JPS5848609A - Monitoring method for progressing condition of sintering - Google Patents

Monitoring method for progressing condition of sintering

Info

Publication number
JPS5848609A
JPS5848609A JP14674281A JP14674281A JPS5848609A JP S5848609 A JPS5848609 A JP S5848609A JP 14674281 A JP14674281 A JP 14674281A JP 14674281 A JP14674281 A JP 14674281A JP S5848609 A JPS5848609 A JP S5848609A
Authority
JP
Japan
Prior art keywords
sintering
raw materials
neutron
moisture
neutrons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14674281A
Other languages
Japanese (ja)
Inventor
Hayaharu Ishimoto
石本 早治
Yoichi Tamura
洋一 田村
Kiyotaka Inada
稲田 清崇
Shun Sato
駿 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP14674281A priority Critical patent/JPS5848609A/en
Publication of JPS5848609A publication Critical patent/JPS5848609A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating
    • C22B1/20Sintering; Agglomerating in sintering machines with movable grates
    • C22B1/205Sintering; Agglomerating in sintering machines with movable grates regulation of the sintering process

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

PURPOSE:To control sintering speed adequately and to improve the hot reduction powdering index and cold strength of sintered ore in the stage of producing sintered ore with a Dwight-Loyd sintering machine by detecting the moisture in sintering raw materials by making use of neutrons. CONSTITUTION:Pallets 3 of a Dwight-Lloyd sintering machine are rotated by means of a sprocket 31. Bedding ore and moisture-controlled sintering raw materials are loaded onto the pallets from a bedding hopper 33 and a charging hopper 34 to a uniform thickness. The carbon materials in the sintering raw materials are ignited by an ignition furnace 35 and the heat is retained by a heat retaining furnace 36. Air is passed from the top to the bottom surfaces to sinter the raw materials. In this case, neutron moisture meters 2 consisting of neutron sources 21 in the lower parts of the pallets and neutron detectors 22 are disposed in the midway of the pallets 3. While the neutrons emitted from the sources 21 pass through the sintering raw material layers, the neutorons are converted to thermal neutrons according to the varying contents of the moisture contained in the raw materials; therefore the moisture in the sintering raw materials is detected precisely by measuring the transmittance of the neutrons through the sintering raw materials with the detectors 22, by which the sintering operations are controlled optimally.

Description

【発明の詳細な説明】 本発明は焼成中の焼結原料中における水分全中性子を利
用して検出することにより、原料の焼結進行状況を監視
する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for monitoring the progress of sintering of a raw material by detecting moisture in the raw material during firing using total neutrons.

一般に広く採用されているドワイト・ロイド焼結機にお
いては、無端状に配列さnた多数のパレットを駆動しつ
つ、これに給鉱端にて順次焼結原料を供給し、その表面
に点火し、パレットの移動域下に配した集風ボックスに
て風を吸引し、MLfパレット上の焼結原料表面から下
面側に吹抜けさせることにより、原料の表面から下方に
向けて焼成を進行させ、パレットが排鉱端に達する直前
に原料の焼成を完了し、排鉱端から焼結鉱を1−次次の
冷却装置に向けて送出せしめてゆくようになっている。
The Dwight Lloyd sintering machine, which is widely used in general, drives a large number of pallets arranged in an endless manner, sequentially supplies sintering raw materials at the feed end, and ignites the surface of the pallets. The air is sucked in by the air collection box placed under the moving area of the pallet and blows through from the surface of the sintered raw material on the MLf pallet to the lower surface side, so that the firing progresses downward from the surface of the raw material, and the pallet The firing of the raw material is completed just before the sintered ore reaches the ore discharge end, and the sintered ore is sent out from the ore discharge end toward the primary cooling device.

