granulation by a granulator such as a drum mixer 36 or a pelletizer. Further, at least one of a crushing step and a sieving step may be provided before the stirring treatment with the high-speed stirring device. When a plurality of drum mixers 36 are used, the drum mixers 36 may be fed to a conveyor between any of the drum mixers.

さらに、測定工程における赤外線分析計80は1つに限らず、複数設けてもよい。複数の赤外線分析計80を用いて、焼結鉱のFeOおよびCの少なくとも1種以上の成分濃度を測定してもよい。   Further, the number of infrared analyzers 80 in the measurement process is not limited to one, and a plurality of infrared analyzers 80 may be provided. A plurality of infrared analyzers 80 may be used to measure the concentration of at least one or more components of FeO and C in the sintered ore.

実施例、比較例ともに図1に示した焼結鉱製造装置10を用いて焼結鉱を製造した。実施例、比較例ともに、搬送コンベア76に赤外線分析計80を設置し、焼結鉱の成分濃度としてFeO濃度を1時間当たり18回の頻度で連続測定し、測定されたFeO濃度を用いて、焼結鉱のFeO濃度がFeO管理値になるように凝結材である粉コークスの配合率を調整して焼結鉱を5時間製造した。実施例、比較例ともに1時間経過後にC濃度が高いダストを含む原料パイルに変更した。   In both Examples and Comparative Examples, sintered ore was manufactured using the sintered ore manufacturing apparatus 10 shown in FIG. In both Examples and Comparative Examples, an infrared analyzer 80 was installed on the conveyor 76, and the FeO concentration was continuously measured at a frequency of 18 times per hour as the component concentration of the sinter, and the measured FeO concentration was used. The sinter was manufactured for 5 hours by adjusting the mixing ratio of coke breeze as a coagulant so that the FeO concentration of the sinter became the FeO control value. In both Examples and Comparative Examples, the raw material pile containing dust having a high C concentration was changed after one hour.

実施例は、焼結機パレット台車の進行速度を調整するパレット台車速度の調整工程を有する例であり、比較例は、パレット台車速度の調整工程を有さない例である。従って、焼結鉱のFeO濃度が高くなった場合に、実施例ではパレット台車の進行速度を遅くするとともに粉コークスの配合率を調整して対応し、比較例ではパレット台車の進行速度を調整せず、粉コークスの配合率を調整した。   The embodiment is an example having a pallet truck speed adjusting step for adjusting the traveling speed of the sintering machine pallet truck, and the comparative example is an example having no pallet truck speed adjusting step. Therefore, when the FeO concentration of the sinter becomes high, in the embodiment, the traveling speed of the pallet truck is reduced and the mixing ratio of the coke breeze is adjusted to cope with it. In the comparative example, the traveling speed of the pallet truck is adjusted. And the mixing ratio of coke breeze was adjusted.

図2は、実施例における焼結鉱のFeO濃度(質量%)、パレット台車の進行速度(m/min)、粉コークスの配合率(質量%)および冷却機出側の焼結鉱温度(℃)の時間変化を示すグラフである。図3は、比較例における焼結鉱のFeO濃度(質量%)、パレット台車の進行速度(m/min)、粉コークスの配合率(質量%)および冷却機出側の焼結鉱温度(℃)の時間変化を示すグラフである。   FIG. 2 shows the FeO concentration (% by mass) of the sinter in the example, the traveling speed of the pallet truck (m / min), the mixing ratio of the coke breeze (% by mass), and the sinter temperature (° C.) at the outlet of the cooler. 4 is a graph showing a time change of FIG. FIG. 3 shows the FeO concentration (mass%) of the sinter in the comparative example, the traveling speed of the pallet truck (m / min), the mixing ratio of the coke breeze (mass%), and the sinter temperature (° C.) on the exit side of the cooler. 4 is a graph showing a time change of FIG.

