JPS6345327A - Method for controlling charging of raw material to sintering machine - Google Patents

Method for controlling charging of raw material to sintering machine

Info

Publication number
JPS6345327A
JPS6345327A JP18945586A JP18945586A JPS6345327A JP S6345327 A JPS6345327 A JP S6345327A JP 18945586 A JP18945586 A JP 18945586A JP 18945586 A JP18945586 A JP 18945586A JP S6345327 A JPS6345327 A JP S6345327A
Authority
JP
Japan
Prior art keywords
pallet
sintering
raw material
density
transverse direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18945586A
Other languages
Japanese (ja)
Other versions
JPH0668137B2 (en
Inventor
Kazuyoshi Yamaguchi
一良 山口
Motoharu Saito
元治 斎藤
Eiichi Shimozawa
下沢 栄一
Hiroshi Nishikawa
広 西川
Katsuhiko Yui
湯井 勝彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP61189455A priority Critical patent/JPH0668137B2/en
Publication of JPS6345327A publication Critical patent/JPS6345327A/en
Publication of JPH0668137B2 publication Critical patent/JPH0668137B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To control the raw material density in the transverse direction of a sintering pallet and to improve the product yield of sintered ore for a blast furnace by detecting the raw material density on the pallet, comparing the same with a set density and controlling the opening of divided gates of a drum feeder at the time of producing the sintered ore with a DL type sintering machine. CONSTITUTION:A raw material feeding gate 3 is formed of >=3 pieces of the divided gates 4 and gamma ray density meters 7 are inserted into the packed raw materials on the pallet corresponding thereto at the time of feeding the sintering raw material in a charge hopper 1 of the DL type sintering machine and igniting the material to sinter the same. The raw material density in the transverse direction of the pallet detected by the density meters 7 is inputted to a signal processor 8 which compares the number of the gamma ray counts determined by the same and the difference of the packing density in the transverse direction of the sintering pallet from a setting board 10 for the difference of the packing density in the transverse direction of the pallet. The opening of the divided gates 4 is so adjusted by a control device 11 to adjust the difference equal to the set density difference. The thermal hysteresis at both ends in the transverse direction of the pallet is uniformized over the entire part in the transverse direction, by which the sintering yield of the packed raw material is improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、DL式焼結礒に於いて、焼結パレットに装入
し友配合原料の焼結パレット幅方向の熱履歴を均一化さ
せるようにした焼結原料の装入方法に胸する。
Detailed Description of the Invention (Industrial Field of Application) The present invention, in a DL type sintering machine, uniformizes the thermal history of mixed raw materials in the width direction of the sintered pallet when charged into the sintered pallet. I am impressed by the method of charging raw materials for sintering.

(従来の技術) 連続下方吸引焼結機ゆいては、循環移動する無端状のノ
ぐレットの始端側に設けfc原料装入ホッパーに配合原
料全一旦装入し、この装入ホッパーのゲートからドラム
フィーダーによって配合原料が定量ずつ切出されパレッ
ト上に供給される。パレット内に装入されfc原料(充
填原料と称す)は点火炉内を通過する際その表面に涜火
され、ウインドゼツクス全介して排風機によって吸気し
、充填原料層の上J−から下ノーにかけて通気させなが
ら原料の焼成が行われ、この原料の焼成は排鉱部に至る
間に完了し、焼結鉱として排鉱部で/eフレットり落下
し排出される。
(Prior art) In a continuous downward suction sintering machine, all blended raw materials are once charged into an FC raw material charging hopper, which is installed at the starting end of an endless noglet that circulates, and the raw materials are fed from the gate of this charging hopper. A drum feeder cuts out a fixed amount of raw materials and supplies them onto a pallet. When the fc raw material charged into the pallet (referred to as the filling raw material) passes through the ignition furnace, it is ignited on the surface, and air is sucked in by the exhaust fan through the entire wind system, and the FC raw material (referred to as the filling raw material) is ignited from the top of the filling raw material layer to the bottom. The raw material is fired while being aerated over the nozzle, and the firing of this raw material is completed before it reaches the ore discharge section, where it falls as sintered ore and is discharged.