パレットが排鉱端に達する前に焼成が完了しない場合は
未焼結の状態のまま、パレットから排出されることとな
り、返鉱として再び焼結工程を繰り返すこととなって、
留歩が低下し、また焼成の進行が早過ぎるときけ焼成に
ばらつきを生じ易く、返鉱が増す外、発熱量が大きくな
ってパレットの焼損を生じ易いなどの不都合がある0そ
こで焼結工程において焼成完了位置に影響を与えるパレ
ットの移動速度、集風ボックスの負圧等を適正に制御す
る必要があるが、このためにはその前提として焼結進行
状況を正確に把握しなけnばならない。このような焼結
進行状況の把握方法として、従来次のような方法が採ら
れていた。即ち、パレット上における焼結充填層中に−
又は複数イ―所で熱電対を差し込み、焼結充填層中の垂
直及び水平方向温度分布から焼結充填層中における燃焼
前線、即ちパレット移動方向において、焼結原料が略1
00℃に加熱された点を結ぶ線を推測して焼結進行状況
を監視する方法、或いは集風ボックスからの排ガス温度
、風量、或いはガス分析情報等に基いて燃焼前線、或い
は燃焼帯、即ち焼結原料が1000℃以上に加熱されて
いる@域を検出し、焼結進行状況を監視する方法等が提
案されている。
If sintering is not completed before the pallet reaches the discharge end, the ore will be discharged from the pallet in an unsintered state, and the sintering process will be repeated again as return ore.
If the retention rate decreases, and if the sintering progresses too quickly, it tends to cause unevenness in the sintering, and not only does the amount of return ore increase, but also the amount of heat generated increases, making it easy to burn out the pallet.Therefore, the sintering process It is necessary to appropriately control the moving speed of the pallet, the negative pressure of the air collection box, etc., which affect the firing completion position, but as a prerequisite for this, it is necessary to accurately understand the sintering progress status. . Conventionally, the following methods have been used to monitor the progress of sintering. That is, in the sintered packing layer on the pallet -
Or, by inserting thermocouples at multiple locations, it is determined from the vertical and horizontal temperature distribution in the sintered packed bed that approximately 1 sintered raw material is in the combustion front in the sintered packed bed, that is, in the pallet movement direction.
A method of monitoring the sintering progress by estimating a line connecting points heated to 00°C, or a method of monitoring the combustion front or combustion zone based on the exhaust gas temperature, air volume, or gas analysis information from the air collecting box. A method has been proposed for detecting an area where the sintering raw material is heated to 1000° C. or higher and monitoring the progress of sintering.

しかし上述の如き方法はいずれもオンラインにて連続的
に実施することが雌かしく、また焼結進行状況の把握に
ばらつきがあるなどの欠点があった。
However, all of the above-mentioned methods have drawbacks such as being difficult to carry out continuously on-line and the progress of sintering being difficult to grasp.