赤外線分析計80によって焼結鉱のFeO濃度を連続測定する測定工程を有するので、原料パイル変更後に焼結鉱のFeO濃度がFeO管理値よりも上昇していることを早期に検出できる。FeO濃度の上昇から焼結の反応温度が高くなり、冷却機出側の焼結鉱の温度が上限温度を超えることが検出されたので、実施例では、パレット台車速度の調整工程で焼結機パレット台車の進行速度を遅くするとともに粉コークス配合率を調整した。この結果、冷却機出側の焼結鉱温度の上昇が抑制され、冷却機出側上限温度を超過することなく操業できた。粉コークスの配合率の調整によりFeO濃度が管理値に戻った後は、パレット台車の進行速度を元の速度に戻した。これにより、焼結鉱の生産性の低下も抑制できた。   Since the measuring step for continuously measuring the FeO concentration of the sintered ore by the infrared spectrometer 80 is provided, it is possible to early detect that the FeO concentration of the sintered ore is higher than the FeO control value after the material pile is changed. Since it was detected that the reaction temperature of sintering increased due to the increase in the FeO concentration and the temperature of the sinter ore on the outlet side of the cooler exceeded the upper limit temperature, in the embodiment, the sintering machine was used in the step of adjusting the speed of the pallet truck. The traveling speed of the pallet truck was reduced and the mixing ratio of coke breeze was adjusted. As a result, an increase in the temperature of the sinter ore at the outlet of the cooler was suppressed, and the operation could be performed without exceeding the upper limit temperature of the outlet of the cooler. After the FeO concentration returned to the control value by adjusting the mixing ratio of the coke breeze, the traveling speed of the pallet truck was returned to the original speed. Thereby, the decrease in the productivity of the sinter could also be suppressed.

このように、本実施形態に係る焼結鉱の製造方法では、焼結鉱のFeO濃度を連続測定し、焼結鉱のFeO濃度の上昇を検出した時点で、焼結機パレット台車の進行速度を調整する。これにより、冷却機出側の焼結鉱温度の上昇を抑制でき、冷却機やその後の設備負荷が軽減され、設備故障などの装置トラブルを回避できることが確認された。   As described above, in the method for manufacturing a sintered ore according to the present embodiment, when the FeO concentration of the sintered ore is continuously measured and the increase in the FeO concentration of the sintered ore is detected, the traveling speed of the pallet truck of the sintering machine is determined. To adjust. As a result, it was confirmed that the rise in the temperature of the sinter ore on the outlet side of the cooler can be suppressed, the load on the cooler and subsequent equipment can be reduced, and equipment troubles such as equipment failure can be avoided.

比較例においても焼結鉱のFeO濃度の上昇から冷却機出側の焼結鉱の温度が上限温度を超えることが検出されたので、粉コークスの配合率の調整を行った。しかしながら、冷却機出側の焼結鉱温度が低下するのは、粉コークスの配合率を調整してから既に焼結機に装入された原料が入れ替わるのに要する約30分が経過した後であり、その前に焼結鉱の温度は、冷却機出側の上限温度を超過して上昇し、この結果、冷却機が異常停止するに至った。冷却機およびパレット台車を停止した後は、焼結機の温度が低下しているので、焼結原料の粉コークスの配合率を高くし、パレット台車の進行速度を遅くした状態で焼結鉱の生産を再開している。   In the comparative example as well, it was detected that the temperature of the sintered ore on the outlet side of the cooler exceeded the upper limit temperature from the increase in the FeO concentration of the sintered ore, so the mixing ratio of the coke breeze was adjusted. However, the temperature of the sinter at the outlet of the cooler decreases only after about 30 minutes have elapsed since the raw material already charged into the sintering machine was replaced after the mixing ratio of the coke breeze was adjusted. Before that, the temperature of the sinter increased above the upper limit temperature on the exit side of the cooler, and as a result, the cooler stopped abnormally. After the cooling machine and the pallet truck are stopped, the temperature of the sintering machine has dropped. Production has resumed.

実施例、比較例ともに、焼結鉱のFeO濃度の上昇を検出し、冷却機出側の焼結鉱の温度が上限温度を超えることが検出された時点において、焼結の反応温度を上昇させるC濃度の高いダストを含む原料パイル由来の焼結原料は、焼結機パレット台車のパレットに装入されている。比較例では粉コークスの配合率を調整するが、当該配合率の調整が反映されるのは、これから原料供給部から切り出されて配合される焼結原料からであって、すでにパレットに装入された焼結原料には反映されない。このため、比較例では、焼結の反応温度の上昇によって焼結鉱の温度が上昇し、焼結鉱の温度が冷却機出側の上限温度を超えた。この結果、冷却機の異常停止という設備トラブルが発生した。   In both Examples and Comparative Examples, an increase in the FeO concentration of the sinter was detected, and when it was detected that the temperature of the sinter on the cooler exit side exceeded the upper limit temperature, the reaction temperature of sintering was increased. A sintering raw material derived from a raw material pile containing dust having a high C concentration is loaded on a pallet of a pallet truck of a sintering machine. In the comparative example, the mixing ratio of the coke breeze is adjusted, but the adjustment of the mixing ratio is reflected from the sintering raw material cut out from the raw material supply unit and mixed, and is already loaded on the pallet. It is not reflected in the sintering raw materials. For this reason, in the comparative example, the temperature of the sinter increased due to the increase in the reaction temperature of sintering, and the temperature of the sinter exceeded the upper limit temperature on the outlet side of the cooler. As a result, equipment troubles such as abnormal stop of the cooler occurred.