焼結鉱は扁炉装入物として最も多量に使用されているた
め、その冷間強度(SI)、還元粉化性(RDI)、等
の品質の安定を前提とし之製造コストの削減に重要であ
る。又、焼結鉱の製造コストのSiJ @ kはかる上
で、焼結パレット上で焼成された焼結鉱にたいする成品
焼結鉱の割合(以下焼結歩留と称す)を上昇させること
は重要なことである。
Since sintered ore is used in the largest amount as a charge for flat furnaces, it is important to ensure stable quality such as cold strength (SI) and reduction pulverizability (RDI), which is important for reducing manufacturing costs. be. In addition, when measuring the manufacturing cost of sintered ore, it is important to increase the ratio of finished sintered ore to the sintered ore fired on the sintering pallet (hereinafter referred to as sintering yield). That's true.

焼結歩留にはパレット上の充填原料の焼成時の通気抵抗
が大きく影響するが、焼結パレット幅方向での充填原料
の通気性はサイドウオールと充填原料間での壁効果によ
り通気抵抗が低下すること。
The sintering yield is greatly influenced by the ventilation resistance of the filling material on the pallet during firing, but the ventilation resistance of the filling material in the width direction of the sintered pallet is affected by the wall effect between the sidewall and the filling material. to decline.

装入ホラA−から供給する配合原料の粒度が焼結ノセレ
ットの両端部で粗粒化傾同となること、焼結、パレット
間での漏風が存在すること1等によって焼結パレット内
充填原料の両端部は中央部と比較して、通気性過多のた
め焼成時の風量が増加し過剰となる。このことは両端部
の充填原料層内の熱履歴(温度曲線)が中央部と比較し
て早めに温度上昇が始まり、かつ早めに焼成が完了する
事に成り、その結果焼結歩留を維持する為に必要な焼成
時の層内高温保持時間が両端部では著しく低下し、焼結
歩留低下の大きな原因となっていた。
The particle size of the blended raw material supplied from the charging hole A- tends to become coarser at both ends of the sintered nocelet, and the presence of air leakage between the pallets due to sintering and the like. Compared to the center, both ends have excessive air permeability, so the air volume during firing increases and becomes excessive. This means that the thermal history (temperature curve) in the packed raw material layer at both ends starts to rise in temperature earlier than in the center, and sintering is completed earlier, thus maintaining the sintering yield. The time needed to hold the layer at high temperature during firing, which is required to achieve this, is significantly reduced at both ends, which is a major cause of a decrease in sintering yield.