本発明者等はパレット上における焼結原料の燃焼m線の
進行と、これに関連する要素、特に水分との関係につき
、実験、@究を行った結果、次のような知見を得た。即
ち、一般に焼結原料は水分含有量を一定(略5〜7%程
度)に調整された状態でパレット上に供給されるが、焼
結を完了した時点では水分は略零となり、そしてその中
間の過程では第1図(イ)、(ロ)に示す如くに変化す
る。第1図(イ)は焼結充填層に対する点火、即ち焼成
開始から焼成完了迄の間の焼成推移状況を示す模式図、
%1図(切は焼結充填層の各部の垂直断面における水分
含有量の分布を示すグラフであり、横軸に水分のを、縦
軸に層厚方向の位置をとって示しである。このグラフか
ら明らかな如く、パレットに装入された焼結原料の水分
含有量が5%であるとし、焼成を開始すると、燃焼帯B
1焼成完了帯Cでは水分含有量が略零となり、一方この
領域で気化した水分は焼結原料の上面から下方に吹き抜
ける風によって未燃焼帯Aを通る過程でその一部が凝縮
する結果、未燃焼帯Aの水分含有量が5%から8%程度
に上昇する(第1図(イ)のb位置に対応する第1図(
→のグラフ参照)。焼成が進むに従って、燃焼帯B、焼
成完了帯Cの領域、即ち水分量の領域は漸次拡大されて
ゆくが、未燃焼帯Aの水分含有′kkは略8%程で飽和
状態となってそれ以上には上昇せず、水分含有量8%の
水[IK維持されたままその領域が縮小されてゆくこと
となり(第1図(イ)のす、c、d位置に対応する第1
図(ロ)のグラフ参照)、結局垂直断面において見れば
、パレットの移動に従って全体としての水分含有量が低
減してゆくこととなる。そして燃焼帯Bがパレット七底
面に迄達し、未燃焼帯Aが写となると、水分含有量も垂
直断面の略全体に亘って略零となる。従って上述した結
果から、逆にパレット上の燃焼原料についてその点火位
置以降の各部について垂直11g1而中の水分量を検出
し得れば、この水分量から、燃焼帯Bの燃焼前線位置、
挟置すれば未燃焼@域の厚さを検知することが可能であ
る。そして本発明者等は上述した如き焼結原料内の水分
含有量は中性子水分計を用いることによって正確に、し
かも連続的に効率よく測定することかり能であるとの結
論を得た。
The present inventors conducted experiments and research on the relationship between the progression of combustion m-rays of the sintering raw material on a pallet and related factors, particularly moisture, and as a result, the following findings were obtained. In other words, sintering raw materials are generally supplied onto pallets with their moisture content adjusted to a constant level (approximately 5 to 7%), but when sintering is completed, the moisture content is approximately zero, and the In the process, changes occur as shown in Figures 1 (a) and (b). FIG. 1(a) is a schematic diagram showing the ignition of the sintered packed bed, that is, the firing progress from the start of firing to the completion of firing;
Figure 1 (cut) is a graph showing the distribution of moisture content in a vertical cross section of each part of the sintered packed layer, with the horizontal axis showing the moisture content and the vertical axis showing the position in the layer thickness direction. As is clear from the graph, assuming that the moisture content of the sintering raw material charged into the pallet is 5%, when firing starts, combustion zone B
1. In the completed firing zone C, the moisture content becomes almost zero, and on the other hand, some of the moisture vaporized in this area condenses during the process of passing through the unburned zone A by the wind blowing downward from the top surface of the sintered raw material. The moisture content in combustion zone A increases from 5% to about 8% (Fig. 1 (corresponding to position b in Fig. 1 (a))
→See graph). As firing progresses, the regions of combustion zone B and completed firing zone C, that is, the moisture content region, gradually expand, but the moisture content 'kk of unburned zone A reaches a saturated state at approximately 8%, and remains unchanged. However, the water content of 8% water [IK] is maintained and the area is reduced (1
(Refer to the graph in Figure (B)), when viewed in a vertical section, the overall moisture content decreases as the pallet moves. When the combustion zone B reaches the bottom of the pallet and the unburned zone A becomes visible, the moisture content becomes approximately zero over almost the entire vertical section. Therefore, from the above results, conversely, if we can detect the moisture content in the vertical 11g1 for each part of the combustion material on the pallet after the ignition position, from this moisture content, we can determine the combustion front position of combustion zone B,
If it is sandwiched, it is possible to detect the thickness of the unburned @ area. The inventors of the present invention have concluded that the moisture content in the sintered raw material as described above can be accurately, continuously and efficiently measured using a neutron moisture meter.

本発明はかかる事情に鑑みなされたものであって、その
目的とするところは、焼成中の焼結原料の水分含有量を
検出することによってパレット上における焼結原料の燃
焼前線位置を正確に測定し得、焼成速度の精細な制御が
可能であり、熱間還元粉化指数、冷間強度に優れた焼結
鉱が得られるようKした焼結進行状況監視方法を提供す
るにある。
The present invention was made in view of the above circumstances, and its purpose is to accurately measure the position of the combustion front of the sintered raw material on the pallet by detecting the moisture content of the sintered raw material during firing. It is an object of the present invention to provide a method for monitoring the progress of sintering, which allows precise control of the sintering rate, and which is capable of producing sintered ore with excellent hot reduction powdering index and cold strength.

本発明に係る焼結状況監視方法は焼成中の焼結充填層の
上下に中性子源及び中性子検出器を対置し、前記中性子
源から発せられ、前記焼結充填層を透過した中性子を中
性子検出器によって捉え、中性子検出器の出力に基いて
焼結充填層中の燃焼IIg線の進行位置を検出すること
を特徴とする。
A sintering status monitoring method according to the present invention includes placing a neutron source and a neutron detector above and below a sintered packed layer during firing, and detects neutrons emitted from the neutron source and transmitted through the sintered packed layer into a neutron detector. It is characterized by detecting the advancing position of the combustion IIg line in the sintered packed bed based on the output of the neutron detector.

