WO2019082749A1 - Sintered ore manufacturing method - Google Patents

Sintered ore manufacturing method

Info

Publication number
WO2019082749A1
WO2019082749A1 PCT/JP2018/038576 JP2018038576W WO2019082749A1 WO 2019082749 A1 WO2019082749 A1 WO 2019082749A1 JP 2018038576 W JP2018038576 W JP 2018038576W WO 2019082749 A1 WO2019082749 A1 WO 2019082749A1
Authority
WO
WIPO (PCT)
Prior art keywords
sintered ore
raw material
sintering
concentration
ore
Prior art date
Application number
PCT/JP2018/038576
Other languages
French (fr)
Japanese (ja)
Inventor
友司 岩見
俊輔 野中
祥和 早坂
直幸 竹内
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to EP18869498.8A priority Critical patent/EP3670685B1/en
Priority to BR112020007400-4A priority patent/BR112020007400B1/en
Priority to CN201880069110.XA priority patent/CN111263822A/en
Priority to JP2019551040A priority patent/JP6665972B2/en
Priority to KR1020207011596A priority patent/KR102434776B1/en
Publication of WO2019082749A1 publication Critical patent/WO2019082749A1/en
Priority to PH12020550475A priority patent/PH12020550475A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/02Dephosphorising or desulfurising
    • C21C1/025Agents used for dephosphorising or desulfurising
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating
    • C22B1/22Sintering; Agglomerating in other sintering apparatus
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/008Composition or distribution of the charge
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating
    • C22B1/20Sintering; Agglomerating in sintering machines with movable grates
    • C22B1/205Sintering; Agglomerating in sintering machines with movable grates regulation of the sintering process
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/242Binding; Briquetting ; Granulating with binders
    • C22B1/244Binding; Briquetting ; Granulating with binders organic
    • C22B1/245Binding; Briquetting ; Granulating with binders organic with carbonaceous material for the production of coked agglomerates
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/26Cooling of roasted, sintered, or agglomerated ores

