JPS58115351A - Measuring method of packing degree of sintered bed - Google Patents

Measuring method of packing degree of sintered bed

Info

Publication number
JPS58115351A
JPS58115351A JP56214289A JP21428981A JPS58115351A JP S58115351 A JPS58115351 A JP S58115351A JP 56214289 A JP56214289 A JP 56214289A JP 21428981 A JP21428981 A JP 21428981A JP S58115351 A JPS58115351 A JP S58115351A
Authority
JP
Japan
Prior art keywords
bed
filling
radioactive rays
measuring
pallet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56214289A
Other languages
Japanese (ja)
Inventor
Eiji Katayama
英司 片山
Nobuo Tsuchitani
槌谷 暢男
Yasunori Komehana
康典 米花
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP56214289A priority Critical patent/JPS58115351A/en
Publication of JPS58115351A publication Critical patent/JPS58115351A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/12Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the material being a flowing fluid or a flowing granular solid

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To grasp a packing condition of a bed quickly by an on-line system extending nearly all over the area in a width direction continuously, by measuring a packing degree of the bed of powdered and granular raw materials by the intensity of radioactive rays of elements around the radioactive rays passing through said bed. CONSTITUTION:A bed 2 is formed on a pallet 1 of an icinearator and an RI 3 emitting radioactive rays is provided at its lower part and then, said RI 3 is housed in a housing closed vessel 4 serving both as shelter of the radioactive rays for each surroundings. The radioactive rays from the RI 3 are damped by the bed 2 passing through of a gap 7 of the bottom part of the pallet 1 and damped rays are reached at each measuring machine 8A, 8B, 8C, and 8D and then, the intensity of the radioactive rays is measured. The packing condition of the bed is grasped quickly by an on-line system extending over nearly all over the area in a width direction continuously by measuring a packing degree of the powdered and granular body bed 2.

Description

【発明の詳細な説明】 本発明は焼結作業における焼結ベッドの充填度測定方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring the degree of filling of a sinter bed in a sintering operation.

一般に高炉用焼結鉱を製造するドワイトロイド式完結方
法においては、パレットに給鉱された粉粒体原料ベッド
(以下ベッドと称する)の表面のコークスを点火源とし
て強制通風によりベッド中J)コークスを燃焼させ、そ
の燃焼熱によ炒粉粒体原料を高温で焼結している。製造
された焼結鉱は尚炉原料として性状に良否があり、性状
の良好な焼結鉱を安定して製造することが焼結作業で蛾
も重要である。
Generally, in the Dwight Lloyd type completion method for producing sintered ore for blast furnaces, the coke in the bed is ignited by forced ventilation using the coke on the surface of a bed of granular material (hereinafter referred to as the bed) fed to a pallet as an ignition source. The combustion heat is used to sinter the fried powder granular raw material at high temperatures. The produced sintered ore has good or bad properties as a raw material for the furnace, and moths are also important in sintering work to stably produce sintered ore with good properties.

曳好な性状の焼結鉱を製造するには、便用する原料とそ
れらの配合が重要であるが、最終的には、ベッドの原料
の充填状態が重要となる。すなわち、充填状態がパレッ
トの長さ方向(ベッドの進行方向)と幅方向でなるべく
均一であること、あるいは全体として逼切な充填密度す
なわち適当な空隙率であることが性状の良好な焼結鉱を
安定して製造する条件である。
In order to produce sintered ore with good drawability, the raw materials to be used and their composition are important, but ultimately the filling state of the raw materials in the bed is important. In other words, in order to obtain sintered ore with good properties, the packing condition must be as uniform as possible in the length direction (the direction of bed movement) and the width direction of the pallet, or the overall packing density must be appropriate, that is, the porosity must be appropriate. These are conditions for stable production.