次に本発明に係る焼結進行状況監視方法(以下本発明方
法という)のw、埋について説明する。一般に高速中性
子は水素原子により減速され、熱中性子となる性質を有
しており、従って水素原子を含む物質、例えば水分を含
む物質に向けて高速中性子を放射すると、水素原子の多
、少に応じて、換言すれば水分の多、少に!t5じて物
質中で熱中性子に変換される量が増、減し、結果的に物
質中を透過する高速中性子数が減、増することとなり、
高速中性子の透過率を測定することにより物質中での水
分量を検知し得ることとなるのである。上記の原理を図
に示したものが第2図である。第2図は本発明方法の原
理を示す説明図であ訃図中1は監視対象物たる焼結充填
層、2は中性子水分計を示している。中性子水分計2は
中性子源21゜中性子検出器22及び表示部28からな
り、中性子#21.中性子検出器22ij:焼結充填層
1の上下に対idされており、中性子源21としては続
−241/Be (アメリシウム−241/ベリリクム
)。
Next, the steps of the sintering progress monitoring method according to the present invention (hereinafter referred to as the method of the present invention) will be explained. In general, fast neutrons are slowed down by hydrogen atoms and have the property of becoming thermal neutrons. Therefore, when fast neutrons are emitted toward a substance containing hydrogen atoms, such as a substance containing water, the In other words, whether there is a lot of water or a little water! At t5, the amount converted to thermal neutrons in the material increases or decreases, and as a result, the number of fast neutrons that pass through the material decreases or increases.
By measuring the transmittance of fast neutrons, it is possible to detect the amount of water in a substance. FIG. 2 is a diagram illustrating the above principle. FIG. 2 is an explanatory diagram showing the principle of the method of the present invention. In the figure, 1 indicates a sintered packed bed which is an object to be monitored, and 2 indicates a neutron moisture meter. The neutron moisture meter 2 consists of a neutron source 21, a neutron detector 22, and a display section 28, and includes a neutron #21. Neutron detectors 22ij: are arranged above and below the sintered packed layer 1, and the neutron source 21 is made of Z-241/Be (Americium-241/Berylicum).

2S2Cf(カルフォニクム252)等が、また中性子
検出器22としては比例計数管等をパラフィン内に沈め
たものが用いられる。中性子源21からはこれを構成す
るAm−241から放射されるα線がBeに衝突した1
妖の核反応によって発生した高速中性子が焼結充填層1
に向けて発射されるが、その一部は途中水素原子との衝
突によって減速され熱中性子となり、他部は焼結充填層
1を透過して中性子検出器22に達する。中性子検出器
22はパラフィン中に沈められているため、ここに達し
た高速中性子はパラフィン中の水素原子によってその殆
んどが熱中性子に変化せしめられ、この熱中性子数が計
数される。この熱中性子の中性子検出器22による計数
率、換言すれば透過高速中性子数を求めることによって
焼結充填層1内の水分含有量を検出し得ることとなる。
2S2Cf (Calfonicum 252) or the like, and as the neutron detector 22, a proportional counter or the like submerged in paraffin is used. From the neutron source 21, alpha rays emitted from the Am-241 that make up the source collided with Be1.
Fast neutrons generated by a mysterious nuclear reaction form a sintered packed layer 1.
Some of the neutrons are decelerated by collisions with hydrogen atoms and become thermal neutrons, and the other part passes through the sintered packed bed 1 and reaches the neutron detector 22. Since the neutron detector 22 is submerged in paraffin, most of the fast neutrons that reach the detector are converted into thermal neutrons by the hydrogen atoms in the paraffin, and the number of thermal neutrons is counted. By determining the counting rate of thermal neutrons by the neutron detector 22, in other words, the number of transmitted fast neutrons, the water content in the sintered packed bed 1 can be detected.

次に本発明方法の具体的な実施状態につき説明する。第
3図は本発明方法を適用したドワイト・ロイド焼結機の
模式的側面図、第4図は同じく一部切欠して示す部分拡
大側面図であり、図中3はパレットを示している。パレ
ット3は駆動スプロケット31.遊妨スプロケット32
及びこれら両スプログット31.32間に配したガイド
レール等によって構成される無端軌道に相接した状態で
連接配置されており、駆動スプロケツ)31によって白
抜矢符方向に向けて両スプロケツ) 31.32にわた
って周回回動せしめられるようにしである。
Next, a concrete implementation state of the method of the present invention will be explained. FIG. 3 is a schematic side view of a Dwight Lloyd sintering machine to which the method of the present invention is applied, and FIG. 4 is a partially enlarged side view with a portion cut away. In the figure, 3 indicates a pallet. The pallet 3 has a driving sprocket 31. Idle sprocket 32
The two sprockets 31 and 32 are connected in contact with an endless track formed by a guide rail, etc. arranged between the two sprockets 31 and 32, and the drive sprockets 31 move the two sprockets in the direction of the white arrow. It is designed so that it can be rotated around 32 degrees.