Definitions

  • the present invention relates to a method for producing sintered ore, and more specifically, a method for producing sintered ore in which the concentration of components of sintered ore is measured, and the concentration of the component is used to adjust the traveling speed of the pallet carriage. About.
  • iron-containing raw materials such as sintered ore, lump iron ore, and pellets are mainly used as blast furnace raw materials as iron sources.
  • sinter is a source of miscellaneous iron such as iron ore with a particle size of 10 mm or less and various dusts generated in steel mills
  • CaO-containing raw materials such as limestone, quicklime, steel slag, powder coke and anthracite
  • a drum mixer mixes water with a sinter material containing a coagulant, an MgO-containing material consisting of refined nickel slag, dolomite, serpentine etc. as an optional compounding material, and an SiO 2 -containing material composed of refined nickel slag, vermiculite (borax) etc. It is a kind of agglomerated ore mixed, granulated and fired while adding.
  • the iron concentration of iron ore contained in the sintering raw material which is a raw material of sintered ore, is decreased, and instead, the concentration of gangue components such as SiO 2 and Al 2 O 3 is increased. Also, the component concentration of iron ore produced is more unstable as the concentration of the component may differ from ship to ship at the time of import.
  • the variation of the reaction temperature of sintering leads to the variation of the quality of the product product sintered ore (hereinafter also referred to simply as "sintered ore"), which largely affects the quality of the sintered ore. For example, if the amount of heat is excessive, the reaction temperature of sintering rises, and a vitreous low strength structure is formed in the sintered ore, the magnetite structure increases and the reducibility decreases, and so on. Cause a loss of quality. On the other hand, when the heat quantity is insufficient, the reaction temperature of sintering is lowered, and there is a possibility that the sintering reaction does not occur, and in that case, the sintered ore itself can not be obtained. Therefore, controlling the reaction temperature of sintering is essential for maintaining stable sinter quality.
  • the reaction temperature of sintering it is very difficult to measure the reaction temperature of sintering continuously. For this reason, it is general to estimate the reaction temperature of sintering and analyze the heat content by analyzing the components of the sintered ore. Specifically, the FeO concentration and the residual C concentration of the sintered ore are measured.
  • the sintering reaction hematite of the sintered ore undergoes thermal dissociation to magnetite as the temperature rises. As the temperature decreases after the reaction, the magnetite is transformed to hematite again, but the entire amount of the thermally dissociated magnetite does not return to hematite, so when the reaction temperature of sintering is high, much magnetite remains in the sintered ore.
  • the FeO concentration of sintered ore serves as an index indicating the reaction temperature of sintering. Since C remaining in the sintered ore indicates that it was not used as a heat source in the sintering reaction, if the concentration of C remaining in the sintered ore is high, it is suspected that the amount of heat during the sintering reaction is insufficient.
  • Patent Document 1 discloses a technique of measuring the FeO concentration of sintered ore, and using the FeO concentration of sintered ore to adjust the coagulating material of the sintering raw material, the granulated water, and the amount of exhaust air.
  • Patent Document 2 discloses a technique of measuring the FeO concentration of sintered ore and adjusting the amount of city gas blown in the sintering machine using the FeO concentration of sintered ore.
  • Patent Document 3 a laser type component measuring device is installed on a sintering machine, and the component concentration of the surface layer of the raw material charging layer charged in the pallet measured using the component measuring device is used.
  • a technique is disclosed that estimates the component concentration of sintered ore and uses this to adjust the amount of sintering raw material blended.
  • Patent No. 1464203 Patent No. 5544784 gazette Japanese Patent Application Laid-Open No. 60-262926
  • Patent Document 1 and Patent Document 2 measure the FeO concentration of sintered ore, and adjust the amount of coagulating material, granulated water, exhaust air amount, city gas blowing amount to achieve the target value. It is. However, it takes time to reflect these adjustment results in the components of sinter ore, and when the reaction temperature of sintering becomes high, malfunction of the cooler or failure of equipment downstream of the cooler And other equipment problems may occur.
  • Patent Document 3 estimates the component concentration of the sintered ore from the component concentration of the surface of the raw material charge layer
  • the component concentration of the surface of the charge layer is the charging device for the sintering material or the sintering It fluctuates due to segregation accompanying grain size of sintering material. For this reason, the relationship between the component concentration of the surface of the charge layer and the component concentration of the sinter is not uniform, and it is difficult to actually estimate the component concentration of the sinter from the component concentration of the surface of the charge layer .
  • the present invention has been made in view of the problems of the prior art as described above, and an object thereof is to detect equipment fluctuations even if the reaction temperature of sintering fluctuates, and to solve the equipment troubles of the sinter ore manufacturing apparatus It is an object of the present invention to provide a method of producing sintered ore which can suppress the
  • the features of the present invention for solving such problems are as follows.
  • a method of producing sintered ore, comprising (2) The method for producing sintered ore according to (1), wherein at least one of the MgO-containing raw material and the SiO 2 -containing raw material is further blended into the sintering raw material.
  • the component concentration of the sintered ore is continuously measured to change the advancing speed of the sintering machine pallet carriage.
  • the temperature rise of the sintered ore on the outlet side of the cooler can be suppressed, and equipment troubles such as equipment failure of the sintering machine can be suppressed.
  • FIG. 1 is a schematic diagram which shows an example of the sintered ore manufacturing apparatus 10 which can implement the manufacturing method of the sintered ore which concerns on this embodiment.
  • FIG. 2 is a graph showing the time change of the FeO concentration of sintered ore, the advancing speed of the pallet carriage, the blending ratio of powdered coke, and the temperature of the sintered ore on the outlet side of the cooler in Examples.
  • FIG. 3 is a graph showing the time change of the FeO concentration of sintered ore, the advancing speed of the pallet carriage, the blending ratio of powdered coke, and the temperature of sintered ore on the outlet side of the cooler in the comparative example.
  • FIG. 1 is a schematic diagram which shows an example of the sintered ore manufacturing apparatus 10 which can implement the manufacturing method of the sintered ore which concerns on this embodiment.
  • the iron-containing raw material 12 stored in the yard 11 is transported to the blending tank 22 by the transport conveyor 14.
  • the iron-containing raw material 12 contains various grades of iron ore and dust generated in a steel mill.
  • the raw material supply unit 20 includes a plurality of mixing tanks 22, 24, 25, 26, 28.
  • the iron-containing raw material 12 is stored in the mixing tank 22.
  • a CaO-containing raw material 16 containing limestone, quick lime, etc. is stored.
  • the mixing tank 25 stores an MgO-containing raw material 17 including dolomite, refined nickel slag, and the like.
  • a coagulated material 18 containing powdered coke and anthracite which are crushed to a particle size of 1 mm or less using a rod mill is stored.
  • returned ore 74 sintered ore sieving powder having a particle size of 5 mm or less which is under the screen of sintered ore is stored.
  • a predetermined amount of each raw material is cut out and mixed from the mixing tanks 22, 24, 25, 26, 28 of the raw material supply unit 20, and is made to be a sintering raw material by the transport conveyor 30.
  • the sintering material is conveyed by the conveyance conveyor 30 to the drum mixer 36.
  • the sintering raw material may contain an SiO 2 -containing raw material.
  • SiO 2 containing material in this case may be predetermined amount of iron-containing material 12 that is stored in the yard 11, provided separately from the compounding tank for storing the SiO 2 containing material, it cuts out a predetermined amount from the mixing tank mixing It may be done.
  • the sintering raw material conveyed to the drum mixer 36 is fed to the drum mixer 36, and an appropriate amount of water 34 is added to granulate into, for example, pseudo particles having an average particle diameter of 3.0 to 6.0 mm.
  • the granulated sintering raw material is conveyed by the conveying conveyor 38 to the sintering raw material supply device 42 of the sintering machine 40.
  • the drum mixer 36 is an example of a granulating apparatus for granulating the sintering material, and a plurality of drum mixers 36 may be used, and instead of the drum mixer 36, a pelletizer granulator may be used.
  • Both the drum mixer 36 and the pelletizer granulator may be used, or a high speed stirrer may be installed upstream of the drum mixer 36 to agitate the sinter material prior to charging into the drum mixer 36.
  • the average particle size is an arithmetic average particle size, and ⁇ (Vi ⁇ di) (where Vi is an abundance ratio of particles in the i-th particle size range, and di is the i-th It is a particle size defined in the particle size range).
  • the sintering raw material granulated by the drum mixer 36 is sintered.
  • the sintering machine 40 is, for example, a lower suction type dwite toroid sintering machine.
  • the sintering machine 40 has a sintering raw material supply device 42, an endless moving pallet carriage 44 which moves in circulation, an ignition furnace 46, and a window box 48.
  • the sintered raw material granulated from the sintered raw material supply device 42 is charged into the pallet of the pallet carriage 44 to form a charged layer of the sintered raw material.
  • the charged bed is ignited by the ignition furnace 46, and the air in the charged bed is drawn downward through the wind box 48 to move the combustion and melting zone in the charged bed below the charged bed.
  • the sintering bed is thereby sintered to form a sintered cake.
  • gaseous fuel is any flammable gas selected from blast furnace gas, coke oven gas, converter gas, city gas, natural gas, methane gas, ethane gas, propane gas, shale gas and mixed gas thereof.
  • the sinter cake is crushed by a crusher 50 and made into sintered ore.
  • the sintered ore crushed in the crusher 50 is cooled by the cooler 60.
  • the sintered ore cooled by the cooler 60 is sieved by a sieving apparatus 70 having a plurality of sieves and sifted into a product sintered ore 72 with a particle size of more than 5 mm and a return ore 74 with a particle size of 5 mm or less Be done.
  • the product sintered ore 72 is transported by the transport conveyor 76 to the blast furnace 82.
  • An infrared analyzer 80 is provided on the transport conveyor 76 that transports the product sintered ore 72.
  • the infrared analyzer 80 performs a measurement process. In the measurement step, the infrared analyzer 80 is used to continuously measure the concentration of at least one or more of FeO and C of the product sintered ore 72.
  • the infrared analyzer 80 irradiates the product sintered ore 72 with infrared light having a wavelength in the range of 0.5 to 50.0 ⁇ m to receive the reflected light from the product sintered ore 72. Since the molecular vibration of FeO contained in the product sintered ore 72 absorbs the inherent wavelength component of the irradiated infrared radiation, the FeO imparts an inherent wavelength component to the reflected infrared radiation. The crystal structure of monoatomic molecules such as C also begins to vibrate upon irradiation with infrared light, and imparts a unique wavelength component to the reflected infrared light. For this reason, the component concentration of FeO and C in the product sintered ore 72 can be measured by analyzing the irradiation infrared radiation and the reflection infrared radiation.
  • the infrared analyzer 80 emits infrared light of 20 or more wavelengths, for example, at a frequency of 128 times per minute to receive the reflected light reflected by the product sintered ore 72. Thus, since infrared rays can be emitted and received in a short time, the infrared analyzer 80 can continuously measure the concentration of the component of the product sintered ore 72 transported by the transport conveyor 76 online.
  • the infrared analyzer 80 is an example of an analyzer for measuring the concentration of components of the sintering raw material, and instead of the infrared analyzer 80, a laser analyzer that irradiates a laser to the measurement object, a neutron analysis that irradiates neutron to the measurement object It is also possible to use a meter or a microwave analyzer that irradiates the object to be measured with microwaves.
  • the product sintered ore 72 having a particle size of more than 5 mm is transported by the transport conveyor 76 to the blast furnace 82 and charged into the blast furnace as blast furnace raw material.
  • the return ore 74 having a particle diameter of 5 mm or less is transported by the transport conveyor 78 to the blending tank 28 of the raw material supply unit 20.
  • the infrared analyzer 80 may be provided between the cooler 60 and the sieving device 70, or may be provided on the transport conveyor 78.
  • the infrared analyzer 80 is provided between the cooler 60 and the sieving device 70, the component concentration of the sintered ore after cooling is measured in the measurement step.
  • the infrared ray analyzer 80 is provided on the transport conveyor 78, the concentration of the component of the return ore 74 is measured in the measurement process.
  • the particle size of the product sintered ore 72 and the particle size of the return ore 74 mean the particle size to be sieved by a sieve, for example, a particle size of more than 5 mm means using a sieve with an aperture of 5 mm.
  • the particle size to be sieved on a sieve, and the particle size of 5 mm or less is the particle size to be sieved under a sieve using a sieve with an aperture of 5 mm.
  • Each value of the particle size of the product sintered ore 72 and return ore 74 is just an example, and is not limited to this value.
  • the method of manufacturing sintered ore according to the present embodiment includes the pallet carriage speed adjustment step of adjusting the traveling speed of the pallet carriage.
  • the pallet carriage speed adjusting step for example, the advancing speed of the pallet carriage is adjusted using the FeO concentration of the product sintered ore 72 measured in the measurement step.
  • the high FeO concentration of the product sintered ore 72 indicates that a large amount of magnetite remains in the product sintered ore 72, which indicates that the reaction temperature for sintering is high and the temperature of the sintered cake is high. It is predicted that Therefore, even if the sinter cake is crushed and cooled by the cooler 60, the sintered ore can not be cooled below the upper limit temperature of the outlet of the cooler 60, whereby the abnormal stop of the cooler 60, the cooler There is a possibility that equipment problems such as breakdown of equipment downstream of 60 may occur.
  • the correspondence relationship between the FeO concentration of sintered ore and the sintered ore temperature on the outlet side of the cooler 60 is grasped in advance for each traveling speed of the pallet carriage, and the FeO concentration exceeding the upper limit temperature on the outlet side of the cooler 60
  • the management value is set in advance.
  • the traveling speed of the pallet cart adjusts the traveling speed of the pallet cart and slow the traveling speed of the pallet cart.
  • the traveling speed of the pallet carriage is slowed, the time for cooling by the cooler 60 becomes longer, so the temperature of the sintered ore on the outlet side of the cooler 60 becomes lower.
  • the temperature of sintered ore on the outlet side of the cooler 60 can be lowered, occurrence of facility trouble such as abnormal stop of the cooler 60 or failure of facilities on the downstream side of the cooler 60 can be suppressed.
  • the FeO concentration of the product sintered ore 72 is continuously measured in the measurement step, and the FeO concentration of the product sintered ore 72 is higher than the control value, and the baking on the outlet side of the cooler 60 calculated from the correspondence relationship
  • bogie is shown when the consolidation temperature exceeds upper limit temperature, it may replace with FeO concentration and you may measure C density
  • the correspondence between the C concentration of sintered ore and the temperature of the sintered ore on the outlet side of the cooler 60 is grasped beforehand, and the control value of the C concentration exceeding the upper limit temperature on the outlet side of the cooler 60 is determined in advance.
  • the concentration of at least one of FeO and C of the product sintered ore 72 measured in the measurement step is used to adjust the blending amount of the coagulating material of the sintering raw material
  • the method for producing a sintered ore uses the concentration of at least one or more of FeO and C of the sintered ore measured in the measurement step to inject at least one of the gaseous fuel and the oxygen.
  • reaction temperature fluctuation of the sintering can be suppressed by adjusting the injection amount of at least one of the gaseous fuel and oxygen, the fluctuation of the FeO concentration of the sintered ore is also suppressed, and the quality of the sintered ore becomes high.
  • each raw material is cut out and compounded from the mixing tanks 22, 24, 25, 26, 28 of the raw material supply unit 20, and is used as the sintering raw material by the transport conveyor 30 and sintered raw material granulated by the drum mixer 36.
  • An example is shown, but it is not limited to this.
  • a sintering raw material containing iron-containing raw material 12, CaO-containing raw material 16, MgO-containing raw material 17 and return ore 74 is charged into drum mixer 36, water is added to the sintering raw material and granulated,
  • the carbonaceous material exterior particles in which the coagulating material 18 is present in the surface layer may be used as a granulated sintering material.
  • a sintered raw material containing iron-containing raw material 12, CaO-containing raw material 16, MgO-containing raw material 17 and return ore 74, and a part of coagulating material 18 is charged into drum mixer 36, and water is added to the sintered raw material.
  • the granulated carbon raw material is formed by granulating the carbonaceous material exterior particles in which the coagulating material 18 is present in the surface layer of the granulated sintering raw material by charging the remaining portion of the coagulating material 18 in the second half of the granulation. It may be used as Powdered coke and anthracite are used as a coagulating material to which water is added and which is mixed in the second half of granulation.
  • a part or all of the coagulating material 18 is introduced in the second half of the last drum mixer 36
  • the carbonaceous material exterior particles in which the coagulating material 18 is present in the surface layer may be granulated by charging the sintering material into the drum mixer 36 by the method described above.
  • all the water may be added to the sintering raw material by the first drum mixer 36, and part of the water may be added by the first drum mixer 36. May be added, and the remainder may be added by another drum mixer 36.
  • each raw material is cut out and compounded from the mixing tanks 22, 24, 25, 26, 28 of the raw material supply unit 20, and is used as the sintering raw material by the transport conveyor 30 and sintered raw material granulated by the drum mixer 36.
  • An example is shown, but it is not limited to this.
  • a sintered raw material containing iron-containing raw material 12 MgO-containing raw material 17 and return ore 74 is charged into drum mixer 36, water is added to the sintered raw material and granulated, CaO-containing raw material in the latter half of granulation Granulated particles in which the CaO-containing raw material 16 and the coagulating material 18 are present in the surface layer may be used as the granulated sintering raw material by charging 16 and the coagulating material 18.
  • a sinter material containing a part of the iron-containing material 12, the MgO-containing material 17, the reversion ore 74, and the coagulating material 18 is charged into a drum mixer 36, water is added to the sinter material, and granulation is carried out Sintered granulated particles in which iron-containing raw material 12 and CaO-containing raw material 16 are present in the surface layer by charging the remainder of iron-containing raw material 12 and CaO-containing raw material 16 in the latter half of granulation You may use as a raw material.
  • a sintered raw material containing iron-containing raw material 12, return ore 74 and MgO-containing raw material 17 and a part of CaO-containing raw material 16 is charged into drum mixer 36, water is added to the sintered raw material, and granulation is carried out By blending the remaining portion of the CaO-containing raw material 16 and the coagulating material 18 in the latter half of the grain time, granulated particles in which the CaO-containing raw material 16 and the coagulating material 18 are present in the surface layer are used as granulated sintering raw material Good.
  • a sintering raw material in which iron containing raw material 12, returned ore 74 and MgO containing raw material 17, a part of CaO containing raw material 16 and a part of coagulating material 18 are mixed is supplied to drum mixer 36, and water is used as a sintering raw material. Is added and granulated, and the remaining portion of the CaO-containing raw material 16 and the remaining portion of the coagulating material 18 are compounded in the latter half of the granulation to obtain granulated particles in which the CaO-containing raw material 16 and the coagulating material 18 are present in the surface layer You may use as a granulated sintering raw material.
  • part or all of the CaO-containing raw material Granulated particles in which the CaO-containing raw material 16 and the coagulating material 18 are present in the surface layer by charging the sintering material 16 and the coagulating material 18 in the latter half of the last drum mixer 36 and injecting the sintering material into the drum mixer 36 by the method described above May be granulated.
  • each raw material is cut out and mixed from the mixing tanks 22, 24, 25, 26, 28 of the raw material supply unit 20, and the example of using the transport conveyor 30 as the sintering raw material is shown.
  • a portion of each raw material cut out from the mixing tanks 22, 24, 25, 26 and 28 of the raw material supply unit 20 is directly conveyed to the drum mixer 36 by the conveyance conveyor 30, and the remaining portion is conveyed by a conveyance conveyor different from the conveyance conveyor 30.
  • a conveyance conveyor different from the conveyance conveyor 30.
  • the stirring process After being subjected to the stirring process, it may be directly fed to the conveyer 30 without being granulated by a drum mixer 36 or a granulator such as a pelletizer. Furthermore, at least one of the crushing step and the sieving step may be provided before the stirring process with the high speed stirring device. In the case where a plurality of drum mixers 36 are used, they may be fed to a conveyer between any drum mixers.
  • the infrared analyzer 80 in the measurement process is not limited to one, and a plurality of infrared analyzers may be provided.
  • a plurality of infrared analyzers 80 may be used to measure the concentration of at least one or more of FeO and C of sinter.
  • the sintered ore was manufactured using the sintered ore manufacturing apparatus 10 shown in FIG.
  • the infrared analyzer 80 is installed on the conveyer 76, and the FeO concentration is continuously measured at a frequency of 18 times per hour as the component concentration of the sintered ore, and the measured FeO concentration is used.
  • Sintered ore was manufactured for 5 hours by adjusting the blending ratio of the coke breeze which is the condensation material so that the FeO concentration of the sintered ore becomes the control value of FeO.
  • Both of the example and the comparative example were changed to a raw material pile containing dust with a high C concentration after 1 hour.
  • the embodiment is an example having a pallet carriage speed adjusting step of adjusting the advancing speed of the sintering machine pallet carriage
  • the comparative example is an example not having the pallet carriage speed adjusting step. Therefore, when the FeO concentration in the sinter is increased, the traveling speed of the pallet carriage is slowed in the embodiment and the blending ratio of the coke breeze is adjusted to cope with it, and the traveling speed of the pallet carriage is adjusted in the comparative example. First, the blending ratio of coke breeze was adjusted.
  • FIG. 2 shows the FeO concentration (mass%) of the sintered ore, the advancing speed of the pallet carriage (m / min), the blending ratio of powdered coke (mass%), and the sintered ore temperature (° C.) of the cooler in the example. It is a graph which shows the time change of.
  • FIG. 3 shows the FeO concentration (mass%) of sintered ore, the advancing speed of pallet truck (m / min), the blending ratio of powdered coke (mass%), and the sintered ore temperature (° C.) of the cooler in the comparative example. It is a graph which shows the time change of.
  • the sintering machine is used in the pallet truck speed adjustment process. The traveling speed of the pallet truck was slowed and the proportion of coke breeze was adjusted.
  • the FeO concentration of the sintered ore is continuously measured, and when the increase of the FeO concentration of the sintered ore is detected, the advancing speed of the sintering machine pallet carriage Adjust the As a result, it has been confirmed that the rise in the temperature of the sintered ore on the outlet side of the cooler can be suppressed, the load on the cooler and the subsequent facilities can be reduced, and equipment troubles such as equipment failure can be avoided.
  • the temperature of the sintered ore on the outlet side of the cooler exceeded the upper limit temperature from the increase of the FeO concentration of the sintered ore, so the proportion of coke breeze was adjusted.
  • the temperature of the sintered ore at the outlet of the cooling machine is lowered after about 30 minutes required for replacing the material already charged in the sintering machine after adjusting the blending ratio of the coke breeze.
  • the temperature of the sintered ore rose above the upper limit temperature on the outlet side of the cooler, resulting in abnormal shutdown of the cooler.
  • the temperature of the sintering machine is lowered, so the proportion of coke breeze of the sintering raw material is increased, and the advancing speed of the pallet carriage is slowed down. Production has resumed.
  • the increase in the FeO concentration of the sinter is detected, and the reaction temperature of the sinter is increased when it is detected that the temperature of the sinter at the outlet of the cooler exceeds the upper temperature limit.
  • the sintering raw material derived from the raw material pile containing dust with a high C concentration is loaded on the pallet of the sintering machine pallet carriage.
  • the blending ratio of powdered coke is adjusted, but the adjustment of the blending ratio is reflected from the sintered raw material cut out from the raw material supply portion and blended from this, and is already loaded into the pallet. It is not reflected in the sintering material.
  • the temperature of the sintered ore rose due to the increase of the reaction temperature of sintering, and the temperature of the sintered ore exceeded the upper limit temperature on the outlet side of the cooler. As a result, equipment trouble such as abnormal stop of the cooler occurred.
  • the advancing speed of the pallet To slow down.
  • the measurement frequency of the infrared analyzer 80 installed on the transport conveyor 76 is 18 times per hour, but the effect of adjusting the pallet truck speed can be obtained even if the measurement frequency is lower than this.
  • the measurement frequency may be at least once every about 30 minutes required to replace the raw material charged in the sintering machine.
  • an increase in the reaction temperature of sintering is promptly detected by continuously measuring the FeO concentration of the sinter ore by the measurement step, and the pallet carriage speed is adjusted. Slow down the traveling speed of the pallet cart in the process. Thereby, for example, even if the reaction temperature of sintering rises by changing to a raw material pile containing dust with a high C concentration, the temperature rise of sintered ore on the outlet side of the cooler can be suppressed, and the cooler It has been confirmed that equipment problems such as abnormal stop of the equipment and equipment failure of the sintering machine can be suppressed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