ベッドの充填状態は上記の如く良好な・焼結鉱を造るた
め不可欠な要件であるが、従来ベッドの充填状態を検知
することは次の如き条件により1峻であって、適当な方
法がなかった。
As mentioned above, the filling state of the bed is an essential requirement for producing good sintered ore, but conventionally it has been difficult to detect the filling state of the bed due to the following conditions, and there is no suitable method. Ta.

(イ)ベッドがパレットと共に茗に進行移動している。(a) The bed is moving along with the pallet.

(ロ)ベッドの1−厚は最大でも600m位であるから
充填状態の絶対値あるいは比較値ケ慣出するのが困峻で
ある。
(b) Since the maximum thickness of the bed is about 600 m, it is difficult to calculate the absolute value or comparative value of the filling state.

eウ  ベッド内にセンサーを挿入するとベッドの充填
状部が乱れ、焼結争件を悪化させるので、センサーの使
用ができない。
eC) Inserting a sensor into the bed disturbs the filling part of the bed and worsens the sintering problem, so the sensor cannot be used.

本発明の目的は上記従来技術の問題点を解決し、連続的
に幅方向のは埋全域にわ九って充填状態を乱すことなく
オンラインでベッドの充填状I!を迅速に把握できる焼
結ベッドの充填f測定方法を提供するにある。
An object of the present invention is to solve the above-mentioned problems of the prior art, and to continuously check the filling state of the bed on-line without disturbing the filling state by continuously filling the filling area in the width direction. The object of the present invention is to provide a method for measuring the filling f of a sintering bed, which can quickly determine the filling f of a sintered bed.

本発明の要旨とするところは次のとおりである。The gist of the present invention is as follows.

すなわち、パレット上に粉粒体原料を給鉱し蚊粉粒体原
料ベッドの表面より点火し強制吸引により焼結する粉粒
体の焼結方法にお込で、前記粉粒体原料ベッドを通過す
る放射線同位元素の放射線強度により前記粉粒体原料ベ
ッドの充填度を測定することを特徴とする焼結ベッドの
充填度測定方法である。
That is, the powder and granule raw material is fed onto a pallet, ignited from the surface of the mosquito powder and granule raw material bed, and sintered by forced suction. This is a method for measuring the degree of filling of a sintering bed, characterized in that the degree of filling of the powder raw material bed is measured based on the radiation intensity of a radioactive isotope.

放射性同位元素(以下、RIと称する)の放射線強度は
R1の位置と放射線測定機との距離による減衰とRIと
放射線測定機との間にある物質の遮蔽による減衰に影響
される。距離による減衰は次の(r)式で表わされる。
The radiation intensity of a radioisotope (hereinafter referred to as RI) is affected by attenuation due to the distance between the position of R1 and the radiation measuring device and attenuation due to shielding of a substance between the RI and the radiation measuring device. Attenuation due to distance is expressed by the following equation (r).

Dl=’ r:/ 4 K r、’         
  ・(1)ここでDI:距離による減衰度(へ) r、:RIの位置と放射線測定機との距離(an)r鵞
:放射S測定機の入射半径(an)π :円周率 遮蔽物による減衰は下記の伐)式で表示できる。
Dl='r:/4Kr,'
・(1) Here, DI: degree of attenuation due to distance (to) r: distance between the RI position and the radiation measuring device (an) r: radius of incidence of the radiation S measuring device (an) π: pi shielding Attenuation due to objects can be expressed using the following equation.

1)1=6−DμトxI              
  ・・・(2)ここでDl :遮蔽物による減衰度(
ハ)6  1718 μI:物質iの線吸収係数(an−”)xl;物質五の
厚み(an) 従ってRIから放射線測定機までの放射線強度の総合減
衰度は距離による減資と遮蔽物による減衰とを合算して
次の(3)式で表わされる。
1) 1=6-DμtxI
...(2) Here, Dl: degree of attenuation due to shielding object (
c) 6 1718 μI: Linear absorption coefficient of material i (an-”) is expressed by the following equation (3).