躯前スプロケット側、即ち給鉱端側にはパレット3の移
動域上方に臨んで床敷ホッパ33.装入ホッパ34、点
火炉35及び保熱炉36が遊動スプロケット32側、即
ち排鉱端側に向けて上記の順序で配設され、またパレッ
ト3の移#域下には点火炉35の直下から排鉱端近傍に
至る闇に多数の集風ボックス37が連接して配置されて
いる。
On the front sprocket side, that is, on the ore feeding end side, facing above the moving area of the pallet 3, there is a bedding hopper 33. The charging hopper 34, the ignition furnace 35, and the heat retention furnace 36 are arranged in the above order toward the floating sprocket 32 side, that is, toward the ore discharge end side, and directly below the ignition furnace 35 under the transfer area of the pallet 3. A large number of air collection boxes 37 are arranged in series in the darkness from the to the vicinity of the ore discharge end.

谷パレット3は第4図に示す如く、縦、積大々格子状に
組合せた補強リプ3a、3bにて形成した矩ハチ状をな
すパレットフレーム上面に多数のグレートパー3Cを配
置dすると共に、両側には所要高さにサイドプレー)3
dを立設し、また両側下部には左、右に張り出して車輪
3e、3eを設けて構成されており、車輪3e、3eを
無端軌道を形成するガイドレール上に載架せしめた状態
で配設されている。パレット3上には給鉱端側において
前記床敷ホッパ33、装入ホッパ34かラフレートパー
3c上に床敷鉱、焼結原料が均一な高さに装入され、点
火炉35を通過する過程でその表面に点火され、保熱炉
36で保熱される。一方各集凧ボックス37からはこれ
らに連接された排風機(図示せず)による吸引力をパレ
ット3の下面に作用させ、焼結原料上面から下方に向け
て風を通流させ、焼結原料をその表面から下方に向けて
進行させ、パレット3が排鉱端に達する直前に焼結原料
の焼成を完了させ、焼結鉱として次の冷却工程に同は送
出せしめてゆくようにしである。
As shown in FIG. 4, the valley pallet 3 has a large number of gray pallets 3C disposed on the upper surface of a rectangular bee-shaped pallet frame formed by reinforcing lips 3a and 3b combined in a vertical and vertical grid pattern. Side play at the required height on both sides) 3
d is installed upright, and wheels 3e, 3e are provided at the bottom of both sides, protruding to the left and right, and the wheels 3e, 3e are placed on guide rails forming an endless track. It is set up. On the pallet 3, the bedding hopper 33, the charging hopper 34 or the rough plate par 3c are charged with bedding ore and sintering raw materials at a uniform height on the ore feeding end side, and in the process of passing through the ignition furnace 35. The surface is ignited, and the heat is retained in the heat retention furnace 36. On the other hand, a suction force from an air blower (not shown) connected to each kite collection box 37 is applied to the lower surface of the pallet 3, causing air to flow downward from the upper surface of the sintering raw material. The sintering material is advanced downward from its surface, and the sintering raw material is completely fired just before the pallet 3 reaches the ore discharge end, and the sintered ore is sent to the next cooling process as sintered ore.

