JPH04269697A - Non-destructive inspection device for reactor fuel rod - Google Patents

Non-destructive inspection device for reactor fuel rod

Info

Publication number
JPH04269697A
JPH04269697A JP3053106A JP5310691A JPH04269697A JP H04269697 A JPH04269697 A JP H04269697A JP 3053106 A JP3053106 A JP 3053106A JP 5310691 A JP5310691 A JP 5310691A JP H04269697 A JPH04269697 A JP H04269697A
Authority
JP
Japan
Prior art keywords
gamma ray
fuel rod
neutron
ray intensity
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3053106A
Other languages
Japanese (ja)
Other versions
JP2526392B2 (en
Inventor
Akira Sano
明 佐野
Toshiyuki Tamura
俊幸 田村
Makoto Yasuoka
誠 安岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP3053106A priority Critical patent/JP2526392B2/en
Publication of JPH04269697A publication Critical patent/JPH04269697A/en
Application granted granted Critical
Publication of JP2526392B2 publication Critical patent/JP2526392B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To obtain a non-destructive inspection device for reactor fuel rods cable of accurately detecting effective fissile material amount even in case of change in the isotope ratio in reactor fuel rods made of mixed oxide. CONSTITUTION:It consists of a means 24 to irradiate neutrons to fuel rods, a means 23 to measure the fuel rod axial distribution of gamma ray intensity emitted from the fuel rods before the neutron irradiation, a measuring means 25 which has the same constitution as the gamma ray intensity measuring means 23 and measures the fuel rod axial distribution of delayed gamma ray emitted from the fuel rods after the neutron irradiation, a means 33 to calculate the net delayed gamma ray intensity distribution by subtracting the axial gamma ray distribution data before the neutron irradiation from that after the neutron irradiation, and a detection means 34 to detect the effective fissile material amount and the distribution change from the calculated net delayed gamma ray intensity distribution.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】〔発明の目的〕[Object of the invention]

【0002】0002

【産業上の利用分野】本発明は、原子炉用燃料棒加工施
設等において使用される原子炉用燃料棒の非破壊検査装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-destructive testing device for nuclear reactor fuel rods used in nuclear reactor fuel rod processing facilities and the like.

【0003】0003

【従来の技術】一般に、原子炉用燃料棒の非破壊検査装
置は、原子炉用燃料棒加工施設等において、異常ペレッ
トの混入の判別や、燃料棒1本当りの核分裂性物質総量
を求めるために使用される。
[Prior Art] In general, non-destructive testing equipment for nuclear reactor fuel rods is used in nuclear reactor fuel rod processing facilities to determine the presence of abnormal pellets and to determine the total amount of fissile material per fuel rod. used for.

【0004】図5は、このような従来の原子炉用燃料棒
の非破壊検査装置の一例を示すもので、筐体1内には、
Cf−252(カリフォルニウム−252)等の中性子
源2が配置されており、中性子源2の周囲には内側から
順に、ZrH2 (水素化ジルコニウム)層3、Pb(
鉛)層4、D2 O(重水)・WEP(含水ポリエステ
ル)層5、C(グラファイト)層6、CH2(パラフィ
ンまたはポリエチレン)層7、WEP+Pb層8が形成
されており、中性子源2の付近には燃料棒貫通孔9a,
9b、下部にはHe−4中性子検出器10が配設されて
いる。また、筐体1の側方には、NaI検出器(ヨウ化
ナトリウム・シンチレーション検出器)11が配置され
ており、この検出器11の周囲にW(タングステン)層
12が形成され、その回りをPb層13によって覆われ
ている。
FIG. 5 shows an example of such a conventional non-destructive testing device for nuclear reactor fuel rods.
A neutron source 2 such as Cf-252 (Californium-252) is arranged, and around the neutron source 2, in order from the inside, a ZrH2 (zirconium hydride) layer 3, a Pb (
A lead) layer 4, a D2O (heavy water)/WEP (hydrated polyester) layer 5, a C (graphite) layer 6, a CH2 (paraffin or polyethylene) layer 7, and a WEP+Pb layer 8 are formed near the neutron source 2. are fuel rod through holes 9a,
9b, a He-4 neutron detector 10 is disposed at the bottom. Further, a NaI detector (sodium iodide scintillation detector) 11 is arranged on the side of the housing 1, and a W (tungsten) layer 12 is formed around this detector 11. It is covered with a Pb layer 13.

【0005】そして、燃料棒を燃料棒貫通孔9aに挿入
することにより、中性子源2からの中性子を照射し、燃
料棒中の核分裂性物質に核分裂を誘起せしめ、NaI検
出器11で核分裂に起因する遅発γ線強度の燃料棒軸方
向分布を測定し、次に燃料棒を燃料棒貫通孔9bに挿入
し中性子を照射しHe−4中性子検出器10で核分裂即
発中性子の燃料棒軸方向均一領域平均強度を測定し、得
られた結果より異常ペレットの混入の判別と、燃料棒1
本当りの核分裂性物質総量を求める。
[0005] By inserting the fuel rod into the fuel rod through hole 9a, neutrons from the neutron source 2 are irradiated to induce fission in the fissile material in the fuel rod, and the NaI detector 11 detects the fission caused by the fission. Next, the fuel rod is inserted into the fuel rod through hole 9b, irradiated with neutrons, and the He-4 neutron detector 10 measures the distribution of delayed gamma ray intensity in the fuel rod axis direction. The average intensity of the area is measured, and based on the obtained results, it is possible to determine whether abnormal pellets are mixed in, and whether the fuel rod 1
Find the true total amount of fissile material.