D=D1 xD、          ・・・0)ここ
でD:総合減衰度(へ) 従ってRIの位置と放射線測定機との距離rlを一定に
維持すれば、総合減衰度りの変化は、遮蔽物による滅1
1度り、の変化に依存することになり、m蔽物による滅
’RritD*は0)式で求まるので(2)式中の物質
iの纏吸収係数声亀と物質iの厚みxlの変化に依存す
ることKなる。
D=D1 xD, ...0) Here, D: Total attenuation (to) Therefore, if the distance rl between the RI position and the radiation measuring device is kept constant, the change in the total attenuation will be due to the shielding object. Destruction 1
Since RritD* is determined by equation 0), the change in the absorption coefficient of material i in equation (2) and the thickness xl of material i It depends on K.

現在の一般の焼結操業においては、同一性状の焼結鉱を
製造する丸め、ある期間内は同一配合原料を使用し、ベ
ッドの厚みすなわち層厚を同一にして操業する方法が行
われている。従って、その期間内においては、ベッドの
上方位置に放射線測定機、下方位置にRIを設置すると
、遮蔽物すなわちベッドによる減衰度り、の変化は、線
吸収係数μtを構成している物質すなわち粉粒体原料の
合算厚み、f−=D&iの変化に依存するので、結局は
ベッドの層厚に占める粉粒体原料の真の厚みの変化、す
なわちベッドの充填度の変化に相当することになる。
Current general sintering operations involve rounding to produce sintered ore with the same properties, using the same mixed raw materials for a certain period of time, and operating with the same bed thickness, that is, the layer thickness. . Therefore, within that period, if a radiation measuring device is installed above the bed and an RI is installed below the bed, the change in attenuation due to the shielding object, that is, the bed, will be affected by the material that makes up the linear absorption coefficient μt, that is, the powder. Since it depends on the change in the total thickness of the granular raw material, f-=D&i, it ultimately corresponds to a change in the true thickness of the granular raw material that accounts for the layer thickness of the bed, that is, a change in the degree of filling of the bed. .

本発明は上記の如く放射線の減衰度の変化がベッドにお
ける粉粒体原料の充填度の変化に起因することを利用し
て焼結ベッドの充填ft−測定するのである。
The present invention measures the filling ft of a sintering bed by utilizing the fact that changes in the degree of attenuation of radiation are caused by changes in the degree of filling of the granular material in the bed as described above.

本発明の詳細をlI論例により説明する。まず本発明に
おいて使用する装置について述べる。#!1図はパレッ
トの幅方向に配置された4組の測定装置勤示づ“横断面
図、第2図は第1図の璽−1線矢視縦断面図である。焼
結機のパレット1上にベッド2が形成されており、その
下部に放射線を発するRI3が設置され、RI3は第3
図の拡大図に示されている如く、それぞれ周囲への放射
線の遮蔽を兼ねえ格納容器4に収納されている。格納容
器4の上部は透明ガラス5がねじ6で固定されており、
RIaの放射線は上方にのみ放射し、下および水平方向
は遮蔽される構造となっている。パレット1の下部には
放射線が通過できる間隙7があり、ベッド2の上方には
下方のRI3に対応した位置にそれぞれ放射線測定機8
A、8B、8C。
The details of the present invention will be explained by way of an II argument. First, the apparatus used in the present invention will be described. #! Figure 1 is a cross-sectional view showing four sets of measuring devices arranged in the width direction of the pallet, and Figure 2 is a longitudinal cross-sectional view taken along the line -1 in Figure 1. Pallet 1 of the sintering machine. A bed 2 is formed above, and an RI 3 that emits radiation is installed below it.
As shown in the enlarged view of the figure, each of them is housed in a containment container 4 which also serves as a radiation shield to the surrounding area. A transparent glass 5 is fixed to the upper part of the containment vessel 4 with screws 6.
The radiation of RIa is emitted only upward, and the structure is such that it is shielded from below and in the horizontal direction. There is a gap 7 at the bottom of the pallet 1 through which radiation can pass, and above the bed 2 there are radiation measuring machines 8 at positions corresponding to the lower RIs 3.
A, 8B, 8C.