そして本発明方法を実施する装置においては給砿端から
排鉱端に至るパレット3の移動域下に1又は複数箇所(
実施例においては2箇所)に、・ノでレット3の移動域
下であって、相互に連接されている集風ボックス37,
370口縁部間に臨んで中性子源21が、またパレット
3の移動域上に中性子検出器22が夫々焼結機の機枠等
の不動の部材に装着されている。中性子源21は多量の
水素原子を含み、遮閉体としての機能を備えるアクリル
樹脂製の上方が開放された浅い収納容器23内に固定さ
れており、容器23の下面に作動杆を連結したエアシリ
ンダ24の操作によってアクリル樹脂製の筒体25内に
[嵌せしめられた状態で筒体25の上端から出没せしめ
られるようにしである。一方中性子検出器22は前記中
性子源21と対向する位置において支持板26下に図示
しないパラフィン浴中に沈められた状態で、前記中性子
源21と600■程度離反せしめられて配設されている
In the apparatus for carrying out the method of the present invention, one or more locations (
In the embodiment, there are air collection boxes 37, which are connected to each other and are located below the moving area of the let 3 (in two places).
A neutron source 21 is mounted between the edges of the pallet 370, and a neutron detector 22 is mounted above the moving area of the pallet 3 on immovable members such as the frame of the sintering machine. The neutron source 21 contains a large amount of hydrogen atoms and is fixed in a shallow storage container 23 made of acrylic resin and having an open top that functions as a shield. By operating the cylinder 24, it can be made to protrude and retract from the upper end of the cylindrical body 25 while being fitted into the acrylic resin cylinder 25. On the other hand, the neutron detector 22 is disposed under a support plate 26 at a position facing the neutron source 21, being immersed in a paraffin bath (not shown) and separated from the neutron source 21 by about 600 cm.

而してエアシリンダ24を操作し、中性子源21を筒体
25の上方に突き出すと、筒体25によるシールド効果
が解かれ発生した高速中性子はパレット3の下方から焼
結充填層1に投射され、一部は途中で熱中性子に変換さ
れ、残部が焼結充填層lを透過して中性子検出器22に
達し、その周囲のパラフィンにて熱中性子に変換された
状態で中性子検出器22に計数され焼結充填層1の水分
含有量が検出されることとなる。
When the air cylinder 24 is operated to push the neutron source 21 above the cylinder 25, the shielding effect of the cylinder 25 is released and the generated high-speed neutrons are projected onto the sintered packed layer 1 from below the pallet 3. , some of them are converted into thermal neutrons on the way, and the rest passes through the sintered packed bed l and reaches the neutron detector 22, and is converted into thermal neutrons by the surrounding paraffin and counted by the neutron detector 22. As a result, the moisture content of the sintered packed layer 1 is detected.

なお中性子源2.1から発せられた高速中性子は途中、
パレット3の補強リプ3a、3b、グレートパー3Cを
透過し、或いはこれらと全く関係なく空中を透過して焼
結充填層lに達することとなるが、金属材料による減衰
の程度は僅かであり、予めこれらによる減資の程度を実
験的に求めておくことにより容易に補正することがり能
である。
In addition, the fast neutrons emitted from neutron source 2.1 are
It passes through the reinforcing lips 3a, 3b and the great par 3C of the pallet 3, or passes through the air completely unrelated to these and reaches the sintered packed layer l, but the degree of attenuation by the metal material is small; By experimentally determining the degree of capital reduction due to these factors in advance, it is possible to easily correct the amount.

次に本発明方法についての試験結果について説明する。Next, test results regarding the method of the present invention will be explained.

第5図(イ)は焼結充填層内の燃焼帯の推移を示すグラ
フであり、横軸に点火時から焼成完了点の時間(分)を
、また縦軸に焼結充填層表面からの深さく、)をとって
示しである。第5図(→は焼結充填層の点火から焼成完
了点における中性子計数率を示すグラフであり、横軸に
点火時から焼成完了点の時間(分)を、縦軸に計数率(
X10”cpm )をとって示しである。なお第5図(
イ)中縦線領域は燃焼帯を示している。また同グラフ中
破線は焼成の進行に伴って加熱されるパレットフレーム
が略100℃を呈する位置を結んだもの(以下−前線F
FPという)を示している。
Figure 5 (a) is a graph showing the transition of the combustion zone in the sintered packed bed. The depth is shown by ). Figure 5 (→ is a graph showing the neutron count rate from the ignition of the sintered packed bed to the firing completion point, the horizontal axis shows the time (minutes) from the ignition to the firing completion point, and the vertical axis shows the counting rate (
X10"cpm). In addition, Fig. 5 (
b) The middle vertical line area indicates the combustion zone. In addition, the broken line in the same graph connects the positions where the pallet frame, which is heated as firing progresses, exhibits a temperature of approximately 100°C (hereinafter - front F).
(referred to as FP).