【0006】なお、図5に示した装置は、遅発γ線測定
と核分裂即発中性子の測定を行なう装置であるが、中性
子検出器にHe−3中性子検出器を使用し、中性子減速
材の材質等を変更して即発中性子の替りに遅発中性子の
測定を行なう装置もある。
The apparatus shown in FIG. 5 is an apparatus for measuring delayed gamma rays and fission-prompted neutrons, but it uses a He-3 neutron detector as a neutron detector, and the material of the neutron moderator is There are also devices that measure delayed neutrons instead of prompt neutrons.

【0007】しかしながら、従来の原子炉用燃料棒の非
破壊検査装置では、検査対象が現在の軽水炉に使用され
ているウラン酸化物燃料のようにその主たる同位体組成
がU−235,U−238だけという単純な(1種類の
核分裂性物質U−235)燃料の場合には問題はないが
、高速増殖炉、新型転換炉等に使用されているPu酸化
物とU酸化物の混合燃料いわゆる混合酸化物の場合には
、Pu自体が放出するγ線強度が大きくPu同位体比が
変化すると、γ線強度が変化するため測定精度が劣化す
るという問題がある。
However, in conventional non-destructive testing equipment for nuclear reactor fuel rods, the main isotopic compositions of the test objects are U-235 and U-238, such as the uranium oxide fuel used in current light water reactors. There is no problem with simple fuel (one type of fissile material U-235), but mixed fuel of Pu oxide and U oxide used in fast breeder reactors, new converter reactors, etc. In the case of oxides, there is a problem that the gamma ray intensity emitted by Pu itself is large, and when the Pu isotope ratio changes, the gamma ray intensity changes and measurement accuracy deteriorates.

【0008】[0008]

【発明が解決しようとする課題】従来の原子炉用燃料棒
の非破壊検査装置では、遅発γ線測定時に燃料棒から放
出されるγ線と中性子の照射を受けて放出される遅発γ
線が重畳されて測定されるのでウランとプルトニウムが
混合された混合酸化物燃料棒の同位体比が変化した場合
には、燃料棒から放出されるγ線強度が変化するので遅
発γ線測定のγ線強度が影響を受け、測定精度が低下す
る。
[Problems to be Solved by the Invention] Conventional non-destructive inspection equipment for nuclear reactor fuel rods detects gamma rays emitted from the fuel rods when measuring delayed gamma rays and delayed gamma rays emitted upon neutron irradiation.
Since the rays are measured in a superimposed manner, if the isotope ratio of the mixed oxide fuel rod, which is a mixture of uranium and plutonium, changes, the intensity of the γ-rays emitted from the fuel rod will change, resulting in delayed gamma-ray measurement. γ-ray intensity is affected, reducing measurement accuracy.

【0009】本発明は、かかる従来の事情に対処してな
されたもので、混合酸化物の原子炉用燃料棒の同位体比
が変化しても実効的核分裂性物質量を精度良く検査する
ことができる原子炉用燃料棒の非破壊検査装置を提供す
ることを目的とする。 〔発明の構成〕
The present invention has been made in response to the above-mentioned conventional situation, and it is an object of the present invention to accurately test the effective amount of fissile material even if the isotope ratio of a mixed oxide fuel rod for a nuclear reactor changes. The purpose of the present invention is to provide a non-destructive inspection device for nuclear reactor fuel rods that can perform the following steps. [Structure of the invention]

【0010】0010

【課題を解決するための手段】本発明に係る原子炉用制
御棒の非破壊検査装置は、上述した課題を解決するため
に、燃料棒に中性子を照射する手段と、中性子照射前に
燃料棒から放出されるγ線強度の燃料棒軸方向分布を測
定する手段と、中性子照射後に前記燃料棒から放出され
る遅発γ線の燃料棒軸方向分布を測定する前記γ線強度
測定手段と同じ構成の測定手段と、中性子照射後のγ線
軸方向分布データから中性子照射前のγ線軸方向分布デ
ータを減算し正味の遅発γ線強度分布を求める手段と、
求めた正味の遅発γ線強度分布から実効核分裂性物質の
量および分布変化を検出する検出手段を有するものであ
る。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the non-destructive testing device for nuclear reactor control rods according to the present invention includes means for irradiating fuel rods with neutrons, and means for measuring the fuel rod axial distribution of gamma ray intensity emitted from the fuel rod; and the same gamma ray intensity measuring means for measuring the fuel rod axial distribution of delayed gamma rays emitted from the fuel rod after neutron irradiation. and means for subtracting γ-ray axial distribution data before neutron irradiation from γ-ray axial distribution data after neutron irradiation to obtain a net delayed γ-ray intensity distribution;
It has a detection means for detecting the amount and distribution change of effective fissile material from the determined net delayed gamma ray intensity distribution.