このため従来は、焼結パレット両唱部での焼結歩留低下
を解消するため装入ホッパーに配合原料を装入する際に
焼結パレット幅方向で両端部で細粒、中央部に粗粒が装
入されるように偏析装入する方法があるが、どの程度ま
で焼結パレット幅方向で粒度偏析をつけるのが適切なの
かその基準となる情報がなく、日常の操業変蛎に対応し
得る制御系であるとは言い難い。又、焼結パレット幅方
向での充填密度を制御する方法として、装入ホッパーか
らの配合原料切出し時に於いて、焼結パレット幅方向で
切出しゲートを分割して切出しゲート毎に配合原料の切
出し食を調整できるようにし、かつ焼結パレット幅方向
の焼結機進行方向での排ガス温度パターンを検出できる
ようにウィンドボックスに熱電対を設置し、焼結パレッ
ト幅方向の排ガス温[/”ターンの差が解消するように
配合原料の切出し竜を制御する方法(例えば1%開昭6
0−129590号公報等)がある。しかし、ウィンド
ボックスの排ガス温度は焼結パレット下部とウィンドボ
ックス間のシール部からの漏風などの影響を受けるため
、必ずしも精度良く焼結パレット幅方向の焼成状況を表
示しているとは言い難く、又焼結機進行方向の排鉱側で
の排ガス温度を検出して制御する事から、制御系に時間
遅れを生じるなど満足する制御効果は得られていないの
が実状であった。
For this reason, conventionally, in order to eliminate the decrease in sintering yield at both ends of the sintering pallet, when charging the mixed raw materials into the charging hopper, in the width direction of the sintering pallet, fine grains were formed at both ends and coarse grains were formed at the center. There is a method of segregation charging so that grains are charged, but there is no standard information on how far it is appropriate to create grain size segregation in the width direction of the sintered pallet, and this method is suitable for daily operational variations. It is difficult to say that it is a control system that can be used. In addition, as a method of controlling the packing density in the width direction of the sintered pallet, when cutting out the mixed raw materials from the charging hopper, the cutting gate is divided in the width direction of the sintered pallet, and the cutting density of the mixed raw material is controlled at each cutting gate. A thermocouple is installed in the wind box so that the exhaust gas temperature pattern in the sintering machine movement direction in the width direction of the sintering pallet can be adjusted. A method of controlling the cutting rate of blended raw materials so as to eliminate the difference (for example, 1% Kasho 6
0-129590, etc.). However, since the exhaust gas temperature of the wind box is affected by air leakage from the seal between the lower part of the sintering pallet and the wind box, it is difficult to say that the firing status in the width direction of the sintering pallet is always accurately displayed. In addition, since the temperature of the exhaust gas on the discharge side of the sintering machine is detected and controlled, a time delay occurs in the control system, and a satisfactory control effect cannot be obtained.

つまり、現在性われている配合原料の焼結パレツ冒装入
方法は、焼結パレット幅方向の充填状態から考えた場合
、日常の操業変動の中で、必ずしも原料の充填構造が均
一焼成と成る充填密度に制御されておらず、その結果焼
結パレットの両端部で焼結歩留の低下が避けられない状
態であつ九(発明が解決しようとする問題点) 本発明はかかる問題を解決し、焼結配合原料を焼結パレ
ット上に装入する際、焼結パレットの両端部での通気過
剰による焼結歩留の低下を適正な焼結パレット幅方向の
充填密度制御により改善する焼結原料の装入方法を提供
する。
In other words, the currently available method of charging compounded raw materials into sintered pallets does not necessarily result in uniform firing of the raw material packing structure under daily operational fluctuations, considering the filling state in the width direction of the sintered pallets. The packing density is not controlled, and as a result, a decrease in sintering yield at both ends of the sintering pallet is unavoidable (Problem to be Solved by the Invention) The present invention solves this problem. , Sintering that improves the reduction in sintering yield due to excessive ventilation at both ends of the sintering pallet by appropriately controlling the packing density in the width direction of the sintering pallet when charging the sintering compound raw materials onto the sintering pallet. Provide a method for charging raw materials.

(問題点を解決するための手段) 不発明は、装入ホッパーから焼結配合原料を切出して焼
結パレットに装入する箇結配合原料装入方法において、
装入ホッパーの切出しゲートを少、なくとも焼結パレッ
ト幅方向で3以上に分割すΣ゛−とともに分割された各
ゲートにおける配合原料供給量を調節可能とし、充填原
料の充填密度をドラムフづ−ダー下方の焼結パレット上
でl線密度計により分割され九各ゲートと対応させて検
出し、前記r線密度計で検出した各ゲートの充填密度分
布を予め設定した焼結パレット幅方向の充填密度分布と
等しくなるように分割された各ゲートの配合原料供給量
を調節することを特徴とする焼結機の原料装入制御方法
である。
(Means for Solving the Problems) The present invention provides a method for charging sintered raw materials by cutting out sintered raw materials from a charging hopper and charging them into a sintering pallet.
The cutting gate of the charging hopper is divided into at least three or more parts in the width direction of the sintering pallet, and the amount of raw material supplied at each divided gate can be adjusted, and the packing density of the raw material can be adjusted from drum to drum. Filling in the width direction of the sintered pallet is detected on the sintered pallet below the sintered pallet by the l-linear densitometer and detected in correspondence with each gate, and the packing density distribution of each gate detected by the r-linear densitometer is set in advance. This is a raw material charging control method for a sintering machine characterized by adjusting the amount of mixed raw material supplied to each divided gate so as to be equal to the density distribution.