実施例では、焼結鉱のFeO濃度の上昇を検出し、冷却機出側の焼結鉱の温度が上限温度を超えることが検出された時点でパレット台車速度の調整工程でパレット台車の進行速度を遅くする。これにより、すでにパレットに装入された焼結原料から冷却機で冷却される時間を長くできるので、当該焼結原料の焼結の反応温度が上昇したとしても冷却機出側における焼結鉱の温度上昇を抑制でき、これにより、冷却機の異常停止や設備故障などのトラブルを抑制できる。本実施例では搬送コンベア76に設置した赤外線分析計80の測定頻度を1時間当たり18回とした例を示したが、これより低い測定頻度でもパレット台車速度を調整することによる効果は得られる。測定頻度は、焼結機に装入された原料が入れ替わるのに要する約30分に1回以上とすればよい。   In the embodiment, an increase in the FeO concentration of the sinter is detected, and when it is detected that the temperature of the sinter on the outlet side of the cooler exceeds the upper limit temperature, the traveling speed of the pallet truck is adjusted in the pallet truck speed adjusting process. Slow down. As a result, the cooling time of the sintering raw material already loaded on the pallet can be extended by the cooler, so that even if the reaction temperature of sintering of the sintering raw material increases, the sintering ore at the outlet side of the cooler can be reduced. Temperature rise can be suppressed, and thereby troubles such as abnormal stop of the cooler and equipment failure can be suppressed. In the present embodiment, an example is shown in which the measurement frequency of the infrared spectrometer 80 installed on the conveyor 76 is set to 18 times per hour. However, even if the measurement frequency is lower than this, the effect of adjusting the speed of the pallet truck can be obtained. The measurement frequency may be at least once every about 30 minutes required for the replacement of the raw materials charged in the sintering machine.

このように、本実施形態に係る焼結鉱の製造方法では、測定工程によって焼結鉱のFeO濃度を連続測定することで焼結の反応温度の上昇を早期に検出し、パレット台車速度の調整工程でパレット台車の進行速度を遅くする。これにより、例えば、C濃度が高いダストを含む原料パイルに変更することで焼結の反応温度が上昇した場合であっても、冷却機出側の焼結鉱の温度上昇を抑制でき、冷却機の異常停止や焼結機の設備故障などの設備トラブルを抑制できることが確認された。   As described above, in the method for manufacturing the sintered ore according to the present embodiment, the measurement of the FeO concentration of the sintered ore is continuously performed to detect an increase in the reaction temperature of sintering at an early stage, and to adjust the speed of the pallet truck. In the process, the traveling speed of the pallet truck is reduced. Thereby, for example, even when the reaction temperature of sintering is increased by changing to a raw material pile containing dust having a high C concentration, it is possible to suppress a rise in the temperature of the sintered ore on the exit side of the cooling machine, It has been confirmed that equipment troubles such as abnormal stoppage of sintering machine and equipment failure of sintering machine can be suppressed.

10 焼結鉱製造装置
11 ヤード
12 鉄含有原料
14 搬送コンベア
16 CaO含有原料
17 MgO含有原料
18 凝結材
20 原料供給部
22 配合槽
24 配合槽
25 配合槽
26 配合槽
28 配合槽
30 搬送コンベア
34 水
36 ドラムミキサー
38 搬送コンベア
40 焼結機
42 焼結原料供給装置
44 パレット台車
46 点火炉
48 ウインドボックス
50 破砕機
60 冷却機
70 篩分け装置
72 成品焼結鉱
74 返鉱
76 搬送コンベア
78 搬送コンベア
80 赤外線分析計
82 高炉
REFERENCE SIGNS LIST 10 sinter ore production apparatus 11 yard 12 iron-containing raw material 14 transport conveyor 16 CaO-containing raw material 17 MgO-containing raw material 18 coagulant 20 raw material supply unit 22 mixing tank 24 mixing tank 25 mixing tank 26 mixing tank 28 mixing tank 30 transfer conveyor 34 water 36 Drum mixer 38 Conveyor 40 Sintering machine 42 Sintering material supply device 44 Pallet truck 46 Ignition furnace 48 Wind box 50 Crusher 60 Cooler 70 Sieving device 72 Product sinter ore 74 Returning ore 76 Transport conveyor 78 Transport conveyor 80 Infrared analyzer 82 Blast furnace