【0011】また、上述した課題を解決するために、本
発明に係る原子炉用制御棒の非破壊検査装置は、燃料棒
に中性子を照射する手段はカリフォルニウム−252等
の中性子源を有し、中性子照射前に燃料棒から放出され
るγ線強度の燃料棒軸方向分布を測定する手段と中性子
照射後に前記燃料棒から放出される遅発γ線強度の燃料
棒軸方向分布を測定する手段とは形状および検出性能が
等しいγ線検出器であり、前記両γ線検出器を、中性子
を照射する中性子源を中心とした対称位置に設け、上記
中性子源と両γ線検出器との間に少なくとも中性子減速
体、中性子遮蔽体およびγ線遮蔽体を前記中性子源を中
心としてぼぼ対称に配置したものである。
Furthermore, in order to solve the above-mentioned problems, the non-destructive testing device for nuclear reactor control rods according to the present invention is such that the means for irradiating the fuel rods with neutrons includes a neutron source such as californium-252. , means for measuring the axial distribution of γ-ray intensity emitted from the fuel rod before neutron irradiation, and means for measuring the axial distribution of delayed γ-ray intensity emitted from the fuel rod after neutron irradiation. is a gamma ray detector having the same shape and detection performance, and both gamma ray detectors are installed at symmetrical positions with respect to the neutron source that irradiates neutrons, and the gamma ray detector is located between the neutron source and both gamma ray detectors. At least a neutron moderator, a neutron shield, and a gamma ray shield are arranged approximately symmetrically about the neutron source.

【0012】0012

【作用】本発明の原子炉用燃料棒の非破壊検査装置では
、中性子照射前と中性子照射後のγ線強度測定手段によ
り、中性子照射前後のγ線強度分布を測定し、中性子照
射後の分布データより中性子照射前の分布データを減算
し、正味の遅発γ線強度分布データを求める。したがっ
て、燃料棒の同位体比が変化して、燃料棒からのγ線強
度が変化しても、この値を減算するので遅発γ線測定に
影響を受けない。
[Operation] In the non-destructive inspection device for nuclear reactor fuel rods of the present invention, the gamma ray intensity distribution before and after neutron irradiation is measured by the gamma ray intensity measuring means before and after neutron irradiation, and the gamma ray intensity distribution after neutron irradiation is measured. Subtract the distribution data before neutron irradiation from the data to obtain the net delayed gamma ray intensity distribution data. Therefore, even if the isotope ratio of the fuel rod changes and the gamma ray intensity from the fuel rod changes, this value is subtracted, so it is not affected by the delayed gamma ray measurement.

【0013】また、中性子照射前のγ線強度分布測定手
段は、中性子照射後に燃料棒から放出される遅発γ線の
燃料棒軸方向分布を測定する手段と同じ構成で検出性能
が等しい測定手段としているので、複雑な補正を必要と
せず精度よく測定できる。
Furthermore, the gamma ray intensity distribution measuring means before neutron irradiation is a measuring means having the same configuration and the same detection performance as the means for measuring the fuel rod axial distribution of delayed gamma rays emitted from the fuel rod after neutron irradiation. Therefore, accurate measurements can be made without the need for complicated corrections.

【0014】[0014]

【実施例】以下、本発明に係る原子炉用燃料棒の非破壊
検査装置の一実施例について添付図面を参照して説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the non-destructive inspection apparatus for nuclear reactor fuel rods according to the present invention will be described below with reference to the accompanying drawings.

【0015】図1は本発明に係る原子炉用燃料棒の非破
壊検査装置の一例を示すものである。この非破壊検査装
置20は図示しない燃料棒内に充填される燃料要素とし
ての燃料ペレットのスタック長、燃料ペレット間ギャッ
プを検出するペレット検出手段としての透過γ線検出部
21と、原子炉用燃料棒の同位体比を測定する測定手段
としてのγ線スペクトル検出部22と、中性子照射前の
γ線強度の燃料棒軸方向分布を測定する手段である遅発
γ線バッググランド検出部23と、原子炉用燃料棒に中
性子を照射する手段である中性子照射部24と、中性子
照射後の遅発γ線の燃料棒軸方向分布を測定する手段で
ある遅発γ線検出部25とを順次並列に配置して構成さ
れ、遅発γ線検出部25は、遅発γ線バックグランド検
出部23と構成を同じくしたγ線検出器で構成され、そ
の検出性能を同じくし、複雑な補正や校正をすることな
く精度よく測定できるようになっている。原子炉用燃料
棒は、非破壊検査装置20の各検出部21,22,23
、中性子照射部24および検出部25を図示しない燃料
棒駆動系により軸方向に一定速度で移動せしめられて案
内されるようになっている。
FIG. 1 shows an example of a non-destructive inspection apparatus for nuclear reactor fuel rods according to the present invention. This non-destructive testing device 20 includes a transmitted gamma ray detector 21 as a pellet detecting means for detecting the stack length of fuel pellets as fuel elements filled in fuel rods (not shown) and gaps between fuel pellets, and a transmitted gamma ray detector 21 as a pellet detecting means for detecting a gap between fuel pellets, and a reactor fuel A γ-ray spectrum detection unit 22 as a measurement means for measuring the isotope ratio of the rod, a delayed γ-ray background detection unit 23 as a means for measuring the axial distribution of γ-ray intensity in the fuel rod before irradiation with neutrons, A neutron irradiation section 24, which is a means for irradiating a nuclear reactor fuel rod with neutrons, and a delayed gamma ray detection section 25, which is a means for measuring the distribution of delayed gamma rays in the fuel rod axial direction after neutron irradiation, are sequentially arranged in parallel. The delayed gamma ray detection section 25 is configured with a gamma ray detector having the same configuration as the delayed gamma ray background detection section 23, has the same detection performance, and does not require complicated correction or calibration. It is now possible to measure with high accuracy without having to do anything. The reactor fuel rods are detected by each detection section 21, 22, 23 of the non-destructive inspection device 20.
, the neutron irradiation section 24 and the detection section 25 are moved and guided in the axial direction at a constant speed by a fuel rod drive system (not shown).