に、装入ホッパー1の原料切出し口に設けた切出しゲー
ト3の内部に焼結パレット幅方向で少なくとも3点以上
に分割された分割ゲート4を設け。
In addition, a dividing gate 4 divided into at least three points in the width direction of the sintering pallet is provided inside the cutting gate 3 provided at the raw material cutting opening of the charging hopper 1.

油圧シリンダ5を作VJJ調整する事により分割ゲート
4を昇降させ、これによって分割された各ゲートの配合
原料供給量を増減調節する事ができるようにする。
By adjusting the hydraulic cylinder 5 in VJJ, the divided gate 4 is raised and lowered, thereby making it possible to increase or decrease the amount of raw materials supplied to each divided gate.

分割ゲート4の分割数1分割距離は焼結機のパレット幅
方向の充填密度の特性、切出し原料のAレット幅方向の
特性によって決定すべきであり、中央部、両ん部とに分
割するので少なくとも3分割以上にすることが必須であ
る。
The number of divisions and the division distance of the division gate 4 should be determined based on the characteristics of the packing density in the width direction of the pallet of the sintering machine and the characteristics of the cut raw material in the width direction of the A-let. It is essential to divide it into at least three parts.

更に本発明においては、81図(()、(ロ)に示す様
にドラムフィーダー2下方の充填原料12に分割された
各ゲートに対応してγ線密度計7を挿入し、分=’lさ
れた各ゲート毎に充填密度を検出できる様にする。VC
いて、検出し念γ線を信号処理装置8によって予め設定
した信号処理時間毎K・γ線カウント数(計数値)を1
とめ、演算処理装f9へ通信する。演算処理装置f9で
は信号処理装置8からのrmカワント数からあらかじめ
設定している検量線に基づいて充填密度を求めると共に
、幅方向光j!Aff1度差設定盤10から設定された
焼結パレット嘉方同での充填密度差と! 6+11され
念ゲート毎の充填密度差の差異を求め、実測充填密度差
を設定光8u号度差と等しくするために必要な分割ゲー
トの開度制御量を求める。続いて制御装置11は求めら
れた分割ゲート制御量によって油圧シリンダー5を所定
制御量コントロールし、各ゲート毎の分割ゲーHの開度
を調整する。
Furthermore, in the present invention, as shown in FIGS. 81 (() and (b), a γ-ray densitometer 7 is inserted corresponding to each gate divided into the filling material 12 below the drum feeder 2, and minute='l The packing density can be detected for each gate.VC
Then, the signal processing device 8 detects the K gamma ray count (count value) per preset signal processing time by 1.
and communicates to the arithmetic processing unit f9. The arithmetic processing unit f9 calculates the packing density from the rm quant number from the signal processing unit 8 based on a preset calibration curve, and also calculates the width direction light j! Filling density difference in sintered pallet Kagata set from Aff1 degree difference setting board 10 and! 6+11, the difference in the filling density difference for each gate is determined, and the opening control amount of the divided gates required to make the measured filling density difference equal to the set light 8u degree difference is determined. Subsequently, the control device 11 controls the hydraulic cylinder 5 by a predetermined control amount using the obtained divided gate control amount, and adjusts the opening degree of the divided gate H for each gate.