而して両グラフを対比してみると明らかなように、焼成
の進行に従って第5図(イ)に示す如く焼結充填層の上
面から燃焼前線迄の距離が大きくなるが、これに応じて
中性子の透過率、即ち計数率が上昇し、燃焼前線がパレ
ット底面に達した時に計数率が上限に達し、以後は燃焼
帯の推移と無関係に一定値を示していることが解る。即
ち燃焼前線と、計数率とは上記両クリアから明らかな如
く、点火直後の一定期間であるWゾーンを除いて、また
燃焼帯と計数率とは前記Wゾーン及び焼成終了の後にお
ける期間である2ゾーンとを除いて他の中間の期間たる
X、Yゾーンにおいてはいずれも相対応する関係を呈し
ている。X、Yゾーンは焼結充jlA層において燃焼帯
、焼成完了帯が漸増し、全体として垂直吋面内での水分
含有量は開城する期間であり、水分含有量と高速中性子
の計数率とが符号することは勿論、計数率はまた燃焼前
線(又は燃焼帯)の位置とも符号することを示している
Comparing both graphs, it is clear that as the firing progresses, the distance from the top surface of the sintered packed bed to the combustion front increases as shown in Figure 5 (a); It can be seen that the neutron transmittance, that is, the counting rate increases, and when the combustion front reaches the bottom of the pallet, the counting rate reaches its upper limit, and thereafter shows a constant value regardless of the transition of the combustion zone. That is, as is clear from the above two clears, the combustion front and the counting rate are the period after the W zone and the end of firing, except for the W zone which is a certain period immediately after ignition, and the combustion zone and the counting rate are the period after the W zone and the end of firing. Except for the two zones, the X and Y zones, which are intermediate periods, exhibit a corresponding relationship. The X and Y zones are periods in which the combustion zone and sintering completion zone gradually increase in the sinter-filled JlA layer, and the moisture content in the vertical plane as a whole is open, and the moisture content and the fast neutron count rate change. Of course, the count rate also indicates the position of the combustion front (or combustion zone).

なおWゾーンについては水分含有量が実質的に変化しな
いために燃焼前線(又は燃焼帯)と計数率とは相対応し
た関係を示していないが、計数率に適切な補正を施すこ
とによって燃焼前線位置を検出することは可能である。
Note that in the W zone, the combustion front (or combustion zone) and the counting rate do not show a corresponding relationship because the moisture content does not substantially change; however, by making appropriate corrections to the counting rate, the combustion front It is possible to detect the position.

以上の如く本発明方法にあっては、焼結充填層に含まれ
る水分を、高速中性子の透過の割合を、検出することに
よって検知し、これに基いて焼結充填層中の燃焼前線位
置を検出することとしているから、焼結充填層の焼成開
始時点から焼成を完了する迄の焼結進行状態を正確にし
かも連続的に把握することが出来、焼結鉱品質の向上が
図れ、また返鉱を低減せしめ得て歩留の大幅な向上も図
れるなど、本発EJ4は優れた効果を奏するものである
As described above, in the method of the present invention, moisture contained in the sintered packed bed is detected by detecting the transmission rate of fast neutrons, and based on this, the position of the combustion front in the sintered packed bed is determined. Since the sintering process is detected, it is possible to accurately and continuously grasp the sintering progress state from the start of firing of the sintered packed bed to the completion of firing, which improves the quality of the sintered ore and improves the quality of the sintered ore. The EJ4 produced by the present invention has excellent effects, such as being able to reduce the amount of ore and greatly improve the yield.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(イ)は焼結充填層の焼成推移状況を示す模式図
、第1図(o)は焼結充填層の各部の垂直断面における
水分含有量の分布を示すグラフ、第2図は本発明方法の
原理を示す説明図、第3図は本発明方法を適用したドワ
イト・ロイド焼結樟の模式的側面図、第4図は同じく一
部切欠して示す部分拡大側面図、第5図(イ)は焼結充
填層内の燃焼帯の推移を示すグラフ、第5図(ロ)は焼
結充填層の点火から焼成完了点における中性子計数率を
示すグラフである。 1・・・焼結充填層 2・・・中性子水分計 3・・・
パレット 21・・・中性子源 22・・・中性子検出
器31・・・駆動スプロケット 3T・・・遊動スプロ
ケット 33・・・床敷ホッパ 34・・・装入ホッパ
35・・・点火炉 36・・・保熱炉 37・・・集風
ボックス特 許 出 顕 人   住友金属工業株式会
社代理人 弁理士  河 野 登 犬
Figure 1 (a) is a schematic diagram showing the firing progress of the sintered packed bed, Figure 1 (o) is a graph showing the distribution of moisture content in the vertical cross section of each part of the sintered packed bed, and Figure 2 is An explanatory diagram showing the principle of the method of the present invention, FIG. 3 is a schematic side view of Dwight Lloyd sintered camphor to which the method of the present invention is applied, FIG. Figure (A) is a graph showing the transition of the combustion zone in the sintered packed bed, and Figure 5 (B) is a graph showing the neutron count rate from the ignition of the sintered packed bed to the point at which firing is completed. 1... Sintered packed bed 2... Neutron moisture meter 3...
Pallet 21... Neutron source 22... Neutron detector 31... Drive sprocket 3T... Idle sprocket 33... Bedding hopper 34... Charging hopper 35... Ignition furnace 36... Heat retention furnace 37...Air collection box patent Licensed by Akihito Sumitomo Metal Industries, Ltd. Patent attorney Noboru Kono Inu