Claims (5)

鉄含有原料、CaO含有原料および凝結材が配合された焼結原料に水を添加して造粒し、焼結機で焼結して焼結鉱を製造する焼結鉱の製造方法であって、
造粒された焼結原料をパレット台車に装入し、焼結して焼結ケーキとする焼結工程と、
前記焼結ケーキを破砕して焼結鉱とする破砕工程と、
前記焼結鉱を冷却する冷却工程と、
前記冷却された焼結鉱を、成品焼結鉱と返鉱とに篩分けする篩分け工程と、
前記冷却された焼結鉱、前記成品焼結鉱および前記返鉱の少なくとも1つの成分濃度を連続測定する測定工程と、
前記測定工程で測定された前記焼結鉱の成分濃度を用いて、前記パレット台車の進行速度を調整するパレット台車速度の調整工程と、
を有する、焼結鉱の製造方法。
A method for producing a sintered ore, which comprises adding water to a sintering raw material in which an iron-containing raw material, a CaO-containing raw material and a coagulant are blended, granulating the mixture, and sintering with a sintering machine to produce a sinter. ,
A sintering process in which the granulated sintering raw material is charged into a pallet truck and sintered to form a sinter cake;
A crushing step of crushing the sintered cake to obtain a sintered ore,
A cooling step of cooling the sinter,
A sieving step of sieving the cooled ore into product sintered ore and returned ore,
A measuring step of continuously measuring the concentration of at least one component of the cooled ore, the product ore and the ore return ;
Wherein using the measured component concentration of the sintered ore was in the measuring step, the adjustment step of the pallet truck speed to adjust the rate of progression of the pallet truck,
A method for producing a sintered ore, comprising:
前記焼結原料には、さらにMgO含有原料およびSiO含有原料の少なくとも一方が配合される、請求項1に記載の焼結鉱の製造方法。 The method for producing a sintered ore according to claim 1, wherein at least one of an MgO-containing raw material and a SiO 2 -containing raw material is further blended with the sintering raw material. 前記測定工程では、前記焼結鉱のFeOおよびCの少なくとも1種以上の成分濃度を連続測定する、請求項1または請求項2に記載の焼結鉱の製造方法。   The method for producing a sintered ore according to claim 1 or 2, wherein in the measuring step, the concentration of at least one or more components of FeO and C in the sintered ore is continuously measured. 前記焼結鉱の成分濃度を用いて、焼結原料の凝結材の配合量を調整する配合量の調整工程をさらに有する、請求項1から請求項3の何れか一項に記載の焼結鉱の製造方法。   The sintered ore according to any one of claims 1 to 3, further comprising a blending amount adjusting step of adjusting the blending amount of the coagulant as a sintering raw material using the component concentration of the sintered ore. Manufacturing method. 前記焼結機では、気体燃料および酸素の少なくとも一方を吹込んで焼結原料を焼結し、
前記焼結鉱の成分濃度を用いて、前記気体燃料および前記酸素の少なくとも一方の吹込み量を調整する吹込み量の調整工程をさらに有する、請求項1から請求項4の何れか一項に記載の焼結鉱の製造方法。
In the sintering machine, sintering the raw material by blowing at least one of gaseous fuel and oxygen,
The method according to any one of claims 1 to 4, further comprising a blowing amount adjusting step of adjusting the blowing amount of at least one of the gaseous fuel and the oxygen using the component concentration of the sinter. The method for producing a sintered ore according to the above.
JP2019551040A 2017-10-25 2018-10-17 Sinter production method Active JP6665972B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017206136 2017-10-25
JP2017206136 2017-10-25
PCT/JP2018/038576 WO2019082749A1 (en) 2017-10-25 2018-10-17 Sintered ore manufacturing method

Publications (2)

Publication Number Publication Date
JPWO2019082749A1 JPWO2019082749A1 (en) 2019-12-12
JP6665972B2 true JP6665972B2 (en) 2020-03-13

Family

ID=66246414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019551040A Active JP6665972B2 (en) 2017-10-25 2018-10-17 Sinter production method

Country Status (8)