γ線密度計7の設置位置は、焼結パレット幅方向では、
検出した充填゛そ度より各ゲート毎の配合原料供給量を
調節することを考慮すると、それぞれの分割ゲート4の
中心部に設置することが望ましい、また、焼結ベツド高
さ方向では、それぞれの焼結パレット幅方向位置での平
均値を検出するという意味で、中心部に設置することが
望ましい。
The installation position of the γ-ray density meter 7 is as follows in the width direction of the sintered pallet:
Considering that the amount of mixed raw materials supplied for each gate is adjusted based on the detected filling degree, it is desirable to install it at the center of each dividing gate 4. Also, in the sintering bed height direction, each It is desirable to install it at the center in order to detect the average value at the position in the width direction of the sintered pallet.

ただし、中心部が必ずしも焼結ペラ1高さ方向での平均
的な充填密度を示しているとは限らないため、基本的に
は焼結ペラ1高さ方向での充填蟹度分布を把握して決定
すべきである。
However, since the center does not necessarily indicate the average packing density in the height direction of the sintered propeller, it is basically necessary to understand the packing density distribution in the height direction of the sintered pellet. The decision should be made based on the

ここで配合原料の充填密度を測定する際にr線を用いた
理由は次a口くである。焼結配合原料の焼結ノ七レット
幅方向の充填密度を制御する目的は、焼結配合原料の焼
結、<レット幅方向の通気抵抗を適正化する事にある。
The reason why R-rays were used to measure the packing density of the blended raw materials is as follows. The purpose of controlling the packing density of the sintering compound raw material in the width direction of the sintering hole is to optimize the ventilation resistance in the sintering and let width direction of the sintering compound raw material.

つ1ジ、基本的には焼結パレット幅方向の通気抵抗の実
態を検出することが望ましい、但し、通気抵抗、充填″
8!匿、粒度とは密接な関係がある事から通気抵抗、充
填密度5粒度のいずれかを検出できれば情報としては充
分である。
First, it is basically desirable to detect the actual state of airflow resistance in the width direction of the sintered pallet.However, airflow resistance, filling''
8! Since there is a close relationship with density and particle size, it is sufficient information if either ventilation resistance or packing density of the five particle sizes can be detected.

従来技術としての通気抵抗を測定する方法としては、充
填原料層内に通気、?イブを装入し空気を吹きつけてそ
の背圧によって通気抵抗を測定する方法があるが、通気
穴への原料付着によって必要とする精度を得る事が困難
である。又、焼結パレット幅方向のガス流量を検出して
通気抵抗を求める方法もあるが、パレット下部とつ1ン
ドゼツクス間の漏風の影響等を受ける九め精度上問題が
ある。又、粒度を検出する方法として画像処理、η波、
高速度カメラを用いる方法があるが、いずれの方法も焼
結配合原料がスローピングシュートを経て焼結ノセレッ
トに装入されている焼結配合原料の粒子が転勤している
表面、所謂移動層の表面を検出するものであるため、実
際装入された充填原料の焼結ベツドに於ける情報とは言
えず精度上問題がある。
Conventional methods for measuring ventilation resistance include ventilation within the packed raw material layer. There is a method of measuring ventilation resistance by inserting a tube and blowing air and measuring the back pressure, but it is difficult to obtain the required accuracy due to the material adhering to the ventilation hole. There is also a method of determining the ventilation resistance by detecting the gas flow rate in the width direction of the sintered pallet, but this method has problems with accuracy due to the influence of air leakage between the lower part of the pallet and the first index. In addition, image processing, η waves,
There is a method using a high-speed camera, but in both methods, the sintered compounded material passes through the sloping chute and is charged into the sintering nocelet.The surface where the particles of the sintered compounded material are transferred, the surface of the so-called moving layer. Since this method detects information on the sintered bed of the filling material that is actually charged, there is a problem in terms of accuracy.

