JPH0324235A - Method for simultaneous measurement of iron component, moisture and density of compounded raw material for sintering - Google Patents

Method for simultaneous measurement of iron component, moisture and density of compounded raw material for sintering

Info

Publication number
JPH0324235A
JPH0324235A JP1157017A JP15701789A JPH0324235A JP H0324235 A JPH0324235 A JP H0324235A JP 1157017 A JP1157017 A JP 1157017A JP 15701789 A JP15701789 A JP 15701789A JP H0324235 A JPH0324235 A JP H0324235A
Authority
JP
Japan
Prior art keywords
gamma rays
density
raw material
moisture
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1157017A
Other languages
Japanese (ja)
Other versions
JPH0774395B2 (en
Inventor
Yoshiyuki Shirakawa
芳幸 白川
Hiroshi Tominaga
洋 富永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute, Nippon Steel Corp filed Critical Japan Atomic Energy Research Institute
Priority to JP1157017A priority Critical patent/JPH0774395B2/en
Publication of JPH0324235A publication Critical patent/JPH0324235A/en
Publication of JPH0774395B2 publication Critical patent/JPH0774395B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To simultaneously and continuously measure an iron component and moisture in addition to density by charging a ray source which releases neutrons and gamma rays and a gamma ray detector into compounded raw materials for sintering and detecting the capture gamma rays and scattered gamma rays of hydrogen and iron. CONSTITUTION:The ray source 1 which releases the neutrons and gamma rays and the gamma ray detector 3 are built into a protective pipe 4 and are inserted into the raw materials 5 for sintering. The primary gamma rays 6 collide against the raw materials 5 and become the scattered gamma rays 7. The fast neutrons 8 become thermal neutrons 9 by collision against hydrogen atoms 12 of the moisture. The thermal neutrons are absorbed in another hydrogen atoms 12 and generate the capture gamma rays 10. The thermal neutrons 9 are absorbed in iron atoms 13 and generate the capture gamma rays 11. The respective gamma rays 10, 11, 7 are detected by the detector 3 and are processed by a pulse height discriminator, by which the energy spectra to signify the relation between the energy and the number of the respective detected gamma rays are obtd. The density, iron component and moisture of the raw materials right after the charging are exactly recognized in this way and the raw material charging is adequately controlled.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、鉄鋼業において使用される焼結配合原料の鉄
分、水分、及び密度の測定方法に関するちのである. (従来の技術) 従来焼結配合原料の鉄分は、化学的分析方法などにより
、また水分は赤外線方式などにより測定されている.焼
結配合原料の密度の測定に関しては、特開昭63−45
327. 45328号公報、および特開昭63− 2
47318号公報において、ガンマ線を用いて計測する
方法が開示されている。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for measuring the iron content, moisture, and density of sintered compound raw materials used in the steel industry. (Prior art) Conventionally, the iron content of sintered compound raw materials has been measured using chemical analysis methods, and the moisture content has been measured using infrared methods. Regarding the measurement of the density of sintered compound raw materials, JP-A-63-45
327. Publication No. 45328, and JP-A-63-2
No. 47318 discloses a method of measuring using gamma rays.