8Dが設置されている。なお第2図のベッド2の上方に
はベッド2の表面をならすカット9が取付けられて−る
8D is installed. Note that a cut 9 is installed above the bed 2 in FIG. 2 to level the surface of the bed 2.

次に上記の装置を使用した本発明の充填度測定方法を説
明する。RI3からの放射線はパレット1の底部の間P
J7を通ってベッド2で減衰され、それぞれの測定機8
A、8B、8C,8DKBし。
Next, a method of measuring the degree of filling of the present invention using the above-mentioned device will be explained. The radiation from RI3 is between the bottom of pallet 1 P
J7 and is attenuated by bed 2, each measuring machine 8
A, 8B, 8C, 8DKB.

放射線の強度が測定される。測定機8A、8B。The intensity of the radiation is measured. Measuring machines 8A and 8B.

8C,8Dに入射し九放射線は、それぞれ真下のRI3
以外のRI3からの入射も考えられるが、真下以外のR
13からの放射線は次の3つの塩山すなわち 0)距離が長くなることによる減衰の増加(ロ)入射角
が傾斜し纏蔽物が見掛上厚くなることによる減衰の増加 (ハ) 測定機の入射面が正対していないことによる入
射効率の低下 により真下以外のRIaの影響はほとんどないと考えら
れるので、測定され九放射線強度は正対する)LI3と
測定118間のベッド2の充填車に影響されたものと見
做すことができる。使用し九RIBはベッドの充填車と
測定放射線強度との関係、設備保全、放射線障害の防止
等を考慮して一@Co1mciのものを使用した。
The nine radiations incident on 8C and 8D are directly below RI3, respectively.
Although it is possible that the incidence is from RI3 other than the one directly below,
The radiation from No. 13 is affected by the following three salt mountains: 0) Increase in attenuation due to increasing distance (b) Increase in attenuation due to tilted incident angle and apparent thickening of the enclosing material (c) It is thought that there is almost no influence of RIa other than directly below due to the decrease in incidence efficiency due to the incidence surface not facing directly, so the measured radiation intensity will affect the filling car of bed 2 between LI3 and measurement 118) It can be considered that it has been done. The nine RIBs used were 1@Co1mci in consideration of the relationship between the bed filling car and the measured radiation intensity, equipment maintenance, prevention of radiation damage, etc.

充填車は予め実験用焼結機において同一層厚□における
充填車と放射線の測定カウント数との関係を求めておき
、測定値から換算して得られる。第4図は層厚500m
nにνける充填車と測定カウント数との関係を示す実施
例である。
The filling car is obtained by determining the relationship between the filling car and the measured count number of radiation for the same layer thickness □ in an experimental sintering machine in advance, and converting it from the measured value. Figure 4 shows a layer thickness of 500m.
This is an example showing the relationship between the filling car and the measured count number in n.

上記の方法により求め丸缶測定機8A。8B。Round can measuring machine 8A determined by the above method. 8B.

sC,8Dのそれぞれの充填車をそれぞれWX5図囚回
内@、 lc’1.■に示し九。第5図0から測定機8
Cのベッドの充填車は変動が少なく、第5図に)から測
定機8Aのベッドの充填車は変動が多いことが分る。し
かし全体としてベッドの充填車はほぼ適当な範囲に維持
されているため、製造され九焼結鉱はシャッタ強度(8
,1,)が90〜91で#)D嵐質のものであった。
Filling cars of sC and 8D are pronated as shown in WX5, lc'1. 9 shown in ■. Figure 5 0 to measuring device 8
It can be seen from FIG. 5) that the filling car of the bed of C has little fluctuation, and the filling car of the bed of the measuring machine 8A has a lot of fluctuation. However, as a whole, the filling car of the bed is maintained within an appropriate range, so the shutter strength (8
, 1,) was 90-91 and #) D storm quality.