The purpose of the present invention is to provide a sintered ore manufacturing method which, even when reaction temperature fluctuates during sintering, enables such a fluctuation to be discerned immediately and makes it possible to minimize equipment trouble. This method is for manufacturing a sintered ore by pelletizing, through addition of water, a sintering material which is a mixture of an iron-containing raw material, a CaO-containing raw material, and a setting material, and by sintering the pellets using a sintering machine, the method comprising: a measurement step for continuously measuring a constituent concentration in the sintered ore; and a pallet truck speed adjustment step for adjusting the traveling speed of a pallet truck using the sintered ore constituent concentration measured in the measurement step.

Description

焼結鉱の製造方法Method of producing sintered ore
 本発明は、焼結鉱の製造方法に関するものであり、具体的には、焼結鉱の成分濃度を測定し、当該成分濃度を用いてパレット台車の進行速度を調整する焼結鉱の製造方法に関する。 The present invention relates to a method for producing sintered ore, and more specifically, a method for producing sintered ore in which the concentration of components of sintered ore is measured, and the concentration of the component is used to adjust the traveling speed of the pallet carriage. About.
 高炉製鉄法では、鉄源として、焼結鉱や塊鉄鉱石、ペレットなどの鉄含有原料を高炉原料として主に用いている。ここで、焼結鉱は、粒径が10mm以下の鉄鉱石と製鉄所内で発生する各種ダスト等の雑鉄源に、石灰石や生石灰、製鋼スラグなどのCaO含有原料と、粉コークスや無煙炭などの凝結材と、任意配合原料として精錬ニッケルスラグ、ドロマイト、蛇紋岩などからなるMgO含有原料と、精錬ニッケルスラグ、硅石(硅砂)などからなるSiO含有原料を配合した焼結原料をドラムミキサーで水を添加しながら混合、造粒し、焼成した塊成鉱の一種である。 In the blast furnace iron making method, iron-containing raw materials such as sintered ore, lump iron ore, and pellets are mainly used as blast furnace raw materials as iron sources. Here, sinter is a source of miscellaneous iron such as iron ore with a particle size of 10 mm or less and various dusts generated in steel mills, CaO-containing raw materials such as limestone, quicklime, steel slag, powder coke and anthracite A drum mixer mixes water with a sinter material containing a coagulant, an MgO-containing material consisting of refined nickel slag, dolomite, serpentine etc. as an optional compounding material, and an SiO 2 -containing material composed of refined nickel slag, vermiculite (borax) etc. It is a kind of agglomerated ore mixed, granulated and fired while adding.
 近年、焼結鉱の原料である焼結原料に含まれる鉄鉱石の鉄分濃度が低下し、代わりにSiOやAlといった脈石成分濃度が増加しており、同種の鉄鉱石内においても、輸入時の船ごとに成分濃度が異なる場合もあるほど、産出される鉄鉱石の成分濃度が不安定になっている。 In recent years, the iron concentration of iron ore contained in the sintering raw material, which is a raw material of sintered ore, is decreased, and instead, the concentration of gangue components such as SiO 2 and Al 2 O 3 is increased. Also, the component concentration of iron ore produced is more unstable as the concentration of the component may differ from ship to ship at the time of import.
 製鉄所内で発生する各種ダストは、発生量のばらつきや含まれるカーボンの変動量が大きい。焼結原料に含まれるカーボン量の変動が大きくなると、焼結の反応温度が変動する。 Various types of dust generated in the steel works have large variation in the amount of generation and variation in contained carbon. As the fluctuation of the amount of carbon contained in the sintering material becomes large, the reaction temperature of sintering fluctuates.
 焼結の反応温度の変動は、成品である成品焼結鉱(以後、単に「焼結鉱」とも記載する)の品質の変動に繋がり、焼結鉱の品質を大きく左右する。例えば、熱量が過剰である場合、焼結の反応温度が上昇し、焼結鉱にガラス質の低強度組織が形成されたり、マグネタイト組織が増加して被還元性が低下するなど、焼結鉱の品質の低下を招く。一方、熱量が不足している場合は、焼結の反応温度が低下し、そもそも焼結反応が起きない可能性があり、その場合には焼結鉱自体が得られない。したがって、焼結の反応温度を管理することは、安定した焼結鉱品質の維持には不可欠である。 The variation of the reaction temperature of sintering leads to the variation of the quality of the product product sintered ore (hereinafter also referred to simply as "sintered ore"), which largely affects the quality of the sintered ore. For example, if the amount of heat is excessive, the reaction temperature of sintering rises, and a vitreous low strength structure is formed in the sintered ore, the magnetite structure increases and the reducibility decreases, and so on. Cause a loss of quality. On the other hand, when the heat quantity is insufficient, the reaction temperature of sintering is lowered, and there is a possibility that the sintering reaction does not occur, and in that case, the sintered ore itself can not be obtained. Therefore, controlling the reaction temperature of sintering is essential for maintaining stable sinter quality.
 しかし、焼結の反応温度を連続的に測定することは非常に難しい。このため、焼結鉱の成分を分析することで、焼結の反応温度を推定し、熱量管理を行うのが一般的である。具体的には、焼結鉱のFeO濃度や残留したC濃度を測定する。焼結反応において、焼結鉱のヘマタイトは温度上昇とともにマグネタイトへと熱解離を生じる。反応後の温度低下とともに、再度、マグネタイトからヘマタイトに転移するが、熱解離したマグネタイトの全量がヘマタイトに戻らないので、焼結の反応温度が高いと焼結鉱中にマグネタイトが多く残留する。マグネタイトは2価のFeを含むので、焼結鉱のFeO濃度が、焼結の反応温度を示す指標となる。焼結鉱に残留したCは、焼結反応において熱源として使用されなかったことを示すので、焼結鉱に残留したC濃度が高い場合には、焼結反応時の熱量の不足が疑われる。 However, it is very difficult to measure the reaction temperature of sintering continuously. For this reason, it is general to estimate the reaction temperature of sintering and analyze the heat content by analyzing the components of the sintered ore. Specifically, the FeO concentration and the residual C concentration of the sintered ore are measured. In the sintering reaction, hematite of the sintered ore undergoes thermal dissociation to magnetite as the temperature rises. As the temperature decreases after the reaction, the magnetite is transformed to hematite again, but the entire amount of the thermally dissociated magnetite does not return to hematite, so when the reaction temperature of sintering is high, much magnetite remains in the sintered ore. Since magnetite contains divalent Fe, the FeO concentration of sintered ore serves as an index indicating the reaction temperature of sintering. Since C remaining in the sintered ore indicates that it was not used as a heat source in the sintering reaction, if the concentration of C remaining in the sintered ore is high, it is suspected that the amount of heat during the sintering reaction is insufficient.
 焼結鉱の成分測定と、焼結反応の熱量調整は従来から行われている。例えば、特許文献1には、焼結鉱のFeO濃度を測定し、焼結鉱のFeO濃度を用いて焼結原料の凝結材や造粒水分、排風量を調整する技術が開示されている。また、特許文献2には、焼結鉱のFeO濃度を測定し、焼結鉱のFeO濃度を用いて、焼結機において吹き込む都市ガス量を調整する技術が開示されている。 The component measurement of sintered ore and the heat quantity adjustment of sintering reaction are conventionally performed. For example, Patent Document 1 discloses a technique of measuring the FeO concentration of sintered ore, and using the FeO concentration of sintered ore to adjust the coagulating material of the sintering raw material, the granulated water, and the amount of exhaust air. Further, Patent Document 2 discloses a technique of measuring the FeO concentration of sintered ore and adjusting the amount of city gas blown in the sintering machine using the FeO concentration of sintered ore.
 また、特許文献3には、焼結機上にレーザー式成分計測機を設置し、当該成分計測機を用いて測定されたパレット内に装入された原料装入層表層の成分濃度を用いて焼結鉱の成分濃度を推測し、これを用いて焼結原料の配合量を調整する技術が開示されている。 Further, in Patent Document 3, a laser type component measuring device is installed on a sintering machine, and the component concentration of the surface layer of the raw material charging layer charged in the pallet measured using the component measuring device is used. A technique is disclosed that estimates the component concentration of sintered ore and uses this to adjust the amount of sintering raw material blended.
特許第1464203号公報Patent No. 1464203 特許第5544784号公報Patent No. 5544784 gazette 特開昭60-262926号公報Japanese Patent Application Laid-Open No. 60-262926
 特許文献1および特許文献2に開示された技術は、焼結鉱のFeO濃度を測定し、目標値となるように凝結材量、造粒水分、排風量、都市ガス吹込み量を調整する技術である。しかしながら、これらの調整結果を焼結鉱の成分に反映させるまでに時間を要し、焼結の反応温度が高くなった場合に、冷却機の異常停止や冷却機よりも下流側の設備の故障などの設備トラブルを招く可能性がある。 The techniques disclosed in Patent Document 1 and Patent Document 2 measure the FeO concentration of sintered ore, and adjust the amount of coagulating material, granulated water, exhaust air amount, city gas blowing amount to achieve the target value. It is. However, it takes time to reflect these adjustment results in the components of sinter ore, and when the reaction temperature of sintering becomes high, malfunction of the cooler or failure of equipment downstream of the cooler And other equipment problems may occur.
 特許文献3に開示された技術は、原料装入層表層の成分濃度から焼結鉱の成分濃度を推測しているが、装入層表層の成分濃度は、焼結原料の装入装置や焼結原料の粒度に伴う偏析によって変動する。このため、装入層表層の成分濃度と焼結鉱の成分濃度との関係は一様ではなく、装入層表層の成分濃度から焼結鉱の成分濃度を実際に推測するのは困難である。 Although the technology disclosed in Patent Document 3 estimates the component concentration of the sintered ore from the component concentration of the surface of the raw material charge layer, the component concentration of the surface of the charge layer is the charging device for the sintering material or the sintering It fluctuates due to segregation accompanying grain size of sintering material. For this reason, the relationship between the component concentration of the surface of the charge layer and the component concentration of the sinter is not uniform, and it is difficult to actually estimate the component concentration of the sinter from the component concentration of the surface of the charge layer .
 本発明は、このような従来技術の問題点を鑑みてなされたものであり、その目的は、焼結の反応温度が変動したとしても、その変動を検出して焼結鉱製造装置の設備トラブルを抑制できる焼結鉱の製造方法を提供することにある。 The present invention has been made in view of the problems of the prior art as described above, and an object thereof is to detect equipment fluctuations even if the reaction temperature of sintering fluctuates, and to solve the equipment troubles of the sinter ore manufacturing apparatus It is an object of the present invention to provide a method of producing sintered ore which can suppress the
 このような課題を解決する本発明の特徴は、以下の通りである。
(1)鉄含有原料、CaO含有原料および凝結材が配合された焼結原料に水を添加して造粒し、焼結機で焼結して焼結鉱を製造する焼結鉱の製造方法であって、前記焼結鉱の成分濃度を連続測定する測定工程と、前記測定工程で測定された前記焼結鉱の成分濃度を用いて、パレット台車の進行速度を調整するパレット台車速度の調整工程と、
 を有する、焼結鉱の製造方法。
(2)前記焼結原料には、さらにMgO含有原料およびSiO含有原料の少なくとも一方が配合される、(1)に記載の焼結鉱の製造方法。
(3)前記測定工程では、前記焼結鉱のFeOおよびCの少なくとも1種以上の成分濃度を連続測定する、(1)または(2)に記載の焼結鉱の製造方法
(4)前記焼結鉱の成分濃度を用いて、焼結原料の凝結材の配合量を調整する配合量の調整工程をさらに有する、(1)から(3)の何れか1つに記載の焼結鉱の製造方法。
(5)前記焼結機では、気体燃料および酸素の少なくとも一方を吹込んで焼結原料を焼結し、前記焼結鉱の成分濃度を用いて、前記気体燃料および前記酸素の少なくとも一方の吹込み量を調整する吹込み量の調整工程をさらに有する、(1)から(4)の何れか1つに記載の焼結鉱の製造方法。
The features of the present invention for solving such problems are as follows.
(1) Water is added to a sintering raw material containing an iron-containing raw material, a CaO-containing raw material and a coagulating agent, water is granulated, and it is sintered by a sintering machine to produce a sintered ore A measuring step of continuously measuring the component concentration of the sintered ore, and adjustment of the pallet carriage speed of adjusting the advancing speed of the pallet carriage using the component concentration of the sintered ore measured in the measuring step Process,
A method of producing sintered ore, comprising
(2) The method for producing sintered ore according to (1), wherein at least one of the MgO-containing raw material and the SiO 2 -containing raw material is further blended into the sintering raw material.
(3) The method for producing sintered ore according to (1) or (2), wherein the concentration of at least one or more of FeO and C of the sintered ore is continuously measured in the measurement step. The production of the sintered ore according to any one of (1) to (3), further comprising the step of adjusting the amount of the sintering raw material by using the concentration of the component of the sintering material. Method.
(5) In the sintering machine, at least one of gaseous fuel and oxygen is blown to sinter the sintering material, and the concentration of the component of the sintered ore is used to inject at least one of the gaseous fuel and the oxygen The manufacturing method of the sintered ore as described in any one of (1) to (4) which further has the adjustment process of the blowing amount which adjusts amount.
 本発明の焼結鉱の製造方法を実施により、焼結鉱の成分濃度を連続測定して、焼結機パレット台車の進行速度を変更する。これにより、冷却機出側の焼結鉱の温度上昇を抑制でき、焼結機の設備故障などの設備トラブルを抑制できる。 By carrying out the method for producing sintered ore according to the present invention, the component concentration of the sintered ore is continuously measured to change the advancing speed of the sintering machine pallet carriage. As a result, the temperature rise of the sintered ore on the outlet side of the cooler can be suppressed, and equipment troubles such as equipment failure of the sintering machine can be suppressed.
図1は、本実施形態に係る焼結鉱の製造方法が実施できる焼結鉱製造装置10の一例を示す模式図である。FIG. 1: is a schematic diagram which shows an example of the sintered ore manufacturing apparatus 10 which can implement the manufacturing method of the sintered ore which concerns on this embodiment. 図2は、実施例における焼結鉱のFeO濃度、パレット台車の進行速度、粉コークスの配合率および冷却機出側の焼結鉱温度の時間変化を示すグラフである。FIG. 2 is a graph showing the time change of the FeO concentration of sintered ore, the advancing speed of the pallet carriage, the blending ratio of powdered coke, and the temperature of the sintered ore on the outlet side of the cooler in Examples. 図3は、比較例における焼結鉱のFeO濃度、パレット台車の進行速度、粉コークスの配合率および冷却機出側の焼結鉱温度の時間変化を示すグラフである。FIG. 3 is a graph showing the time change of the FeO concentration of sintered ore, the advancing speed of the pallet carriage, the blending ratio of powdered coke, and the temperature of sintered ore on the outlet side of the cooler in the comparative example.
 以下、発明の実施形態を通じて本発明を説明する。図1は、本実施形態に係る焼結鉱の製造方法が実施できる焼結鉱製造装置10の一例を示す模式図である。ヤード11に保管された鉄含有原料12は、搬送コンベア14によって配合槽22に搬送される。鉄含有原料12は、種々の銘柄の鉄鉱石および製鉄所内発生ダストを含む。 Hereinafter, the present invention will be described through embodiments of the invention. FIG. 1: is a schematic diagram which shows an example of the sintered ore manufacturing apparatus 10 which can implement the manufacturing method of the sintered ore which concerns on this embodiment. The iron-containing raw material 12 stored in the yard 11 is transported to the blending tank 22 by the transport conveyor 14. The iron-containing raw material 12 contains various grades of iron ore and dust generated in a steel mill.
 原料供給部20は、複数の配合槽22、24、25、26、28を備える。配合槽22には、鉄含有原料12が貯留される。配合槽24には、石灰石や生石灰等を含むCaO含有原料16が貯留される。配合槽25には、ドロマイトや精錬ニッケルスラグ等を含むMgO含有原料17が貯留される。配合槽26には、ロッドミルを用いて粒径1mm以下に破砕された粉コークスや無煙炭を含む凝結材18が貯留される。配合槽28には、焼結鉱の篩下となった粒径5mm以下の返鉱74(焼結鉱篩下粉)が貯留される。原料供給部20の配合槽22、24、25、26、28から、各原料が所定量切り出されて配合され、搬送コンベア30で焼結原料とされる。焼結原料は、搬送コンベア30によってドラムミキサー36に搬送される。焼結原料には、SiO含有原料が配合されてもよい。この場合にSiO含有原料は、ヤード11に保管された鉄含有原料12に所定量配合されてよく、SiO含有原料を貯留する配合槽を別に設け、当該配合槽から所定量切り出されて配合されてもよい。