Claims (1)

【特許請求の範囲】[Claims] 1、焼成中の焼結充填層の上下に中性子源及び中性子検
出器を対置し、前記中性子源から兜せらn1前記焼結充
填層を透過した中性子を中性子検出器によって捉え、中
性子検出器の出力に基いて焼結充填層中の燃焼jMl線
の進行位置を検出することを%徴とする焼結進行状況監
視方法。
1. A neutron source and a neutron detector are placed above and below the sintered packed layer during firing, and the neutrons transmitted from the neutron source through the sintered packed layer are captured by the neutron detector, and the output of the neutron detector is A method for monitoring the progress of sintering in which the progress position of the combustion jMl line in the sintered packed bed is detected based on the percentage.
JP14674281A 1981-09-16 1981-09-16 Monitoring method for progressing condition of sintering Pending JPS5848609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14674281A JPS5848609A (en) 1981-09-16 1981-09-16 Monitoring method for progressing condition of sintering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14674281A JPS5848609A (en) 1981-09-16 1981-09-16 Monitoring method for progressing condition of sintering

Publications (1)

Publication Number Publication Date
JPS5848609A true JPS5848609A (en) 1983-03-22

Family

ID=15414562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14674281A Pending JPS5848609A (en) 1981-09-16 1981-09-16 Monitoring method for progressing condition of sintering

Country Status (1)

Country Link
JP (1) JPS5848609A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3670685A4 (en) * 2017-10-25 2020-07-15 JFE Steel Corporation Sintered ore manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3670685A4 (en) * 2017-10-25 2020-07-15 JFE Steel Corporation Sintered ore manufacturing method

Similar Documents

Publication Publication Date Title
JPS59184808A (en) Method and device for inspecting article
UA82826C2 (en) Method and apparatus for analysis and sorting material flow
US4362939A (en) Method and apparatus for measurement of moisture
JPH0339241B2 (en)
JPS5848609A (en) Monitoring method for progressing condition of sintering
KR101921940B1 (en) Apparatus for measuring permeability and Sintering apparatus
WO2010125700A1 (en) Article carrying monitor
JPS5884930A (en) Method of controlling sintering speed
JPS6082624A (en) Detection of state of sintered raw material
Larson et al. Anomalous-X-Ray-Transmission Investigation of Neutron-Irradiated Copper: Comparison of Theory and Experiment
JPS63110284A (en) Measuring of amount of charged coal in coke oven
CN113758269B (en) Device and method for detecting width and burning rate of burning zone of sintering trolley on line
JP2009139330A (en) X-ray mass measurement device
JPH10332277A (en) Method for observing raw material filling layer in sintering machine
JPS5871436A (en) Air permeability measuring apparatus for sintered filling layer
JPS6132610B2 (en)
KR100896569B1 (en) An Apparatus for Controlling the Sub Gate in Sintering Facilities
JPS62265514A (en) Measuring method for earth discharge of shield driving machine
JP2001074674A (en) Neutron moisture meter and method for measuring moisture of iron manufacturing raw material
Freeman Variation in the lower zones of the Oxford Clay
JPS617450A (en) Method for measuring charging density, void ratio and coarse particle distribution of sintering compounded stock material
JPS6134120A (en) Sintering operation method in dl type sintering machine
KR101862149B1 (en) Apparatus for measuring permeability and Sintering apparatus
JPS5837135A (en) Production of sintered ore
JPS58115351A (en) Measuring method of packing degree of sintered bed