次に示す第6〜8図は何れ本ベッドの幅方向の4ケ所の
充填車の平均値を示したものであるが、第6図の場合は
充填車が低下し空隙率が増加して備差も比較的大きくな
つ九のでカット9を下降させカット量を増加した。その
結果充填車が上昇し通気性が改善され生産量は変化しな
いが、シャッタ強度(8,1,) Fi86〜88が対
策を取ることによって88〜89に上昇した。第7図は
ベッドの充填車が上昇し、生産量が増加しシャッタ強度
(8,1,)が低下し九ので、ノ(レットスピードを低
下させたところ、7ヤツタ強度(8,1,)が上昇し生
産量も管理範囲となった。
The following Figures 6 to 8 show the average values of the filling cars at four locations in the width direction of the bed, but in the case of Figure 6, the filling car decreases, the porosity increases, and the The difference also became relatively large, so the cut 9 was lowered to increase the amount of cut. As a result, the filling car rose and ventilation improved, and the production volume did not change, but the shutter strength (8, 1,) Fi 86-88 increased to 88-89 by taking measures. Figure 7 shows that the filling car of the bed rises, the production volume increases, and the shutter strength (8, 1,) decreases. increased and the production volume was within control.

@8図の場合は同じくベッドの充填車が上昇したが生産
量は変動せず、シャッタ強度(8,1,)も変動しなか
つ九ので、カット量を減少した。その結果通気性が向上
しシャッタ強度はより向上し九。
In the case of Figure @8, the filling car of the bed rose similarly, but the production volume did not change, and the shutter strength (8, 1,) did not change either, so the cutting amount was reduced. As a result, ventilation is improved and shutter strength is further improved.

本発明は上記実施例からも明らかな如く、放射性同位元
素を使用することにより焼結機ベッドの充填車を測定管
理し、異常への対策を早期に実施可能とし、焼結鉱の品
質と生産量を安定的に達成する効果をあげることができ
た。
As is clear from the above embodiments, the present invention uses radioactive isotopes to measure and manage the filling car of the sintering machine bed, enables early implementation of countermeasures against abnormalities, and improves the quality and production of sintered ore. We were able to achieve the effect of stably achieving the amount.

【図面の簡単な説明】[Brief explanation of drawings]

WIJ1図は本発明における測定装置の配置を示すパレ
ットの横断面図、第2図はllsl図のI−1線矢視縦
断面図、第3図は本発明におけるRIの格納容器を示す
拡大断面図、第4図は本発明の放射線測定カウント数と
充填車との関係を示す線図、第5回内、 @、 (C1
,([)は実施例における測定機態のそれぞれの充填車
の時間的変動を示す線図、第6図、第7図、第8図は何
れも実施例におけるベッド幅方向の4ケ所の平均充填車
の時間的変動を示す線図である。 1・・・パレット    2・・・粉粒体原料ぺ゛ノド
3・・・放射性同位元素 8・・・放射線測定機代理人
  中 路 武 雄 第1図 i■ 一■ 第2図 、°# 第4図 J’l定カウント& (C,P、m、)第5図 経過時Fll (h)
Figure WIJ1 is a cross-sectional view of a pallet showing the arrangement of the measuring device in the present invention, Figure 2 is a vertical cross-sectional view taken along the line I-1 of the llsl figure, and Figure 3 is an enlarged cross-sectional view showing the RI storage container in the present invention. Figure 4 is a diagram showing the relationship between the radiation measurement count number and the filling car of the present invention, Part 5, @, (C1
, ([) are diagrams showing temporal fluctuations of each filling car of the measurement mechanism in the example, and Figures 6, 7, and 8 are averages of four locations in the bed width direction in the example. FIG. 3 is a diagram showing temporal fluctuations in a filling car. 1... Pallet 2... Powder raw material pane 3... Radioactive isotope 8... Radiation measuring machine agent Takeo Nakaji Figure 1 ■ 1 ■ Figure 2, °# Chapter Figure 4: J'l constant count & (C, P, m,) Figure 5: Fll (h)