 ドラムミキサー36に搬送された焼結原料は、ドラムミキサー36に投入され、適量の水34が添加されて、例えば、平均粒径3.0~6.0mmの擬似粒子に造粒される。造粒された焼結原料は、搬送コンベア38によって焼結機40の焼結原料供給装置42に搬送される。ドラムミキサー36は、焼結原料を造粒する造粒装置の一例であり、ドラムミキサー36を複数用いてもよく、ドラムミキサー36に代えて、ペレタイザー造粒機を用いてもよい。ドラムミキサー36とぺレタイザー造粒機の両方を用いてもよく、ドラムミキサー36の上流に高速撹拌機を設置して、ドラムミキサー36に投入する前に焼結原料を撹拌してもよい。本実施形態において、平均粒径は、算術平均粒径であって、Σ(Vi×di)(但し、Viはi番目の粒度範囲の中にある粒子の存在比率であり、diはi番目の粒度範囲の代表粒径である。)で定義される粒径である。 焼結機40では、ドラムミキサー36で造粒された焼結原料が焼結される。焼結機40は、例えば、下方吸引式のドワイトロイド焼結機である。焼結機40は、焼結原料供給装置42と、循環移動する無端移動式のパレット台車44と、点火炉46と、ウインドボックス48とを有する。焼結原料供給装置42から造粒された焼結原料がパレット台車44のパレットに装入され、焼結原料の装入層が形成される。装入層は、点火炉46で点火されるとともに、ウインドボックス48を通じて装入層内の空気を下方へ吸引することで装入層内の燃焼、溶融帯を装入層の下方へ移動させる。これにより、装入層は焼結されて、焼結ケーキが形成される。ウインドボックス48を通じて装入層内の空気を下方へ吸引する際、装入層の上方から気体燃料および酸素の少なくとも一方を吹込んでもよい。気体燃料は、高炉ガス、コークス炉ガス、転炉ガス、都市ガス、天然ガス、メタンガス、エタンガス、プロパンガス、シェールガスおよびこれらの混合ガスのうちから選ばれるいずれかの可燃性ガスである。
The raw material supply unit 20 includes a plurality of mixing tanks 22, 24, 25, 26, 28. The iron-containing raw material 12 is stored in the mixing tank 22. In the mixing tank 24, a CaO-containing raw material 16 containing limestone, quick lime, etc. is stored. The mixing tank 25 stores an MgO-containing raw material 17 including dolomite, refined nickel slag, and the like. In the compounding tank 26, a coagulated material 18 containing powdered coke and anthracite which are crushed to a particle size of 1 mm or less using a rod mill is stored. In the compounding tank 28, returned ore 74 (sintered ore sieving powder) having a particle size of 5 mm or less which is under the screen of sintered ore is stored. A predetermined amount of each raw material is cut out and mixed from the mixing tanks 22, 24, 25, 26, 28 of the raw material supply unit 20, and is made to be a sintering raw material by the transport conveyor 30. The sintering material is conveyed by the conveyance conveyor 30 to the drum mixer 36. The sintering raw material may contain an SiO 2 -containing raw material. SiO 2 containing material in this case may be predetermined amount of iron-containing material 12 that is stored in the yard 11, provided separately from the compounding tank for storing the SiO 2 containing material, it cuts out a predetermined amount from the mixing tank mixing It may be done.