【0016】ペレット検出手段としての透過γ線検出部
21は、ここに原子炉用燃料棒が図示しない燃料棒駆動
系により案内されると、例えばセシウム−137( 1
37Cs)外部γ線源により燃料棒にγ線が照射され、
γ線検出器により燃料棒全長に亘るγ線透過強度の軸方
向分布が測定される。このγ線透過強度の軸方向分布形
状により燃料要素である燃料ペレットのスタック長やペ
レット間ギャップが求められる。
When a nuclear reactor fuel rod is guided here by a fuel rod drive system (not shown), the transmitted gamma ray detection section 21 as a pellet detection means detects, for example, cesium-137 (1
37Cs) The fuel rod is irradiated with gamma rays by an external gamma ray source,
A gamma ray detector measures the axial distribution of gamma ray transmission intensity over the entire length of the fuel rod. The stack length of the fuel pellets, which are the fuel elements, and the gap between the pellets can be determined based on the axial distribution shape of the γ-ray transmission intensity.

【0017】次に、原子炉用燃料棒はγ線スペクトル検
出部22に案内され、この検出部22内を通過する。γ
線スペクトル検出部22では、燃料棒に充填される燃料
要素の各核種固有のエネルギのγ線を放出していること
に着目し、燃料棒から放出されるγ線をGe検出器によ
って検出する。
Next, the reactor fuel rod is guided to the gamma ray spectrum detection section 22 and passes through the detection section 22 . γ
The ray spectrum detection unit 22 uses a Ge detector to detect the γ rays emitted from the fuel rods, paying attention to the fact that each nuclide in the fuel element filled in the fuel rod emits γ rays with energy specific to the energy.

【0018】Ge検出器にて検出されたγ線の検出信号
は次に多重波高分析器(図示せず)によりγ線エネルギ
スペクトルが分析され、各核種から放出されている各種
のγ線強度を求め各核種の量を求める。
Next, the gamma ray energy spectrum of the gamma ray detection signal detected by the Ge detector is analyzed by a multiple wave height analyzer (not shown), and the various gamma ray intensities emitted from each nuclide are analyzed. and find the amount of each nuclide.

【0019】原子炉用燃料棒に充填される各核種からは
、それらに固有のエネルギのγ線が放出されている。 各核種の代表的なγ線エネルギの一例は次のように表わ
される。
[0019] Each nuclide filled in a nuclear reactor fuel rod emits gamma rays with energy specific to the nuclide. An example of typical γ-ray energy of each nuclide is expressed as follows.

【0020】プルトニウム−238( 238Pu) 
 152keV プルトニウム−239( 239Pu)  414ke
Vプルトニウム−240( 240Pu)  642k
eVプルトニウム−241( 241Pu)  208
keVアメリシウム−241( 241Am)    
60keVウラン−235( 235U)      
    186keVウラン−238( 238U) 
       1001keVここで、γ線エネルギス
ペクトルを模式的に示すと図2のようになる。
Plutonium-238 (238Pu)
152keV Plutonium-239 (239Pu) 414ke
V Plutonium-240 (240Pu) 642k
eV plutonium-241 (241Pu) 208
keV Americium-241 (241Am)
60keV uranium-235 (235U)
186keV uranium-238 (238U)
1001 keV Here, the γ-ray energy spectrum is schematically shown as shown in FIG.

【0021】γ線エネルギスペクトル線Aには多数のγ
線計数のピークが現われ、これらのピーク計数のうち求
めようとする核種のγ線エネルギ位置に現われたγ線計
数のピークの面積を計算しγ線強度を求めると、その強
度は対象とする核種の量に比例する。
In the γ-ray energy spectrum line A, there are many γ-rays.
When a peak of the ray count appears, and among these peak counts, the area of the peak of the γ-ray count that appears at the γ-ray energy position of the nuclide to be determined is calculated to determine the γ-ray intensity. is proportional to the amount of

【0022】すなわち、このγ線強度をその核種のγ線
放出率、γ線吸収率、γ線検出効率で割算すると、その
核種の量が求められる。
That is, by dividing this γ-ray intensity by the γ-ray emission rate, γ-ray absorption rate, and γ-ray detection efficiency of the nuclide, the amount of the nuclide can be determined.