これらの方法に対し、r線密度計により充填密度を検出
する方法では、実際に挿入された部分のv!!度を検出
する事、通気パイプによる測定方法に於ける原料付着等
による精度上の問題がなく本発明者等の調査結果ではγ
線’i!5度計では必要とされる検出精度を充分に満足
する事ができる。
In contrast to these methods, the method of detecting the filling density using an r-line densitometer detects the v! ! There are no accuracy problems due to material adhesion in the measurement method using a ventilation pipe, and the inventors' investigation results show that γ
Line 'i! The 5-degree meter can fully satisfy the required detection accuracy.

このように、本発明に於いては、配合原料が焼結/1’
レツトに装入されたM後に於ける分割された各ゲート毎
の充填密度を検出し、その時の各ゲート毎の充填密度差
に応じて分割ゲートを手動又は自動制御によって作動さ
せ、各ゲート毎の原料切出し量を増減させる。これによ
り焼結パレットに装入された充填原料の焼結パレット幅
方向での充填密度が適正値と成る。その結果、焼結パレ
ット幅方向での通気抵抗が適正化され、焼結パレット幅
方向での焼成時での熱履歴の不均一が低減され、焼結−
セレット両端部での焼結歩留の低下が回春される。
In this way, in the present invention, the blended raw materials are sintered/1'
The packing density of each divided gate after M is charged into the let is detected, and the dividing gate is operated manually or automatically according to the difference in packing density of each gate at that time. Increase or decrease the amount of raw material cut out. As a result, the packing density of the filling material charged into the sintering pallet in the width direction of the sintering pallet becomes an appropriate value. As a result, the ventilation resistance in the width direction of the sintering pallet is optimized, the uneven thermal history during firing in the width direction of the sintering pallet is reduced, and the sintering
The decrease in sintering yield at both ends of the ceret is rejuvenated.

(実施例) 第4図に示すように、焼結パレット幅方向の充填で変の
制#Jを行う分割ゲート4は焼結パレット幅方向で対称
構造となるように設は喪。焼結パレット幅3500mを
両端側250m、中央側10UOm×3個として5分割
した。
(Example) As shown in FIG. 4, the dividing gate 4 that controls the change in filling in the width direction of the sintered pallet is designed to have a symmetrical structure in the width direction of the sintered pallet. A sintered pallet with a width of 3500 m was divided into 5 pieces: 250 m on both ends and 10 UOm on the center side.

r線密度針7の設置位置は、焼結ノセレット幅方同では
各分割ゲート4の中心とし、焼結ベツド高さ方向では増
厚の中心とした。
The installation position of the r-line density needle 7 was at the center of each dividing gate 4 in the width direction of the sintered nozzle, and at the center of the increase in thickness in the height direction of the sintered bed.

本発明の実施前後に於ける焼結パレット断面の焼結歩留
分布調査結果を第5図(1)、(ロ)に示す。本発明の
実施前は第5図(イ)に示すように焼結・々レット両端
部での焼結歩留の低下が著しいが1本発明の実施によっ
て第5図(ロ)に示すように焼結パレット両端部での焼
結歩留が向上し、焼結パレット断面の焼結歩留が同上し
ている。このように焼結/eレット幅方回での充填原料
の充填密度が適正となるように分割ゲート4からの原料
切出し量が制御されるため、焼結パレット幅方向での焼
成される際の熱履歴が均一化され、焼結歩留の向上を図
ることができるようになった。
The results of the sintering yield distribution survey of the cross section of the sintered pallet before and after implementation of the present invention are shown in FIGS. 5(1) and 5(b). Before implementing the present invention, as shown in Figure 5 (a), the sintering yield at both ends of the sintered sheet was markedly reduced; however, by implementing the present invention, as shown in Figure 5 (b), The sintering yield at both ends of the sintered pallet is improved, and the sintering yield at the cross section of the sintered pallet is the same as above. In this way, the amount of material cut out from the dividing gate 4 is controlled so that the packing density of the filling material in the sintering/e-let width direction is appropriate, so that The thermal history has been made uniform, making it possible to improve the sintering yield.