The sintering raw material conveyed to the drum mixer 36 is fed to the drum mixer 36, and an appropriate amount of water 34 is added to granulate into, for example, pseudo particles having an average particle diameter of 3.0 to 6.0 mm. The granulated sintering raw material is conveyed by the conveying conveyor 38 to the sintering raw material supply device 42 of the sintering machine 40. The drum mixer 36 is an example of a granulating apparatus for granulating the sintering material, and a plurality of drum mixers 36 may be used, and instead of the drum mixer 36, a pelletizer granulator may be used. Both the drum mixer 36 and the pelletizer granulator may be used, or a high speed stirrer may be installed upstream of the drum mixer 36 to agitate the sinter material prior to charging into the drum mixer 36. In the present embodiment, the average particle size is an arithmetic average particle size, and Σ (Vi × di) (where Vi is an abundance ratio of particles in the i-th particle size range, and di is the i-th It is a particle size defined in the particle size range). In the sintering machine 40, the sintering raw material granulated by the drum mixer 36 is sintered. The sintering machine 40 is, for example, a lower suction type dwite toroid sintering machine. The sintering machine 40 has a sintering raw material supply device 42, an endless moving pallet carriage 44 which moves in circulation, an ignition furnace 46, and a window box 48. The sintered raw material granulated from the sintered raw material supply device 42 is charged into the pallet of the pallet carriage 44 to form a charged layer of the sintered raw material. The charged bed is ignited by the ignition furnace 46, and the air in the charged bed is drawn downward through the wind box 48 to move the combustion and melting zone in the charged bed below the charged bed. The sintering bed is thereby sintered to form a sintered cake. When the air in the bed is sucked downward through the wind box 48, at least one of gaseous fuel and oxygen may be blown from above the bed. The gaseous fuel is any flammable gas selected from blast furnace gas, coke oven gas, converter gas, city gas, natural gas, methane gas, ethane gas, propane gas, shale gas and mixed gas thereof.
 焼結ケーキは、破砕機50によって破砕され焼結鉱にされる。破砕機50で破砕された焼結鉱は、冷却機60によって冷却される。冷却機60によって冷却された焼結鉱は、複数の篩を有する篩分け装置70によって篩分けされ、粒径5mm超の成品焼結鉱72と、粒径5mm以下の返鉱74とに篩分けされる。 The sinter cake is crushed by a crusher 50 and made into sintered ore. The sintered ore crushed in the crusher 50 is cooled by the cooler 60. The sintered ore cooled by the cooler 60 is sieved by a sieving apparatus 70 having a plurality of sieves and sifted into a product sintered ore 72 with a particle size of more than 5 mm and a return ore 74 with a particle size of 5 mm or less Be done.
 成品焼結鉱72は、搬送コンベア76によって高炉82に搬送される。成品焼結鉱72を搬送する搬送コンベア76には、赤外線分析計80が設けられている。赤外線分析計80では測定工程が実施される。測定工程では、赤外線分析計80を用いて、成品焼結鉱72のFeOおよびCの少なくとも1種以上の成分濃度を連続測定する。 The product sintered ore 72 is transported by the transport conveyor 76 to the blast furnace 82. An infrared analyzer 80 is provided on the transport conveyor 76 that transports the product sintered ore 72. The infrared analyzer 80 performs a measurement process. In the measurement step, the infrared analyzer 80 is used to continuously measure the concentration of at least one or more of FeO and C of the product sintered ore 72.
 赤外線分析計80は、0.5~50.0μmの範囲内の波長の赤外線を成品焼結鉱72に照射して、成品焼結鉱72からの反射光を受光する。成品焼結鉱72に含まれるFeOの分子振動は、照射された赤外線の固有の波長成分を吸収するので、FeOは反射赤外線に固有の波長成分を付与する。Cのような単原子分子の結晶構造も赤外線の照射によって振動し始め、反射赤外線に固有の波長成分を付与する。このため、照射赤外線と反射赤外線とを分析することで成品焼結鉱72におけるFeOおよびCの成分濃度を測定できる。 The infrared analyzer 80 irradiates the product sintered ore 72 with infrared light having a wavelength in the range of 0.5 to 50.0 μm to receive the reflected light from the product sintered ore 72. Since the molecular vibration of FeO contained in the product sintered ore 72 absorbs the inherent wavelength component of the irradiated infrared radiation, the FeO imparts an inherent wavelength component to the reflected infrared radiation. The crystal structure of monoatomic molecules such as C also begins to vibrate upon irradiation with infrared light, and imparts a unique wavelength component to the reflected infrared light. For this reason, the component concentration of FeO and C in the product sintered ore 72 can be measured by analyzing the irradiation infrared radiation and the reflection infrared radiation.
 赤外線分析計80は、例えば、1分間に128回の頻度で20以上の波長の赤外線を照射して、成品焼結鉱72に反射された反射光を受光する。このように短時間に赤外線を照射、受光できるので、赤外線分析計80は、搬送コンベア76によって搬送される成品焼結鉱72の成分濃度をオンラインで連続測定できる。赤外線分析計80は、焼結原料の成分濃度を測定する分析装置の一例であり、赤外線分析計80に代えて、レーザーを測定対象に照射するレーザー分析計、中性子を測定対象に照射する中性子分析計、または、マイクロ波を測定対象に照射するマイクロ波分析計を用いてもよい。 The infrared analyzer 80 emits infrared light of 20 or more wavelengths, for example, at a frequency of 128 times per minute to receive the reflected light reflected by the product sintered ore 72. Thus, since infrared rays can be emitted and received in a short time, the infrared analyzer 80 can continuously measure the concentration of the component of the product sintered ore 72 transported by the transport conveyor 76 online. The infrared analyzer 80 is an example of an analyzer for measuring the concentration of components of the sintering raw material, and instead of the infrared analyzer 80, a laser analyzer that irradiates a laser to the measurement object, a neutron analysis that irradiates neutron to the measurement object It is also possible to use a meter or a microwave analyzer that irradiates the object to be measured with microwaves.
 粒径5mm超の成品焼結鉱72は、搬送コンベア76によって高炉82に搬送され、高炉原料として高炉に装入される。一方、粒径5mm以下の返鉱74は、搬送コンベア78によって原料供給部20の配合槽28に搬送される。 The product sintered ore 72 having a particle size of more than 5 mm is transported by the transport conveyor 76 to the blast furnace 82 and charged into the blast furnace as blast furnace raw material. On the other hand, the return ore 74 having a particle diameter of 5 mm or less is transported by the transport conveyor 78 to the blending tank 28 of the raw material supply unit 20.
 成品焼結鉱72は、破砕機50によって破砕された焼結鉱が冷却され、篩分けされたものであるので、成品焼結鉱72と破砕機50によって破砕された焼結鉱および返鉱74は同じ成分濃度の焼結鉱である。このため、赤外線分析計80を、冷却機60と篩分け装置70の間に設けてもよく、搬送コンベア78に設けてもよい。冷却機60と篩分け装置70の間に赤外線分析計80を設けた場合には、測定工程では冷却後の焼結鉱の成分濃度を測定する。搬送コンベア78に赤外線分析計80を設けた場合には、測定工程では返鉱74の成分濃度を測定する。 Since the product sinter ore 72 is obtained by cooling and sintering the sinter ore crushed by the crusher 50, the sinter ore 74 returned from the product sinter ore 72 and the crusher 50 is used. Is a sintered ore of the same component concentration. For this reason, the infrared analyzer 80 may be provided between the cooler 60 and the sieving device 70, or may be provided on the transport conveyor 78. When the infrared analyzer 80 is provided between the cooler 60 and the sieving device 70, the component concentration of the sintered ore after cooling is measured in the measurement step. When the infrared ray analyzer 80 is provided on the transport conveyor 78, the concentration of the component of the return ore 74 is measured in the measurement process.
 本実施形態において、成品焼結鉱72の粒径および返鉱74の粒径は、篩によって篩分けられる粒径を意味し、例えば、粒径5mm超とは、目開き5mmの篩を用いて篩上に篩分けされる粒径であり、粒径5mm以下とは、目開き5mmの篩を用いて篩下に篩分けされる粒径である。成品焼結鉱72および返鉱74の粒径の各値は、あくまで一例であり、この値に限定するものではない。 In the present embodiment, the particle size of the product sintered ore 72 and the particle size of the return ore 74 mean the particle size to be sieved by a sieve, for example, a particle size of more than 5 mm means using a sieve with an aperture of 5 mm. The particle size to be sieved on a sieve, and the particle size of 5 mm or less is the particle size to be sieved under a sieve using a sieve with an aperture of 5 mm. Each value of the particle size of the product sintered ore 72 and return ore 74 is just an example, and is not limited to this value.
 本実施形態に係る焼結鉱の製造方法は、パレット台車の進行速度を調整するパレット台車速度の調整工程を有する。パレット台車速度の調整工程では、例えば、測定工程で測定された成品焼結鉱72のFeO濃度を用いてパレット台車の進行速度が調整される。 The method of manufacturing sintered ore according to the present embodiment includes the pallet carriage speed adjustment step of adjusting the traveling speed of the pallet carriage. In the pallet carriage speed adjusting step, for example, the advancing speed of the pallet carriage is adjusted using the FeO concentration of the product sintered ore 72 measured in the measurement step.
 成品焼結鉱72のFeO濃度が高いことは、成品焼結鉱72にマグネタイトが多く残留していることを示しており、このことから、焼結の反応温度が高く、焼結ケーキが高温になっていることが予測される。このため、当該焼結ケーキを粉砕し冷却機60で冷却しても、冷却機60出側の上限温度以下に焼結鉱を冷却できず、これにより、冷却機60の異常停止や、冷却機60より下流側の設備の故障などの設備トラブルを招く可能性がある。 The high FeO concentration of the product sintered ore 72 indicates that a large amount of magnetite remains in the product sintered ore 72, which indicates that the reaction temperature for sintering is high and the temperature of the sintered cake is high. It is predicted that Therefore, even if the sinter cake is crushed and cooled by the cooler 60, the sintered ore can not be cooled below the upper limit temperature of the outlet of the cooler 60, whereby the abnormal stop of the cooler 60, the cooler There is a possibility that equipment problems such as breakdown of equipment downstream of 60 may occur.
 このため、パレット台車の進行速度ごとに焼結鉱のFeO濃度と冷却機60出側の焼結鉱温度との対応関係を予め把握し、冷却機60の出側の上限温度を超えるFeO濃度の管理値を予め定めておく。パレット台車の調整工程では、成品焼結鉱72のFeO濃度が管理値よりも上昇し、上記対応関係から算出される冷却機60出側の焼結鉱温度が上限温度を超えると予測される場合に、パレット台車の進行速度を調整して、パレット台車の進行速度を遅くする。パレット台車の進行速度を遅くすると、冷却機60で冷却される時間が長くなるので、冷却機60出側の焼結鉱の温度は低くなる。このように、冷却機60出側の焼結鉱の温度を下げることができるので、冷却機60の異常停止や、冷却機60より下流側の設備の故障などの設備トラブルの発生を抑制できる。 Therefore, the correspondence relationship between the FeO concentration of sintered ore and the sintered ore temperature on the outlet side of the cooler 60 is grasped in advance for each traveling speed of the pallet carriage, and the FeO concentration exceeding the upper limit temperature on the outlet side of the cooler 60 The management value is set in advance. In the adjustment process of the pallet carriage, when the FeO concentration of the product sintered ore 72 rises above the control value, and it is predicted that the sintered ore temperature on the outlet side of the cooler 60 calculated from the above correspondence exceeds the upper limit temperature In addition, adjust the traveling speed of the pallet cart and slow the traveling speed of the pallet cart. When the traveling speed of the pallet carriage is slowed, the time for cooling by the cooler 60 becomes longer, so the temperature of the sintered ore on the outlet side of the cooler 60 becomes lower. As described above, since the temperature of sintered ore on the outlet side of the cooler 60 can be lowered, occurrence of facility trouble such as abnormal stop of the cooler 60 or failure of facilities on the downstream side of the cooler 60 can be suppressed.
 上記例では、測定工程で成品焼結鉱72のFeO濃度を連続測定し、成品焼結鉱72のFeO濃度が管理値よりも上昇し、上記対応関係から算出された冷却機60出側の焼結鉱温度が上限温度を超える場合に、パレット台車の進行速度を調整する例を示したが、測定工程ではFeO濃度に代えて、成品焼結鉱72のC濃度を測定してもよい。焼結鉱のC濃度と冷却機60出側の焼結鉱温度との対応関係を予め把握し、冷却機60の出側の上限温度を超えるC濃度の管理値を予め定めておき、C濃度が管理値よりも上昇した場合にパレット台車の進行速度を遅くする。これは焼結機幅方向の温度が不均一になってCが未燃焼となり、これによりC濃度が高くなったものであり、焼成されていない焼結鉱が排出されていることを示している。このため、パレット台車の進行速度を遅くして焼結機上でCを完全燃焼させ、冷却機60内でのCの燃焼による冷却機60の異常停止や、冷却機60より下流側の設備内でのCの燃焼などによる設備トラブルの発生を抑制できる。 In the above example, the FeO concentration of the product sintered ore 72 is continuously measured in the measurement step, and the FeO concentration of the product sintered ore 72 is higher than the control value, and the baking on the outlet side of the cooler 60 calculated from the correspondence relationship Although the example which adjusts the advancing speed of a pallet trolley | bogie is shown when the consolidation temperature exceeds upper limit temperature, it may replace with FeO concentration and you may measure C density | concentration of product sinter 72 in a measurement process. The correspondence between the C concentration of sintered ore and the temperature of the sintered ore on the outlet side of the cooler 60 is grasped beforehand, and the control value of the C concentration exceeding the upper limit temperature on the outlet side of the cooler 60 is determined in advance. Slows the traveling speed of the pallet truck when it rises above the control value. This indicates that the temperature in the width direction of the sintering machine becomes uneven and C is unburned, thereby increasing the C concentration, indicating that unfired sintered ore is discharged. . For this reason, the traveling speed of the pallet carriage is reduced to completely burn C on the sintering machine, and abnormal stop of the cooler 60 due to the combustion of C in the cooler 60 or equipment in the downstream side of the cooler 60 It is possible to suppress the occurrence of equipment problems due to the combustion of C and the like.
 本実施形態に係る焼結鉱の製造方法は、測定工程で測定された成品焼結鉱72のFeOおよびCの少なくとも1種以上の成分濃度を用いて焼結原料の凝結材の配合量を調整する配合量の調整工程をさらに有してもよい。例えば、成品焼結鉱72のFeO濃度が管理値よりも上昇し、焼結反応温度が高いことが予測される場合であっても、配合量の調整工程によって凝結材の配合量を少なくすることで、焼結の反応温度を下げることができる。焼結の反応温度を下げた後には、パレット台車速度の調整工程で遅くしたパレット台車の進行速度を戻すことができるので、パレット台車の進行速度を遅くしたことによる焼結鉱の生産性の低下を抑制できる。凝結材の配合量を調整することで焼結の反応温度の変動を抑制できれば、焼結鉱のFeO濃度の変動が抑制され、焼結鉱の品質が高くなる。 In the method for producing a sintered ore according to the present embodiment, the concentration of at least one of FeO and C of the product sintered ore 72 measured in the measurement step is used to adjust the blending amount of the coagulating material of the sintering raw material You may further have the adjustment process of the compounding quantity. For example, even if it is predicted that the FeO concentration of the product sintered ore 72 is higher than the control value and the sintering reaction temperature is expected to be high, the blending amount of the coagulating material should be reduced by the blending amount adjusting process. The reaction temperature of sintering can be lowered. After lowering the reaction temperature of sintering, it is possible to return the advancing speed of the pallet carriage which was slowed down in the adjustment process of pallet carriage speed, and therefore the productivity of sintered ore decreases by slowing the advancing speed of the pallet carriage. Can be suppressed. If the fluctuation of the reaction temperature of sintering can be suppressed by adjusting the compounding amount of the coagulating material, the fluctuation of the FeO concentration of the sintered ore is suppressed, and the quality of the sintered ore becomes high.
 本実施形態に係る焼結鉱の製造方法は、測定工程で測定された焼結鉱のFeOおよびCの少なくとも1種以上の成分濃度を用いて、気体燃料および酸素の少なくとも一方の吹込み量を調整する吹込み量の調整工程を有してもよい。例えば、焼結鉱のFeO濃度が管理値よりも上昇し、焼結反応温度が高いことが予測される場合であっても、吹込み量の調整工程によって気体燃料および酸素の少なくとも一方の吹込み量を少なくすることで、焼結の反応温度の高温保持時間を短くすることができる。焼結の反応温度の高温保持時間を短くした後には、パレット台車速度の調整工程で遅くしたパレット台車の進行速度を戻すことができるので、パレット台車の進行速度を遅くしたことによる生産性の低下を抑制できる。気体燃料および酸素の少なくとも一方の吹込み量を調整することで焼結の反応温度変動を抑制できれば、焼結鉱のFeO濃度の変動も抑制され、焼結鉱の品質も高くなる。 The method for producing a sintered ore according to the present embodiment uses the concentration of at least one or more of FeO and C of the sintered ore measured in the measurement step to inject at least one of the gaseous fuel and the oxygen. You may have the adjustment process of the blowing amount to adjust. For example, even if it is predicted that the FeO concentration of the sinter is higher than the control value and the sintering reaction temperature is expected to be high, at least one of the gaseous fuel and oxygen is injected by the adjusting step of the injection amount. By reducing the amount, the high temperature holding time of the reaction temperature of sintering can be shortened. After shortening the high temperature holding time of the sintering reaction temperature, it is possible to return the advancing speed of the pallet carriage that was slowed down in the pallet carriage speed adjustment process, so the productivity declines because the traveling speed of the pallet carriage is slowed down. Can be suppressed. If the reaction temperature fluctuation of the sintering can be suppressed by adjusting the injection amount of at least one of the gaseous fuel and oxygen, the fluctuation of the FeO concentration of the sintered ore is also suppressed, and the quality of the sintered ore becomes high.
 本実施形態において、原料供給部20の配合槽22、24、25、26、28から各原料を切り出して配合し、搬送コンベア30で焼結原料とし、ドラムミキサー36で造粒された焼結原料にする例を示したが、これに限られない。例えば、鉄含有原料12、CaO含有原料16、MgO含有原料17および返鉱74を配合した焼結原料をドラムミキサー36に投入し、焼結原料に水を添加して造粒し、造粒時後半に凝結材18を投入することで、表層に凝結材18を存在させた炭材外装粒子を、造粒された焼結原料として用いてもよい。 In the present embodiment, each raw material is cut out and compounded from the mixing tanks 22, 24, 25, 26, 28 of the raw material supply unit 20, and is used as the sintering raw material by the transport conveyor 30 and sintered raw material granulated by the drum mixer 36. An example is shown, but it is not limited to this. For example, a sintering raw material containing iron-containing raw material 12, CaO-containing raw material 16, MgO-containing raw material 17 and return ore 74 is charged into drum mixer 36, water is added to the sintering raw material and granulated, By charging the coagulating material 18 in the second half, the carbonaceous material exterior particles in which the coagulating material 18 is present in the surface layer may be used as a granulated sintering material.
 鉄含有原料12、CaO含有原料16、MgO含有原料17および返鉱74と、凝結材18の一部とを配合した焼結原料をドラムミキサー36に投入し、当該焼結原料に水を添加して造粒し、造粒時後半に凝結材18の残部を投入することで、造粒した焼結原料の表層に凝結材18を存在させた炭材外装粒子を、造粒された焼結原料として用いてもよい。凝結原料に水を添加して造粒時後半に配合する凝結材としては、粉コークスや無煙炭が使用される。 A sintered raw material containing iron-containing raw material 12, CaO-containing raw material 16, MgO-containing raw material 17 and return ore 74, and a part of coagulating material 18 is charged into drum mixer 36, and water is added to the sintered raw material. The granulated carbon raw material is formed by granulating the carbonaceous material exterior particles in which the coagulating material 18 is present in the surface layer of the granulated sintering raw material by charging the remaining portion of the coagulating material 18 in the second half of the granulation. It may be used as Powdered coke and anthracite are used as a coagulating material to which water is added and which is mixed in the second half of granulation.