【0023】対象とする核種、例えば 238Pu, 
239Pu, 240Pu, 241Pu,235 U
,238U, 241Amそれぞれについて上記の処理
を行ない、これらの比を求めるとPuの同位体比などが
算出できる。
Target nuclide, for example 238Pu,
239Pu, 240Pu, 241Pu, 235U
, 238U, and 241Am, and by calculating their ratios, the isotope ratio of Pu, etc. can be calculated.

【0024】γ線スペクトル検出部22を通過した燃料
棒は、中性子照射前のγ線強度の燃料棒軸方向分布を測
定する手段である遅発γ線バックグラウンド検出部23
に案内され、この検出部23内を通過する。この検出部
23では例えばBGO(ビスマス・ゲルマニウム・酸素
の化合物)シンチレーション検出器やNaI−TIシン
チレーション検出器のようなγ線検出器により、燃料棒
から放出されるγ線強度の燃料棒軸方向分布が測定され
る。
The fuel rod that has passed through the gamma ray spectrum detection section 22 is detected by a delayed gamma ray background detection section 23 which is a means for measuring the distribution of gamma ray intensity in the axial direction of the fuel rod before irradiation with neutrons.
and passes through the detection section 23. In this detection unit 23, a γ-ray detector such as a BGO (bismuth-germanium-oxygen compound) scintillation detector or a NaI-TI scintillation detector detects the distribution of the γ-ray intensity emitted from the fuel rod in the axial direction of the fuel rod. is measured.

【0025】遅発γ線バックグラウンド検出部23を通
過した燃料棒は、中性子照射手段としての例えばCf−
252(カリフォルニウム−252)等の中性子源26
が格納された中性子照射部24に案内されて、この中性
子照射部24内に装荷された燃料棒案内管27内を通過
する。
The fuel rod that has passed through the delayed gamma ray background detection section 23 is exposed to a neutron irradiation means such as Cf-
Neutron source 26 such as 252 (Californium-252)
The fuel rods are guided to the neutron irradiation section 24 in which the fuel rods are stored, and pass through the fuel rod guide tube 27 loaded in the neutron irradiation section 24 .

【0026】燃料棒に中性子を照射する手段としての中
性子照射部24は、図3に示したような内部構造を有し
、鉄製構造体であるハウジング28内のほぼ中央部にC
f−252の中性子源26が設置され、この中性子源2
6を順次取り囲むように、ポリエチレン等を材質とする
中性子減速体29、Pbを材質とするγ線遮蔽体30、
のホウ素入りパラフィン等からなる中性子遮蔽体31、
Pb製のγ線遮蔽体32が順次配置される。γ線遮蔽体
32はハウジング28に内張りされる。中性子減速体2
9はポリエチレンの代りにZrH2 、Be(ベリリウ
ム)、重水、グラファイト等があり、中性子遮蔽体31
には、ホウ素入りパラフィンの代りにホウ素入りポリエ
ステル、リチウム入りポリエステルやパラフィンを用い
てもよい。中性子遮蔽体31は中性子減速体29の外側
に配置されるが、中性子減速体29、中性子遮蔽体31
およびγ線遮蔽体30,32の配置関係は、図3のもの
に限定されない。
The neutron irradiation unit 24, which serves as a means for irradiating fuel rods with neutrons, has an internal structure as shown in FIG.
A neutron source 26 of f-252 is installed, and this neutron source 2
6, a neutron moderator 29 made of polyethylene or the like, a γ-ray shield 30 made of Pb,
A neutron shielding body 31 made of boron-containing paraffin, etc.
γ-ray shielding bodies 32 made of Pb are sequentially arranged. A gamma ray shield 32 is lined within the housing 28 . Neutron moderator 2
9 includes ZrH2, Be (beryllium), heavy water, graphite, etc. instead of polyethylene, and the neutron shield 31
In place of boron-containing paraffin, boron-containing polyester, lithium-containing polyester, or paraffin may be used. The neutron shielding body 31 is arranged outside the neutron moderating body 29, but the neutron moderating body 29, the neutron shielding body 31
The arrangement of the γ-ray shields 30 and 32 is not limited to that shown in FIG.

【0027】しかして、中性子照射部24の内部構造は
、Cf−252の中性子源26を中心に左右対称に形成
され、この中性子照射部24で燃料棒案内管27内を通
過する燃料棒は中性子照射を受け、燃料棒中の核分裂性
物質である235 U, 239Pu,241Puは中
性子を吸収して核分裂反応を起こし、核分裂後時間遅れ
をもって遅発γ線を放出する。
The internal structure of the neutron irradiation section 24 is formed symmetrically around the Cf-252 neutron source 26, and the fuel rods passing through the fuel rod guide tube 27 in this neutron irradiation section 24 receive neutrons. Upon irradiation, the fissile materials 235U, 239Pu, and 241Pu in the fuel rod absorb neutrons, cause a fission reaction, and emit delayed gamma rays with a time delay after fission.