(発明の効果) 以上述べたように、本発明によればパレット幅方向にお
ける焼結歩留を同上させることが可能となり、従って全
体の焼結歩留をも向上させることができるものである。
(Effects of the Invention) As described above, according to the present invention, it is possible to increase the sintering yield in the pallet width direction, and therefore the overall sintering yield can also be improved.

【図面の簡単な説明】 第1図(イ)、沖)は本発明の方法に使用する配合原料
装入部の一例の断面図、正面図、 第2図は分割ゲートの断面図。 第3図は分割ゲートの正面図、 第4図は本発明の実施例における配合原料装入部の断面
図、 第5図(イ)、(ロ)は本発明実施前後における焼結パ
レット断面での焼結歩留分布調査結果の比較を示す図で
ある。 1・・・装入ホッパー、2・・・ドラムフづ一ダー、3
・・・切出しゲート、4・・・分割ゲート、5・・・油
圧シリング、6・・・スローピンクスレート、7−・−
γ線密度針% 8・・・信号処理装置、9・・・演算処
理装置、10・・・幅方同充填@度差設定盤、11・・
・制御装置、12・・・充填原料。 代理人 弁理士 秋 沢 政 元 他1名岸2回 ′73図 74図 ア5図 (イ) (手切瀬り后歩留1?l’2’l) (ロ)
[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1(A) is a sectional view and a front view of an example of a raw material charging part used in the method of the present invention, and FIG. 2 is a sectional view of a dividing gate. Figure 3 is a front view of the dividing gate, Figure 4 is a sectional view of the raw material charging section in an embodiment of the present invention, and Figures 5 (a) and (b) are cross sections of the sintered pallet before and after implementing the present invention. FIG. 3 is a diagram showing a comparison of sintering yield distribution survey results. 1...Charging hopper, 2...Drum fuser, 3
...cutting gate, 4...dividing gate, 5...hydraulic silling, 6...slow pink slate, 7-...-
γ-ray density needle % 8... Signal processing device, 9... Arithmetic processing device, 10... Equal filling in width @ degree difference setting board, 11...
- Control device, 12... Filling raw material. Agent Patent attorney Masamoto Aki Sawa and 1 other name Kishi 2'73 Figure 74 Figure A 5 (A) (After Tekirise yield 1?l'2'l) (B)

Claims (1)

【特許請求の範囲】[Claims] (1)装入ホッパーから焼結配合原料を切出して焼結パ
レットに装入する焼結配合原料装入方法において、装入
ホッパーの切出しゲートを少なくとも焼結パレット幅方
向で3以上に分割するとともに分割された各ゲートにお
ける配合原料供給量を調節可能とし、充填原料の充填密
度をドラムフィーダー下方の焼結パレット上でγ線密度
計により分割された各ゲートと対応させて検出し、前記
γ線密度計で検出した各ゲートの充填密度分布を予め設
定した焼結パレット幅方向の充填密度分布と等しくなる
ように分割された各ゲートの配合原料供給量を調節する
ことを特徴とする焼結機の原料装入制御方法。
(1) In a sintering compound material charging method in which the sinter compound material is cut out from a charging hopper and charged into a sintering pallet, the cutting gate of the charging hopper is divided into at least three or more parts in the width direction of the sintering pallet, and The amount of mixed raw material supplied at each divided gate can be adjusted, and the filling density of the filled raw material is detected on the sintered pallet below the drum feeder by a γ-ray densitometer in correspondence with each divided gate, and the γ-ray A sintering machine that adjusts the amount of mixed raw materials supplied to each divided gate so that the filling density distribution of each gate detected by a density meter is equal to the preset filling density distribution in the width direction of the sintering pallet. raw material charging control method.
JP61189455A 1986-08-12 1986-08-12 Raw material charging control method for sintering machine Expired - Lifetime JPH0668137B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61189455A JPH0668137B2 (en) 1986-08-12 1986-08-12 Raw material charging control method for sintering machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61189455A JPH0668137B2 (en) 1986-08-12 1986-08-12 Raw material charging control method for sintering machine