Country Link
EP (1) EP3670685B1 (en)
JP (1) JP6665972B2 (en)
KR (1) KR102434776B1 (en)
CN (1) CN111263822A (en)
BR (1) BR112020007400B1 (en)
PH (1) PH12020550475A1 (en)
TW (1) TWI687636B (en)
WO (1) WO2019082749A1 (en)

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5114193A (en) 1974-07-26 1976-02-04 Denki Kagaku Kogyo Kk KAABONBURATSUKUPURESUHO
JPS52109416A (en) * 1976-03-10 1977-09-13 Sumitomo Metal Ind Ltd Control method for cooling temperature of sintered ore
JPS569336A (en) * 1979-07-05 1981-01-30 Sumitomo Metal Ind Ltd Operation of sintering machine
JPS5616628A (en) * 1979-07-17 1981-02-17 Kawasaki Steel Corp Controlling method for sintering of ore or the like
JPS5848609A (en) * 1981-09-16 1983-03-22 Sumitomo Metal Ind Ltd Monitoring method for progressing condition of sintering
JPS60262926A (en) 1984-06-08 1985-12-26 Kawasaki Steel Corp Method for controlling concentration of component in product sintered ore
US7402191B2 (en) * 2002-12-17 2008-07-22 Jfe Steel Corporation Process for producing sintering feedstock and apparatus therefor
EP1847536A1 (en) 2006-04-20 2007-10-24 Prodimed, S.A. Synthesis and uses of pyroglutamic acid derivatives
KR100833008B1 (en) * 2006-12-18 2008-05-27 주식회사 포스코 Producing apparatus for sintered ore having easily seaching surface complexing of raw material
JP5298634B2 (en) * 2008-05-19 2013-09-25 新日鐵住金株式会社 Quality control method for sintered ore
JP2011042870A (en) * 2009-07-21 2011-03-03 Kobe Steel Ltd Apparatus and method for producing reduced iron using alkali-containing iron-making dust as raw material
JP5544784B2 (en) * 2009-08-17 2014-07-09 Jfeスチール株式会社 Sintering machine
JP5947277B2 (en) * 2013-12-11 2016-07-06 Primetals Technologies Japan株式会社 Partially reduced iron production equipment
CN103697699B (en) * 2013-12-26 2015-03-11 中冶长天国际工程有限责任公司 Method and system for controlling sintering end point
CN104977316A (en) * 2014-04-03 2015-10-14 宝钢不锈钢有限公司 Method for distinguishing trend of content of FeO in sinter
KR102290001B1 (en) * 2017-02-16 2021-08-13 제이에프이 스틸 가부시키가이샤 Manufacturing method of sintered ore

Also Published As

Publication number Publication date
JPWO2019082749A1 (en) 2019-12-12
CN111263822A (en) 2020-06-09
TWI687636B (en) 2020-03-11
KR20200057745A (en) 2020-05-26
KR102434776B1 (en) 2022-08-19
TW201923299A (en) 2019-06-16
BR112020007400A2 (en) 2020-09-29
BR112020007400B1 (en) 2023-03-21
EP3670685A4 (en) 2020-07-15
EP3670685B1 (en) 2022-03-09
WO2019082749A1 (en) 2019-05-02
PH12020550475A1 (en) 2021-03-08
EP3670685A1 (en) 2020-06-24

Similar Documents

Publication Publication Date Title
KR101475130B1 (en) Method for producing sintered ore
JP6680369B2 (en) Sintered ore manufacturing method
JP6988712B2 (en) Sintered ore manufacturing method
JP6519036B2 (en) Blast furnace operation method
JP6665972B2 (en) Sinter production method
JP6866856B2 (en) Sintered ore manufacturing method and blast furnace operation method
JP6874780B2 (en) Sintered ore manufacturing method
JP6489092B2 (en) Sinter ore manufacturing method and sintered ore manufacturing equipment line
JP6763412B2 (en) Sintered ore manufacturing method
TW201404891A (en) Method of producing sintered ore
JP7265162B2 (en) Method for reducing NOx in sintering exhaust gas
JP2023142850A (en) Production method of sintered ores and sintered ores production device
JP2024048561A (en) Sinter manufacturing method
JP2023145326A (en) Manufacturing method of sinter and manufacturing apparatus
KR101299385B1 (en) Prediction method of sintering productivity
JP2023057725A (en) Method for manufacturing sintered ore and sintering machine
JP2018044199A (en) Operation method of blast furnace
JPH02213423A (en) Manufacture of agglomerated ore

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190917

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190917

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20191003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200203

R150 Certificate of patent or registration of utility model

Ref document number: 6665972

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250