【0028】中性子照射を受けた燃料棒は、続いて中性
子照射後の遅発γ線の燃料棒軸方向分布を測定する手段
である遅発γ線検出部25に案内される。この検出部2
5は遅発γ線バックグラウンド検出部23と同一構成の
γ線検出器で構成され、両γ線検出器はその構成や検出
性能を同じくし、この遅発γ線検出部25により遅発γ
線強度の燃料棒軸方向分布が測定される。
The fuel rod that has been irradiated with neutrons is then guided to a delayed gamma ray detection section 25, which is a means for measuring the distribution of delayed gamma rays in the axial direction of the fuel rod after neutron irradiation. This detection section 2
5 is composed of a gamma ray detector having the same configuration as the delayed gamma ray background detection section 23. Both gamma ray detectors have the same configuration and detection performance.
The fuel rod axial distribution of linear strength is measured.

【0029】図4は正味の遅発γ線強度分布を求める手
段33を示し、この手段は遅発γ線バックグラウンド検
出部23により測定された中性子照射前γ線軸方向分布
データを遅発γ線検出部25により測定された中性子照
射後γ線軸方向分布データから減算し、正味の遅発γ線
軸方向分布データを求めるようになっている。このデー
タ値から実効核分裂性物質量検出手段34により、前も
って求められた遅発γ線強度と実効核分裂性物質量の校
正定数により校正し、実効核分裂性物質の量を求める。 また、この検出手段34は実効核分裂性物質の量の軸方
向分布の変化点より分布変化を検出し、燃料棒に誤って
混入された異常ペレットを検出するようになっている。
FIG. 4 shows means 33 for determining the net delayed gamma ray intensity distribution, and this means converts the pre-neutron irradiation gamma ray axial distribution data measured by the delayed gamma ray background detection section 23 into delayed gamma rays. This is subtracted from the post-neutron irradiation γ-ray axial distribution data measured by the detection unit 25 to obtain net delayed γ-ray axial distribution data. This data value is calibrated by the effective fissile material amount detection means 34 using the delayed gamma ray intensity determined in advance and the calibration constant for the effective amount of fissile material to determine the amount of effective fissile material. Further, this detection means 34 detects a distribution change from a change point in the axial distribution of the amount of effective fissile material, and detects an abnormal pellet that has been mixed into the fuel rod by mistake.

【0030】[0030]

【発明の効果】以上説明したように、本発明に係る原子
炉用燃料棒の非破壊検査装置によれば、中性子照射後の
遅発γ線強度の燃料棒軸方向分布を測定する手段と同じ
検出手段により、燃料棒から放出されるγ線強度の燃料
棒軸方向分布を中性子照射前に測定し、このデータを中
性子照射後のデータから減算し、正味の遅発γ線強度を
求めるので、燃料棒の同位体比が変化して、燃料棒から
のγ線が変化しても、遅発γ線が精度良く測定でき、し
たがって精度良く実効核分裂性物質の量およびその分布
変化を測定できる。
Effects of the Invention As explained above, according to the non-destructive testing device for nuclear reactor fuel rods according to the present invention, the method is the same as the means for measuring the distribution of delayed gamma ray intensity in the fuel rod axial direction after neutron irradiation. The detection means measures the fuel rod axial distribution of gamma ray intensity emitted from the fuel rod before neutron irradiation, and subtracts this data from the data after neutron irradiation to obtain the net delayed gamma ray intensity. Even if the isotopic ratio of the fuel rod changes and the gamma rays from the fuel rod change, the delayed gamma rays can be measured with high precision, and therefore the amount of effective fissile material and changes in its distribution can be measured with high precision.

【0031】また、中性子照射前、後の2台のγ線検出
器は形状および検出性能が同じで、中性子源を中心とし
て対称の位置に置かれ、2台のγ線検出器と中性子源と
の間の中性子減速体、中性子遮蔽体、γ線遮蔽体などの
構造物も対称に配置されているので、Cf−252等の
中性子源に起因するバッググランドγ線が2台のγ線検
出器に入射する頻度が同等となり、前後データの減算の
際に中性子源に起因するバックグランドγ線が正味の遅
発γ線データに残ることがなく、精度良い測定ができる
Furthermore, the two gamma ray detectors before and after neutron irradiation have the same shape and detection performance, and are placed in symmetrical positions with the neutron source as the center. Structures such as a neutron moderator, neutron shield, and gamma ray shield between the two are also arranged symmetrically, so that background gamma rays caused by neutron sources such as Cf-252 can be detected between the two gamma ray detectors. The frequency of incidence on the neutron source becomes the same, and when subtracting the before and after data, background gamma rays caused by the neutron source do not remain in the net delayed gamma ray data, allowing highly accurate measurements.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明に係る原子炉用燃料棒の非破壊検査装置
の一実施例を示す図。
FIG. 1 is a diagram showing an embodiment of a non-destructive testing device for nuclear reactor fuel rods according to the present invention.

【図2】原子炉用燃料棒に充填される核種のγ線エネル
ギとγ線計数との関係を示す図。
FIG. 2 is a diagram showing the relationship between the γ-ray energy of nuclides filled in nuclear reactor fuel rods and the γ-ray count.