Publications (2)

Publication Number Publication Date
JPS6345327A true JPS6345327A (en) 1988-02-26
JPH0668137B2 JPH0668137B2 (en) 1994-08-31

Family

ID=16241542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61189455A Expired - Lifetime JPH0668137B2 (en) 1986-08-12 1986-08-12 Raw material charging control method for sintering machine

Country Status (1)

Country Link
JP (1) JPH0668137B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0324235A (en) * 1989-06-20 1991-02-01 Nippon Steel Corp Method for simultaneous measurement of iron component, moisture and density of compounded raw material for sintering
KR100931663B1 (en) * 2007-12-07 2009-12-14 주식회사 포스코 How to control ore metering device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58115351A (en) * 1981-12-29 1983-07-09 Kawasaki Steel Corp Measuring method of packing degree of sintered bed
JPS6091184A (en) * 1983-10-25 1985-05-22 日本鋼管株式会社 Method of charging sintering raw material to pallet of sintering machine
JPS617450A (en) * 1984-06-21 1986-01-14 Nippon Steel Corp Method for measuring charging density, void ratio and coarse particle distribution of sintering compounded stock material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58115351A (en) * 1981-12-29 1983-07-09 Kawasaki Steel Corp Measuring method of packing degree of sintered bed
JPS6091184A (en) * 1983-10-25 1985-05-22 日本鋼管株式会社 Method of charging sintering raw material to pallet of sintering machine
JPS617450A (en) * 1984-06-21 1986-01-14 Nippon Steel Corp Method for measuring charging density, void ratio and coarse particle distribution of sintering compounded stock material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0324235A (en) * 1989-06-20 1991-02-01 Nippon Steel Corp Method for simultaneous measurement of iron component, moisture and density of compounded raw material for sintering
KR100931663B1 (en) * 2007-12-07 2009-12-14 주식회사 포스코 How to control ore metering device

Also Published As

Publication number Publication date
JPH0668137B2 (en) 1994-08-31

Similar Documents

Publication Publication Date Title
CA2009814C (en) Method for manufacturing agglomerates of sintered pellets
JPS6345327A (en) Method for controlling charging of raw material to sintering machine
US3784115A (en) Process for the manufacturing of dry material, by crushing, grinding or milling
JPS6310058B2 (en)
JPS6345328A (en) Method for controlling charging of raw material to sintering machine
US3578437A (en) Method of sintering ores
KR100797377B1 (en) Apparatus for controlling segregation pushing of mixed raw material for sinter manufacture
JP2000144267A (en) Method for controlling charge of sintering raw material
JPH05186811A (en) Method for operating blast furnace
SU580015A1 (en) Method of automatic control of a screening process
KR20040051145A (en) A Method for Controlling the Supply of Sinter Cake for Furnace
KR20030041720A (en) Apparatus for controlling pushing of upper stone for sinter manufacture
KR102305734B1 (en) Apparatus and method for controlling charging amount of sintering material
JPH08127822A (en) Operation of sintering
JPS6013034A (en) Method for controlling heating-up gradient in sintering machine
JP2018178165A (en) Blast furnace operation method
JPS5938289B2 (en) Method for producing sintered ore
JP2022182574A (en) Manufacturing method of sintered ore
JPH0658676A (en) Sintering raw material charging method
JPH06256862A (en) Method for controlling pallet velocity in sintering machine
KR20050009081A (en) Upper ore level control apparatus in sintering process
JPS59129379A (en) Method of operating dwight-lloyd sintering machine
RU2022026C1 (en) Method for checking granulometric composition of blast furnace charge
JPH07180972A (en) Method for operating sintering machine
SU621765A1 (en) Control system for loading charge onto sintering belt