 ドラムミキサー36を複数設けた場合であって、表層に凝結材18を存在させた炭材外装粒子を用いる場合においては、一部または全部の凝結材18を最後のドラムミキサー36の後半に投入し、焼結原料を上述した方法でドラムミキサー36に投入することで表層に凝結材18を存在させた炭材外装粒子を造粒してもよい。さらに、ドラムミキサー36を複数用いた場合に焼結原料に添加する水は、1台目のドラムミキサー36で全ての水を添加してもよく、1台目のドラムミキサー36で一部の水を添加し、残部を他のドラムミキサー36で添加してもよい。 In the case where a plurality of drum mixers 36 are provided, and in the case of using a carbon material exterior particle in which the coagulating material 18 is present in the surface layer, a part or all of the coagulating material 18 is introduced in the second half of the last drum mixer 36 The carbonaceous material exterior particles in which the coagulating material 18 is present in the surface layer may be granulated by charging the sintering material into the drum mixer 36 by the method described above. Furthermore, when a plurality of drum mixers 36 are used, all the water may be added to the sintering raw material by the first drum mixer 36, and part of the water may be added by the first drum mixer 36. May be added, and the remainder may be added by another drum mixer 36.
 本実施形態において、原料供給部20の配合槽22、24、25、26、28から各原料を切り出して配合し、搬送コンベア30で焼結原料とし、ドラムミキサー36で造粒された焼結原料にする例を示したが、これに限られない。例えば、鉄含有原料12、MgO含有原料17および返鉱74を配合した焼結原料をドラムミキサー36に投入し、焼結原料に水を添加して造粒し、造粒時後半にCaO含有原料16および凝結材18を投入することで、表層にCaO含有原料16および凝結材18を存在させた造粒粒子を、造粒された焼結原料として用いてもよい。 In the present embodiment, each raw material is cut out and compounded from the mixing tanks 22, 24, 25, 26, 28 of the raw material supply unit 20, and is used as the sintering raw material by the transport conveyor 30 and sintered raw material granulated by the drum mixer 36. An example is shown, but it is not limited to this. For example, a sintered raw material containing iron-containing raw material 12, MgO-containing raw material 17 and return ore 74 is charged into drum mixer 36, water is added to the sintered raw material and granulated, CaO-containing raw material in the latter half of granulation Granulated particles in which the CaO-containing raw material 16 and the coagulating material 18 are present in the surface layer may be used as the granulated sintering raw material by charging 16 and the coagulating material 18.
 鉄含有原料12の一部と、MgO含有原料17および返鉱74と、凝結材18とを配合した焼結原料をドラムミキサー36に投入し、焼結原料に水を添加して造粒し、造粒時後半に鉄含有原料12の残部と、CaO含有原料16とを投入することで、表層に鉄含有原料12とCaO含有原料16を存在させた造粒粒子を、造粒された焼結原料として用いてもよい。 A sinter material containing a part of the iron-containing material 12, the MgO-containing material 17, the reversion ore 74, and the coagulating material 18 is charged into a drum mixer 36, water is added to the sinter material, and granulation is carried out Sintered granulated particles in which iron-containing raw material 12 and CaO-containing raw material 16 are present in the surface layer by charging the remainder of iron-containing raw material 12 and CaO-containing raw material 16 in the latter half of granulation You may use as a raw material.
 鉄含有原料12、返鉱74およびMgO含有原料17と、CaO含有原料16の一部を配合した焼結原料をドラムミキサー36に投入し、焼結原料に水を添加して造粒し、造粒時後半にCaO含有原料16の残部および凝結材18を配合することで、表層にCaO含有原料16および凝結材18を存在させた造粒粒子を、造粒された焼結原料として用いてもよい。 A sintered raw material containing iron-containing raw material 12, return ore 74 and MgO-containing raw material 17 and a part of CaO-containing raw material 16 is charged into drum mixer 36, water is added to the sintered raw material, and granulation is carried out By blending the remaining portion of the CaO-containing raw material 16 and the coagulating material 18 in the latter half of the grain time, granulated particles in which the CaO-containing raw material 16 and the coagulating material 18 are present in the surface layer are used as granulated sintering raw material Good.
 鉄含有原料12、返鉱74およびMgO含有原料17と、CaO含有原料16の一部と、凝結材18の一部とを配合した焼結原料をドラムミキサー36に投入し、焼結原料に水を添加して造粒し、造粒時後半にCaO含有原料16の残部および凝結材18の残部を配合することで、表層にCaO含有原料16および凝結材18を存在させた造粒粒子を、造粒された焼結原料として用いてもよい。 A sintering raw material in which iron containing raw material 12, returned ore 74 and MgO containing raw material 17, a part of CaO containing raw material 16 and a part of coagulating material 18 are mixed is supplied to drum mixer 36, and water is used as a sintering raw material. Is added and granulated, and the remaining portion of the CaO-containing raw material 16 and the remaining portion of the coagulating material 18 are compounded in the latter half of the granulation to obtain granulated particles in which the CaO-containing raw material 16 and the coagulating material 18 are present in the surface layer You may use as a granulated sintering raw material.
 ドラムミキサー36を複数用いた場合であって、表層にCaO含有原料16またはCaO含有原料16と凝結材18を存在させた造粒粒子を造粒する場合においては、一部または全部のCaO含有原料16および凝結材18を最後のドラムミキサー36の後半に投入し、焼結原料を上述した方法でドラムミキサー36に投入することで表層にCaO含有原料16および凝結材18を存在させた造粒粒子を造粒してもよい。 In the case of using a plurality of drum mixers 36 and granulating particles in which the CaO-containing raw material 16 or the CaO-containing raw material 16 and the coagulating material 18 are present in the surface layer, part or all of the CaO-containing raw material Granulated particles in which the CaO-containing raw material 16 and the coagulating material 18 are present in the surface layer by charging the sintering material 16 and the coagulating material 18 in the latter half of the last drum mixer 36 and injecting the sintering material into the drum mixer 36 by the method described above May be granulated.
 本実施形態において、原料供給部20の配合槽22、24、25、26、28から各原料を切り出して配合し、搬送コンベア30で焼結原料とする例を示したが、これに限られない。例えば、原料供給部20の配合槽22、24、25、26、28から切り出される各原料の一部を直接搬送コンベア30でドラムミキサー36に搬送し、残部を搬送コンベア30とは異なる搬送コンベアで高速撹拌装置に搬送して撹拌処理した後、ドラムミキサー36またはペレタイザー等の造粒機で造粒し、必要であれば乾燥機で乾燥した後に、搬送コンベア30または搬送コンベア38に投入してもよい。撹拌処理された後にドラムミキサー36またはペレタイザー等の造粒機で造粒することなく直接搬送コンベア30に投入してもよい。さらに、高速撹拌装置で撹拌処理する前に破砕工程および篩工程の少なくとも一方を設けてもよい。ドラムミキサー36を複数用いる場合は、どのドラムミキサー間の搬送コンベアに投入してもよい。 In the present embodiment, each raw material is cut out and mixed from the mixing tanks 22, 24, 25, 26, 28 of the raw material supply unit 20, and the example of using the transport conveyor 30 as the sintering raw material is shown. . For example, a portion of each raw material cut out from the mixing tanks 22, 24, 25, 26 and 28 of the raw material supply unit 20 is directly conveyed to the drum mixer 36 by the conveyance conveyor 30, and the remaining portion is conveyed by a conveyance conveyor different from the conveyance conveyor 30. After being conveyed to a high-speed stirring device and stirred, it is granulated by a granulator such as a drum mixer 36 or a pelletizer, dried if necessary by a drier, and then charged into the conveyer 30 or conveyer 38 Good. After being subjected to the stirring process, it may be directly fed to the conveyer 30 without being granulated by a drum mixer 36 or a granulator such as a pelletizer. Furthermore, at least one of the crushing step and the sieving step may be provided before the stirring process with the high speed stirring device. In the case where a plurality of drum mixers 36 are used, they may be fed to a conveyer between any drum mixers.
 さらに、測定工程における赤外線分析計80は1つに限らず、複数設けてもよい。複数の赤外線分析計80を用いて、焼結鉱のFeOおよびCの少なくとも1種以上の成分濃度を測定してもよい。 Furthermore, the infrared analyzer 80 in the measurement process is not limited to one, and a plurality of infrared analyzers may be provided. A plurality of infrared analyzers 80 may be used to measure the concentration of at least one or more of FeO and C of sinter.
 実施例、比較例ともに図1に示した焼結鉱製造装置10を用いて焼結鉱を製造した。実施例、比較例ともに、搬送コンベア76に赤外線分析計80を設置し、焼結鉱の成分濃度としてFeO濃度を1時間当たり18回の頻度で連続測定し、測定されたFeO濃度を用いて、焼結鉱のFeO濃度がFeO管理値になるように凝結材である粉コークスの配合率を調整して焼結鉱を5時間製造した。実施例、比較例ともに1時間経過後にC濃度が高いダストを含む原料パイルに変更した。 The sintered ore was manufactured using the sintered ore manufacturing apparatus 10 shown in FIG. In both the embodiment and the comparative example, the infrared analyzer 80 is installed on the conveyer 76, and the FeO concentration is continuously measured at a frequency of 18 times per hour as the component concentration of the sintered ore, and the measured FeO concentration is used. Sintered ore was manufactured for 5 hours by adjusting the blending ratio of the coke breeze which is the condensation material so that the FeO concentration of the sintered ore becomes the control value of FeO. Both of the example and the comparative example were changed to a raw material pile containing dust with a high C concentration after 1 hour.
 実施例は、焼結機パレット台車の進行速度を調整するパレット台車速度の調整工程を有する例であり、比較例は、パレット台車速度の調整工程を有さない例である。従って、焼結鉱のFeO濃度が高くなった場合に、実施例ではパレット台車の進行速度を遅くするとともに粉コークスの配合率を調整して対応し、比較例ではパレット台車の進行速度を調整せず、粉コークスの配合率を調整した。 The embodiment is an example having a pallet carriage speed adjusting step of adjusting the advancing speed of the sintering machine pallet carriage, and the comparative example is an example not having the pallet carriage speed adjusting step. Therefore, when the FeO concentration in the sinter is increased, the traveling speed of the pallet carriage is slowed in the embodiment and the blending ratio of the coke breeze is adjusted to cope with it, and the traveling speed of the pallet carriage is adjusted in the comparative example. First, the blending ratio of coke breeze was adjusted.
 図2は、実施例における焼結鉱のFeO濃度(質量%)、パレット台車の進行速度(m/min)、粉コークスの配合率(質量%)および冷却機出側の焼結鉱温度(℃)の時間変化を示すグラフである。図3は、比較例における焼結鉱のFeO濃度(質量%)、パレット台車の進行速度(m/min)、粉コークスの配合率(質量%)および冷却機出側の焼結鉱温度(℃)の時間変化を示すグラフである。 FIG. 2 shows the FeO concentration (mass%) of the sintered ore, the advancing speed of the pallet carriage (m / min), the blending ratio of powdered coke (mass%), and the sintered ore temperature (° C.) of the cooler in the example. It is a graph which shows the time change of. FIG. 3 shows the FeO concentration (mass%) of sintered ore, the advancing speed of pallet truck (m / min), the blending ratio of powdered coke (mass%), and the sintered ore temperature (° C.) of the cooler in the comparative example. It is a graph which shows the time change of.
 赤外線分析計80によって焼結鉱のFeO濃度を連続測定する測定工程を有するので、原料パイル変更後に焼結鉱のFeO濃度がFeO管理値よりも上昇していることを早期に検出できる。FeO濃度の上昇から焼結の反応温度が高くなり、冷却機出側の焼結鉱の温度が上限温度を超えることが検出されたので、実施例では、パレット台車速度の調整工程で焼結機パレット台車の進行速度を遅くするとともに粉コークス配合率を調整した。この結果、冷却機出側の焼結鉱温度の上昇が抑制され、冷却機出側上限温度を超過することなく操業できた。粉コークスの配合率の調整によりFeO濃度が管理値に戻った後は、パレット台車の進行速度を元の速度に戻した。これにより、焼結鉱の生産性の低下も抑制できた。 Since there is a measurement step of continuously measuring the FeO concentration of the sintered ore by the infrared analyzer 80, it is possible to detect early that the FeO concentration of the sintered ore is higher than the FeO control value after changing the raw material pile. Since it was detected that the reaction temperature of sintering increased from the rise of FeO concentration and the temperature of the sintered ore on the outlet side of the cooler exceeded the upper limit temperature, in the embodiment, the sintering machine is used in the pallet truck speed adjustment process. The traveling speed of the pallet truck was slowed and the proportion of coke breeze was adjusted. As a result, the rise in the temperature of the sintered ore on the outlet side of the cooler was suppressed, and the operation could be performed without exceeding the upper limit temperature on the outlet of the cooler. After the FeO concentration returned to the control value by adjusting the blending ratio of the coke breeze coke, the traveling speed of the pallet truck was returned to the original speed. Thereby, the fall of productivity of sinter could also be suppressed.
 このように、本実施形態に係る焼結鉱の製造方法では、焼結鉱のFeO濃度を連続測定し、焼結鉱のFeO濃度の上昇を検出した時点で、焼結機パレット台車の進行速度を調整する。これにより、冷却機出側の焼結鉱温度の上昇を抑制でき、冷却機やその後の設備負荷が軽減され、設備故障などの装置トラブルを回避できることが確認された。 Thus, in the method for producing sintered ore according to the present embodiment, the FeO concentration of the sintered ore is continuously measured, and when the increase of the FeO concentration of the sintered ore is detected, the advancing speed of the sintering machine pallet carriage Adjust the As a result, it has been confirmed that the rise in the temperature of the sintered ore on the outlet side of the cooler can be suppressed, the load on the cooler and the subsequent facilities can be reduced, and equipment troubles such as equipment failure can be avoided.
 比較例においても焼結鉱のFeO濃度の上昇から冷却機出側の焼結鉱の温度が上限温度を超えることが検出されたので、粉コークスの配合率の調整を行った。しかしながら、冷却機出側の焼結鉱温度が低下するのは、粉コークスの配合率を調整してから既に焼結機に装入された原料が入れ替わるのに要する約30分が経過した後であり、その前に焼結鉱の温度は、冷却機出側の上限温度を超過して上昇し、この結果、冷却機が異常停止するに至った。冷却機およびパレット台車を停止した後は、焼結機の温度が低下しているので、焼結原料の粉コークスの配合率を高くし、パレット台車の進行速度を遅くした状態で焼結鉱の生産を再開している。 Also in the comparative example, it was detected that the temperature of the sintered ore on the outlet side of the cooler exceeded the upper limit temperature from the increase of the FeO concentration of the sintered ore, so the proportion of coke breeze was adjusted. However, the temperature of the sintered ore at the outlet of the cooling machine is lowered after about 30 minutes required for replacing the material already charged in the sintering machine after adjusting the blending ratio of the coke breeze. Before that, the temperature of the sintered ore rose above the upper limit temperature on the outlet side of the cooler, resulting in abnormal shutdown of the cooler. After stopping the cooling machine and the pallet carriage, the temperature of the sintering machine is lowered, so the proportion of coke breeze of the sintering raw material is increased, and the advancing speed of the pallet carriage is slowed down. Production has resumed.
 実施例、比較例ともに、焼結鉱のFeO濃度の上昇を検出し、冷却機出側の焼結鉱の温度が上限温度を超えることが検出された時点において、焼結の反応温度を上昇させるC濃度の高いダストを含む原料パイル由来の焼結原料は、焼結機パレット台車のパレットに装入されている。比較例では粉コークスの配合率を調整するが、当該配合率の調整が反映されるのは、これから原料供給部から切り出されて配合される焼結原料からであって、すでにパレットに装入された焼結原料には反映されない。このため、比較例では、焼結の反応温度の上昇によって焼結鉱の温度が上昇し、焼結鉱の温度が冷却機出側の上限温度を超えた。この結果、冷却機の異常停止という設備トラブルが発生した。 In both the example and the comparative example, the increase in the FeO concentration of the sinter is detected, and the reaction temperature of the sinter is increased when it is detected that the temperature of the sinter at the outlet of the cooler exceeds the upper temperature limit. The sintering raw material derived from the raw material pile containing dust with a high C concentration is loaded on the pallet of the sintering machine pallet carriage. In the comparative example, the blending ratio of powdered coke is adjusted, but the adjustment of the blending ratio is reflected from the sintered raw material cut out from the raw material supply portion and blended from this, and is already loaded into the pallet. It is not reflected in the sintering material. For this reason, in the comparative example, the temperature of the sintered ore rose due to the increase of the reaction temperature of sintering, and the temperature of the sintered ore exceeded the upper limit temperature on the outlet side of the cooler. As a result, equipment trouble such as abnormal stop of the cooler occurred.
 実施例では、焼結鉱のFeO濃度の上昇を検出し、冷却機出側の焼結鉱の温度が上限温度を超えることが検出された時点でパレット台車速度の調整工程でパレット台車の進行速度を遅くする。これにより、すでにパレットに装入された焼結原料から冷却機で冷却される時間を長くできるので、当該焼結原料の焼結の反応温度が上昇したとしても冷却機出側における焼結鉱の温度上昇を抑制でき、これにより、冷却機の異常停止や設備故障などのトラブルを抑制できる。本実施例では搬送コンベア76に設置した赤外線分析計80の測定頻度を1時間当たり18回とした例を示したが、これより低い測定頻度でもパレット台車速度を調整することによる効果は得られる。測定頻度は、焼結機に装入された原料が入れ替わるのに要する約30分に1回以上とすればよい。 In the embodiment, when an increase in FeO concentration of sintered ore is detected, and it is detected that the temperature of the sintered ore on the outlet side of the cooler exceeds the upper limit temperature, the advancing speed of the pallet To slow down. This makes it possible to prolong the time for cooling by the cooler from the sintering material already charged in the pallet, so that even if the reaction temperature of the sintering of the sintering material rises, the amount of sintered ore at the outlet of the cooler The temperature rise can be suppressed, and thereby problems such as abnormal stop of the cooling machine and equipment failure can be suppressed. In this embodiment, an example is shown in which the measurement frequency of the infrared analyzer 80 installed on the transport conveyor 76 is 18 times per hour, but the effect of adjusting the pallet truck speed can be obtained even if the measurement frequency is lower than this. The measurement frequency may be at least once every about 30 minutes required to replace the raw material charged in the sintering machine.
 このように、本実施形態に係る焼結鉱の製造方法では、測定工程によって焼結鉱のFeO濃度を連続測定することで焼結の反応温度の上昇を早期に検出し、パレット台車速度の調整工程でパレット台車の進行速度を遅くする。これにより、例えば、C濃度が高いダストを含む原料パイルに変更することで焼結の反応温度が上昇した場合であっても、冷却機出側の焼結鉱の温度上昇を抑制でき、冷却機の異常停止や焼結機の設備故障などの設備トラブルを抑制できることが確認された。 As described above, in the method for producing sinter ore according to the present embodiment, an increase in the reaction temperature of sintering is promptly detected by continuously measuring the FeO concentration of the sinter ore by the measurement step, and the pallet carriage speed is adjusted. Slow down the traveling speed of the pallet cart in the process. Thereby, for example, even if the reaction temperature of sintering rises by changing to a raw material pile containing dust with a high C concentration, the temperature rise of sintered ore on the outlet side of the cooler can be suppressed, and the cooler It has been confirmed that equipment problems such as abnormal stop of the equipment and equipment failure of the sintering machine can be suppressed.
 10 焼結鉱製造装置
 11 ヤード
 12 鉄含有原料
 14 搬送コンベア
 16 CaO含有原料
 17 MgO含有原料
 18 凝結材
 20 原料供給部
 22 配合槽
 24 配合槽
 25 配合槽
 26 配合槽
 28 配合槽
 30 搬送コンベア
 34 水
 36 ドラムミキサー
 38 搬送コンベア
 40 焼結機
 42 焼結原料供給装置
 44 パレット台車
 46 点火炉
 48 ウインドボックス
 50 破砕機
 60 冷却機
 70 篩分け装置
 72 成品焼結鉱
 74 返鉱
 76 搬送コンベア
 78 搬送コンベア
 80 赤外線分析計
 82 高炉
DESCRIPTION OF SYMBOLS 10 sintered ore manufacturing apparatus 11 yards 12 iron containing raw material 14 conveyer 16 CaO containing raw material 17 MgO containing raw material 18 coagulating material 20 raw material supply part 22 compounding tank 24 compounding tank 25 compounding tank 26 compounding tank 28 compounding tank 30 conveying conveyor 34 water 36 Drum Mixer 38 Conveying Conveyor 40 Sintering Machine 42 Sintered Raw Material Supply Device 44 Pallet Carriage 46 Ignition Furnace 48 Windbox 50 Crusher 60 Cooling Machine 70 Sieving Device 72 Products Sintered Ore 74 Returning Ore 76 Conveying Conveyor 78 Conveying Conveyor 80 Infrared analyzer 82 blast furnace