【図3】本発明の原子炉用燃料棒の非破壊検査装置の一
実施例に相当する中性子照射部の内部構造を示す図。
FIG. 3 is a diagram showing the internal structure of a neutron irradiation section corresponding to an embodiment of the non-destructive testing device for nuclear reactor fuel rods of the present invention.

【図4】中性子照射前γ線と中性子照射後のγ線を組み
合せて実効核分裂性物質量を求める方法を示す図。
FIG. 4 is a diagram showing a method for determining the effective amount of fissile material by combining gamma rays before neutron irradiation and gamma rays after neutron irradiation.

【図5】従来の原子炉用燃料棒の非破壊検査装置を示す
図。
FIG. 5 is a diagram showing a conventional non-destructive inspection device for nuclear reactor fuel rods.

【符号の説明】[Explanation of symbols]

20  原子炉用燃料棒の非破壊検査装置21  透過
γ線検出部 22  γ線スペクトル検出部 23  遅発γ線バックグラウンド検出部(中性子照射
前のγ線強度の燃料棒軸方 向分布の測定手段) 24  中性子照射部(中性子照射手段)25  遅発
γ線検出部(中性子照射後の遅発γ線の燃料棒軸方向分
布測定手段) 26  中性子源 27  燃料棒案内管 28  ハウジング 29  中性子減速体 30,32  γ線遮蔽体 31  中性子遮蔽体
20 Non-destructive inspection device for nuclear reactor fuel rods 21 Transmitted gamma ray detection section 22 Gamma ray spectrum detection section 23 Delayed gamma ray background detection section (means for measuring the fuel rod axial distribution of gamma ray intensity before neutron irradiation) 24 Neutron irradiation section (neutron irradiation means) 25 Late gamma ray detection section (fuel rod axial distribution measuring means of delayed gamma rays after neutron irradiation) 26 Neutron source 27 Fuel rod guide tube 28 Housing 29 Neutron moderator 30, 32 γ-ray shield 31 Neutron shield

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  燃料棒に中性子を照射する手段と、中
性子照射前に燃料棒から放出されるγ線強度の燃料棒軸
方向分布を測定する手段と、中性子照射後に前記燃料棒
から放出される遅発γ線の燃料棒軸方向分布を測定する
前記γ線強度測定手段と同じ構成の測定手段と、中性子
照射後のγ線軸方向分布データから中性子照射前のγ線
軸方向分布データを減算し正味の遅発γ線強度分布を求
める手段と、求めた正味の遅発γ線強度分布から実効核
分裂性物質の量および分布変化を検出する検出手段を有
することを特徴とする原子炉用燃料棒の非破壊検査装置
1. A means for irradiating a fuel rod with neutrons, a means for measuring a fuel rod axial distribution of gamma ray intensity emitted from the fuel rod before neutron irradiation, and a means for measuring γ-ray intensity emitted from the fuel rod after neutron irradiation. A measuring means having the same configuration as the gamma ray intensity measuring means for measuring the fuel rod axial distribution of delayed gamma rays, and a measuring means having the same configuration as the gamma ray intensity measuring means described above, and a measuring means that subtracts the gamma ray axial distribution data before neutron irradiation from the gamma ray axial distribution data after neutron irradiation, and calculates the net value. A fuel rod for a nuclear reactor, characterized in that it has a means for determining the delayed gamma ray intensity distribution of the net delayed gamma ray intensity distribution, and a detection means for detecting the amount and distribution change of effective fissile material from the determined net delayed gamma ray intensity distribution. Non-destructive testing equipment.
【請求項2】  燃料棒に中性子を照射する手段はカリ
フォルニウム−252等の中性子源を有し、中性子照射
前に燃料棒から放出されるγ線強度の燃料棒軸方向分布
を測定する手段と中性子照射後に前記燃料棒から放出さ
れる遅発γ線強度の燃料棒軸方向分布を測定する手段と
は形状および検出性能が等しいγ線検出器であり、前記
両γ線検出器を、中性子を照射する中性子源を中心とし
た対称位置に設け、上記中性子源と両γ線検出器との間
に少なくとも中性子減速体、中性子遮蔽体およびγ線遮
蔽体を前記中性子源を中心としてほぼ対称に配置したこ
とを特徴とする原子炉用燃料棒の非破壊検査装置。
2. The means for irradiating the fuel rod with neutrons includes a neutron source such as Californium-252, and means for measuring the axial distribution of gamma ray intensity emitted from the fuel rod before irradiating the fuel rod with neutrons. The means for measuring the fuel rod axial distribution of delayed gamma ray intensity emitted from the fuel rod after neutron irradiation is gamma ray detectors having the same shape and detection performance. A neutron source to be irradiated is provided at a symmetrical position with respect to the neutron source as the center, and at least a neutron moderator, a neutron shield, and a γ-ray shield are arranged approximately symmetrically with respect to the neutron source between the neutron source and both gamma ray detectors. A non-destructive inspection device for nuclear reactor fuel rods.
JP3053106A 1991-02-26 1991-02-26 Nondestructive inspection system for fuel rods for nuclear reactors Expired - Lifetime JP2526392B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3053106A JP2526392B2 (en) 1991-02-26 1991-02-26 Nondestructive inspection system for fuel rods for nuclear reactors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3053106A JP2526392B2 (en) 1991-02-26 1991-02-26 Nondestructive inspection system for fuel rods for nuclear reactors