Claims (1)

【特許請求の範囲】[Claims] (1)パレット上4;粉粒体原料を給鉱し該粉粒体原料
ベッドの表面より点火し強制吸引により焼結する粉粒体
の焼結方法において、前記粉粒体原料ベッドを通過する
放射線同位元素の放射線強度により前記粉粒体原料ベッ
ドの充填度を測定することに%徴とする焼結ベッドの充
填度測定方法。
(1) On a pallet 4: In a method for sintering powder and granular material in which granular material is fed, ignited from the surface of the granular material bed, and sintered by forced suction, passing through the granular material bed. A method for measuring the degree of filling of a sintering bed in which the degree of filling of the granular raw material bed is measured as a percentage by the radiation intensity of a radioactive isotope.
JP56214289A 1981-12-29 1981-12-29 Measuring method of packing degree of sintered bed Pending JPS58115351A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56214289A JPS58115351A (en) 1981-12-29 1981-12-29 Measuring method of packing degree of sintered bed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56214289A JPS58115351A (en) 1981-12-29 1981-12-29 Measuring method of packing degree of sintered bed

Publications (1)

Publication Number Publication Date
JPS58115351A true JPS58115351A (en) 1983-07-09

Family

ID=16653257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56214289A Pending JPS58115351A (en) 1981-12-29 1981-12-29 Measuring method of packing degree of sintered bed

Country Status (1)

Country Link
JP (1) JPS58115351A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0224781A2 (en) * 1985-12-06 1987-06-10 Sintermetallwerk Krebsöge GmbH Method for the measurement of the density in a section of a body made of powder
JPS6345327A (en) * 1986-08-12 1988-02-26 Nippon Steel Corp Method for controlling charging of raw material to sintering machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0224781A2 (en) * 1985-12-06 1987-06-10 Sintermetallwerk Krebsöge GmbH Method for the measurement of the density in a section of a body made of powder
JPS6345327A (en) * 1986-08-12 1988-02-26 Nippon Steel Corp Method for controlling charging of raw material to sintering machine

Similar Documents

Publication Publication Date Title
Cameron et al. Radioisotope Instruments: International Series of Monographs in Nuclear Energy
US4766319A (en) Portable nuclear moisture-density gauge with low activity nuclear sources
JP3225127B2 (en) Radioactivity concentration measuring device for radioactive waste storage containers
JPS58115351A (en) Measuring method of packing degree of sintered bed
US3792253A (en) Method and apparatus for detection of copper
US2967937A (en) Method and apparatus for measuring thickness
US4409480A (en) Method and system for the testing and calibration of radioactive well logging tools
US3665199A (en) Beta-ray thickness gauge using a two energy level beta-ray source
US20210045705A1 (en) Collimater, radiation detection device, and radiation inspection device
US2951946A (en) Method and apparatus for logging earth formations
CN210575139U (en) radiation protection device of β ray surface density measuring instrument
US4568830A (en) Borehole gamma ray logging detector
DE1289198B (en) X-ray source with a beta emitter as the source of the radiation that stimulates the X-ray emission
US3098154A (en) Tank level measurement system
US3809903A (en) Radiation gauge
Persson et al. Internal bremsstrahlung from P32
US3787682A (en) Apparatus for measuring the filling level in liquid receiving containers by means of radio-active rays
CA1044380A (en) Measuring system for a drill-hole probe
Paul Gamma-Ray Absorption Coefficients at 6.13 Mev
US5386114A (en) Detector for activity direction of magma
WO2003050566A2 (en) Radiation detecting device for use with a furnace
Elias et al. Gamma gauge for the control of interzone layer in an extraction tower
SU1441280A1 (en) Method of tuning a double-beam sensors
SU110599A1 (en) Device for continuous monitoring of the height of the rash in shaft furnaces
SU1331250A1 (en) Method of determining moisture content of blast-furnace coke