Claims (5)

  1.  鉄含有原料、CaO含有原料および凝結材が配合された焼結原料に水を添加して造粒し、焼結機で焼結して焼結鉱を製造する焼結鉱の製造方法であって、
     前記焼結鉱の成分濃度を連続測定する測定工程と、
     前記測定工程で測定された前記焼結鉱の成分濃度を用いて、パレット台車の進行速度を調整するパレット台車速度の調整工程と、
     を有する、焼結鉱の製造方法。
    Water is added to a sintering raw material containing an iron-containing raw material, a CaO-containing raw material and a coagulating agent, water is granulated, and it is sintered in a sintering machine to produce a sintered ore. ,
    Measuring continuously measuring the concentration of the component of the sintered ore;
    Adjusting the speed of the pallet carriage using the concentration of the component of the sintered ore measured in the measurement step; adjusting the speed of the pallet carriage;
    A method of producing sintered ore, comprising
  2.  前記焼結原料には、さらにMgO含有原料およびSiO含有原料の少なくとも一方が配合される、請求項1に記載の焼結鉱の製造方法。 The method for producing sintered ore according to claim 1, wherein at least one of a MgO-containing raw material and an SiO 2 -containing raw material is further blended into the sintered raw material.
  3.  前記測定工程では、前記焼結鉱のFeOおよびCの少なくとも1種以上の成分濃度を連続測定する、請求項1または請求項2に記載の焼結鉱の製造方法。 The method for producing sintered ore according to claim 1 or 2, wherein the concentration of at least one or more of FeO and C of the sintered ore is continuously measured in the measurement step.
  4.  前記焼結鉱の成分濃度を用いて、焼結原料の凝結材の配合量を調整する配合量の調整工程をさらに有する、請求項1から請求項3の何れか一項に記載の焼結鉱の製造方法。 The sintered ore according to any one of claims 1 to 3, further comprising an adjusting step of the compounding amount for adjusting the compounding amount of the coagulating material of the sintering raw material using the component concentration of the sintered ore. Manufacturing method.
  5.  前記焼結機では、気体燃料および酸素の少なくとも一方を吹込んで焼結原料を焼結し、
     前記焼結鉱の成分濃度を用いて、前記気体燃料および前記酸素の少なくとも一方の吹込み量を調整する吹込み量の調整工程をさらに有する、請求項1から請求項4の何れか一項に記載の焼結鉱の製造方法。
    In the sintering machine, at least one of gaseous fuel and oxygen is blown to sinter the sintering raw material,
    The method according to any one of claims 1 to 4, further comprising an adjusting step of an injection amount adjusting an injection amount of at least one of the gaseous fuel and the oxygen using a component concentration of the sinter ore. The manufacturing method of the sinter described above.
PCT/JP2018/038576 2017-10-25 2018-10-17 Sintered ore manufacturing method WO2019082749A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP18869498.8A EP3670685B1 (en) 2017-10-25 2018-10-17 Method for manufacturing sintered ore
BR112020007400-4A BR112020007400B1 (en) 2017-10-25 2018-10-17 METHOD FOR MANUFACTURING SINTERIZED ORE
CN201880069110.XA CN111263822A (en) 2017-10-25 2018-10-17 Method for producing sintered ore
JP2019551040A JP6665972B2 (en) 2017-10-25 2018-10-17 Sinter production method
KR1020207011596A KR102434776B1 (en) 2017-10-25 2018-10-17 Manufacturing method of sintered ore
PH12020550475A PH12020550475A1 (en) 2017-10-25 2020-04-22 Method for manufacturing sintered ore