Publications (2)

Publication Number Publication Date
JPH04269697A true JPH04269697A (en) 1992-09-25
JP2526392B2 JP2526392B2 (en) 1996-08-21

Family

ID=12933542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3053106A Expired - Lifetime JP2526392B2 (en) 1991-02-26 1991-02-26 Nondestructive inspection system for fuel rods for nuclear reactors

Country Status (1)

Country Link
JP (1) JP2526392B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008026071A (en) * 2006-07-19 2008-02-07 Mitsubishi Nuclear Fuel Co Ltd Method and device for testing fuel rod
JP2010261818A (en) * 2009-05-08 2010-11-18 Toshiba Corp Method and device for measuring concentration of burnable poison
ES2391522A1 (en) * 2008-12-26 2012-11-27 Korea Nuclear Fuel Co., Ltd. Detector of defects in fuel bars using a neutron generator. (Machine-translation by Google Translate, not legally binding)
JP2013506122A (en) * 2009-09-28 2013-02-21 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Method for determining the isotope ratio of fissile material contained in a fission chamber
JP2014048089A (en) * 2012-08-30 2014-03-17 Hitachi-Ge Nuclear Energy Ltd Criticality monitoring method of nuclear fuel material
JP2014070920A (en) * 2012-09-27 2014-04-21 Toshiba Corp Nuclear fuel burnup estimation device, method, and program
CN111799003A (en) * 2020-06-05 2020-10-20 江苏核电有限公司 Method for positioning damaged fuel assembly

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0283497A (en) * 1988-08-31 1990-03-23 General Electric Co <Ge> Nuclear fuel rod nondestructive testing apparatus and method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0283497A (en) * 1988-08-31 1990-03-23 General Electric Co <Ge> Nuclear fuel rod nondestructive testing apparatus and method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008026071A (en) * 2006-07-19 2008-02-07 Mitsubishi Nuclear Fuel Co Ltd Method and device for testing fuel rod
ES2391522A1 (en) * 2008-12-26 2012-11-27 Korea Nuclear Fuel Co., Ltd. Detector of defects in fuel bars using a neutron generator. (Machine-translation by Google Translate, not legally binding)
JP2010261818A (en) * 2009-05-08 2010-11-18 Toshiba Corp Method and device for measuring concentration of burnable poison
JP2013506122A (en) * 2009-09-28 2013-02-21 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Method for determining the isotope ratio of fissile material contained in a fission chamber
JP2014048089A (en) * 2012-08-30 2014-03-17 Hitachi-Ge Nuclear Energy Ltd Criticality monitoring method of nuclear fuel material
JP2014070920A (en) * 2012-09-27 2014-04-21 Toshiba Corp Nuclear fuel burnup estimation device, method, and program
CN111799003A (en) * 2020-06-05 2020-10-20 江苏核电有限公司 Method for positioning damaged fuel assembly

Also Published As

Publication number Publication date
JP2526392B2 (en) 1996-08-21

Similar Documents

Publication Publication Date Title
US3636353A (en) Method and apparatus for the nondestructive assay of bulk nuclear reactor fuel using 1 kev. to 1 mev. range neutrons
US4617169A (en) Measurement of radionuclides in waste packages
EP1576618B1 (en) Method and apparatus for carrying out a mox fuel rod quality control
US3728544A (en) Method and apparatus for measurement of concentration of thermal neutron absorber contained in nuclear fuel
US6134289A (en) Thermal neutron detection system
JP2526392B2 (en) Nondestructive inspection system for fuel rods for nuclear reactors
US3736429A (en) Random source interrogation system
JP6038575B2 (en) Nuclear fuel burnup evaluation apparatus, method and program
JP4601838B2 (en) Burnup evaluation method and apparatus
CN111736201A (en) Nuclear fuel rod active detection system and method
JPH10123070A (en) Hydrogen content analyzer
JP3103361B2 (en) Measurement method of burnup of nuclear fuel
US4409480A (en) Method and system for the testing and calibration of radioactive well logging tools
KR910007717B1 (en) Method and apparatus to determine the activity volume and to estimate the plutonium mass contained in waste
Kull et al. Guidelines for gamma-ray spectroscopy measurements of 235U enrichment
JP2018205070A (en) Radiation measurement device
JP2000221293A (en) Device and method for measuring burnup of fuel for nuclear reactor
JP4723966B2 (en) Np content inspection method and Np content inspection device
JP3830644B2 (en) Fuel assembly verification method and verification system
JPH04326095A (en) Criticality surveillance monitor for neutron multiplication system
Miller et al. Advanced Fuel Cycle Safeguards
JPH05249281A (en) Nondestructive inspection device for nuclear reactor fuel rod
JPH01127997A (en) Non-destructive inspection apparatus for fuel rod for nuclear reactor
CN113851237A (en) Nuclear fuel rod PuO2Abundance online detection method and system
RU2316064C2 (en) Method and device for quality control of mox fuel rods

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term