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-206136 2017-10-25
JP2017206136 2017-10-25

Publications (1)

Publication Number Publication Date
WO2019082749A1 true WO2019082749A1 (en) 2019-05-02

Family

ID=66246414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/038576 WO2019082749A1 (en) 2017-10-25 2018-10-17 Sintered ore manufacturing method

Country Status (8)

Country Link
EP (1) EP3670685B1 (en)
JP (1) JP6665972B2 (en)
KR (1) KR102434776B1 (en)
CN (1) CN111263822A (en)
BR (1) BR112020007400B1 (en)
PH (1) PH12020550475A1 (en)
TW (1) TWI687636B (en)
WO (1) WO2019082749A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2022354355A1 (en) * 2021-09-29 2024-02-22 Jfe Steel Corporation Method for producing agglomerated raw material
WO2023210411A1 (en) * 2022-04-28 2023-11-02 Jfeスチール株式会社 Granulation device, method for producing granulation sintering raw material, and method for producing sintered ore

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52109416A (en) * 1976-03-10 1977-09-13 Sumitomo Metal Ind Ltd Control method for cooling temperature of sintered ore
JPS5544784B2 (en) 1974-07-26 1980-11-14
JPS569336A (en) * 1979-07-05 1981-01-30 Sumitomo Metal Ind Ltd Operation of sintering machine
JPS5616628A (en) * 1979-07-17 1981-02-17 Kawasaki Steel Corp Controlling method for sintering of ore or the like
JPS60262926A (en) 1984-06-08 1985-12-26 Kawasaki Steel Corp Method for controlling concentration of component in product sintered ore
JP2009280837A (en) * 2008-05-19 2009-12-03 Nippon Steel Corp Method for controlling quality of sintered ore
WO2018151024A1 (en) * 2017-02-16 2018-08-23 Jfeスチール株式会社 Method for manufacturing sintered ore

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5848609A (en) * 1981-09-16 1983-03-22 Sumitomo Metal Ind Ltd Monitoring method for progressing condition of sintering
WO2004055224A1 (en) * 2002-12-17 2004-07-01 Jfe Steel Corporation Process for producing sintering feedstock and apparatus therefor
EP1847536A1 (en) 2006-04-20 2007-10-24 Prodimed, S.A. Synthesis and uses of pyroglutamic acid derivatives
KR100833008B1 (en) * 2006-12-18 2008-05-27 주식회사 포스코 Producing apparatus for sintered ore having easily seaching surface complexing of raw material
JP2011042870A (en) * 2009-07-21 2011-03-03 Kobe Steel Ltd Apparatus and method for producing reduced iron using alkali-containing iron-making dust as raw material
JP5544784B2 (en) * 2009-08-17 2014-07-09 Jfeスチール株式会社 Sintering machine
JP5947277B2 (en) * 2013-12-11 2016-07-06 Primetals Technologies Japan株式会社 Partially reduced iron production equipment
CN103697699B (en) * 2013-12-26 2015-03-11 中冶长天国际工程有限责任公司 Method and system for controlling sintering end point
CN104977316A (en) * 2014-04-03 2015-10-14 宝钢不锈钢有限公司 Method for distinguishing trend of content of FeO in sinter

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5544784B2 (en) 1974-07-26 1980-11-14
JPS52109416A (en) * 1976-03-10 1977-09-13 Sumitomo Metal Ind Ltd Control method for cooling temperature of sintered ore
JPS569336A (en) * 1979-07-05 1981-01-30 Sumitomo Metal Ind Ltd Operation of sintering machine
JPS5616628A (en) * 1979-07-17 1981-02-17 Kawasaki Steel Corp Controlling method for sintering of ore or the like
JPS60262926A (en) 1984-06-08 1985-12-26 Kawasaki Steel Corp Method for controlling concentration of component in product sintered ore
JP2009280837A (en) * 2008-05-19 2009-12-03 Nippon Steel Corp Method for controlling quality of sintered ore
WO2018151024A1 (en) * 2017-02-16 2018-08-23 Jfeスチール株式会社 Method for manufacturing sintered ore

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3670685A4

Also Published As

Publication number Publication date
BR112020007400B1 (en) 2023-03-21
EP3670685A4 (en) 2020-07-15
BR112020007400A2 (en) 2020-09-29
EP3670685B1 (en) 2022-03-09
TW201923299A (en) 2019-06-16
CN111263822A (en) 2020-06-09
JPWO2019082749A1 (en) 2019-12-12
JP6665972B2 (en) 2020-03-13
PH12020550475A1 (en) 2021-03-08
KR20200057745A (en) 2020-05-26
TWI687636B (en) 2020-03-11
EP3670685A1 (en) 2020-06-24
KR102434776B1 (en) 2022-08-19

Similar Documents

Publication Publication Date Title
KR102290001B1 (en) Manufacturing method of sintered ore
WO2019082749A1 (en) Sintered ore manufacturing method
JP6519036B2 (en) Blast furnace operation method
JP6988712B2 (en) Sintered ore manufacturing method
JP6294152B2 (en) Manufacturing method of granular metallic iron
JP6866856B2 (en) Sintered ore manufacturing method and blast furnace operation method
JP6874780B2 (en) Sintered ore manufacturing method
JP6734370B2 (en) Raw material processing apparatus and raw material processing method
JP6489092B2 (en) Sinter ore manufacturing method and sintered ore manufacturing equipment line
JP2015199978A (en) High furnace operation method using reduced iron
JP6763412B2 (en) Sintered ore manufacturing method
JP5463571B2 (en) Method of agglomerating iron raw material and its agglomeration equipment
KR910010093B1 (en) Method for controlling of the particle size for sintering coke dust
JP2024048561A (en) Method for producing sintered ore
JP2012188714A (en) Production method for sintered ore
JP2023142850A (en) Production method of sintered ores and sintered ores production device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18869498

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019551040

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018869498

Country of ref document: EP

Effective date: 20200318

ENP Entry into the national phase

Ref document number: 20207011596

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020007400

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112020007400

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200414