(発明が解決しようとする課題) ところで上記従来技術による測定は、測定の頻度も測定
の場所らそれぞれ異なっている。そのため,最終的に焼
結機のパレット上に装入された焼結配合原料の状態、す
なわち鉄分、水分、密度を同時に把握することが困難で
あり、パレット上下方向、幅方向の適切な装入制御の実
施に支障をきたしている. 本発明は、放射綿を利用した計測技術を融合することに
より、lカ所で連続的に上記諸量を測定し、適切な操業
を確保する測定方法を提供する.(問題点を解決するた
めの手段) 本発明は、中性子とガンマ線を放出する1個の放射性同
位元素線源(以下単に線源と称する)と、1台のガンマ
線検出器を装備した細長いプローブを焼結配合原料中に
挿入して、前記線源からのガンマ緯と原料との衝突によ
って生ずる散乱ガンマ線の量により原料の密度を測定す
ると共に、前記線源からの高速中性子が原料中の水分の
水素原子によって減速されて生ずる熱中性子が水素原子
に吸収されて発生する捕獲ガンマ線の量、および該熱中
性子が原料中の鉄分の鉄原子に吸収されて発生する捕獲
ガンマ線の量の両者の関係、ならびに前記原料の密度を
用い、水分、鉄分を同時に測定する焼結配合原料の鉄分
、水分、密度の同時測定方法である. (作 用) 以下作用とと6に、図面により本発明を詳細に説明する
. 第1図において、中性子とガンマ練を放出する線源l(
たとえばカリホルニウム252) . L,+へい2、
及びガンマ線検出器3を細長い保護管4に内蔵し、これ
を焼結配合原料5の中に挿入する.緯源1から放出され
る1次ガンマ線6は、焼結配合原料5と衝突し散乱ガン
マ線7となり、ガンマ線検出器3により検出される。一
方第2図において、線源1から放出される高速中性子8
は、水分の水素原子12との複数回の衝突の後、熱中性
子9となる.この熱中性子9は別の水素原子12に吸収
され、約2.2百万電子ボルトの捕獲ガンマ線10を発
生する.またこの熱中性子9は鉄分の鉄原子13に吸収
され、約7.6百万電子ボルトの捕獲ガンマ線l1を発
生する.該捕獲ガンマ線lO、1lは、散乱ガンマ線7
と同様にガンマ線検出器3により検出される. ガンマ線検出器3の信号を波高弁別器にかけることによ
り、第3図に示すエネルギーとガンマ綿検出数の関係を
意味するエネルギースペクトルl4を得る.該エネルギ
ースペクトル14の中で、約0.2から0.5百万電子
ボルトの領域15を前記散乱ガンマAi7の検出に設定
し、約2.1から2.3百万電子ボルトの領域l6を前
記捕獲ガンマ線10の検出に設定し、約7.0から8.
0百万電子ボルトの領域を前記捕獲ガンマ線l1の検出
に設定することにより、各々のガンマ線の検出数(第3
図の斜線の部分に対応)を求めることができる. まず領域15で観測されるガンマ線数によって、焼結配
合原料5の密度が第4図に示す密度と散乱ガンマ線の関
係l8を用いて知れる.一般に関係l8は実験によって
決定でき、検出数が大きいほど密度は小さくなる傾向を
利用する.この関係は、焼結配合原f!45の成分の通
常の変動には影響されないことが、製鐵所焼結工場での
テストによって判明している. 次に領域l6で観洞されるガンマ線数は、焼結配合原料
5の中の単位体積当たりに含まれる水素原子l2の数に
関する関係を有する.しかし同数の水素原子l2が存在
しても、単位体積当たりの原料重量すなわち密度が異な
ると、水分に換算した時の重量%(以下wt%)が異な
る.したがって最初に求めた密度に対応する検量線の関
係19を用い、水分を求める手続きをとる.この関係は
第5図に示される.ガンマ線検出数が同じなら密度が小
さい方が水分のwt%は大きくなる.同様に領域17で
観測されるガンマ線数は、焼結配合原料5の中の単位体
積当たりに含まれる鉄原子13の数に関する関係を有す
る。しかし同数の鉄原子l3が存在しても、単位体積当
たりの原料重量すなわち密度が異なると、鉄分に換算し
た時のwt%が異なる.さらに水分によって熱中性子の
発生量が変動する.すなわち水分が多いほど熱中性子の
数が増し、その結果、同じ鉄原子13が存在してもガン
マ綿数は増加する.それゆえ第6図に示すように鉄分と
鉄原子からの捕獲ガンマ線の数の関係20は水分を変化
させて求める.捕獲ガンマ線検出数に対する密度の影響
は、鉄からの捕獲ガンマ線l1が高いエネルギーであり
、発生から検出器3までの距離が10から20cm程度
であるので無視できる. 以上の作用によって焼結配合原料5中の密度、水分,鉄
分が同一場所で連続的に測定できるようになる. (実施例) 操業中の焼結工場での実施例を示す. カリホルニウム252の3.7メガベクレル(100マ
イクロキューリー)線源と、径20mm、長さ100m
mのビスマスジャーマネート検出器を装備した径35m
mのプローブを焼結配合原料中に挿入し、100秒の計
測で密度1.85±0.05g/cm” .水分は上記
密度のちとで6.0±l.Owt%、鉄分は上記密度、
水分の6とで50.6±3.5wt%の値を得、十分実
用に耐えることを実証した.現在2本が連続的に実ライ
ンで使用されている. (発明の効果) 以上説明したごとく本発明による測定方法は、放射線を
利用することにより、パレット上に装入した焼結配合原
料に対して、従来の密度に加えて鉄分、水分をlカ所の
測定点で同時にかつ連続的に測定できるものであり、装
入直後の原料を正確に把握することにより、迅速かつ適
切な原料装入制御を可能とするものであり,焼結鉱の品
質維持と生産性の向上に資するものである。
(Problems to be Solved by the Invention) In the measurements according to the above-mentioned prior art, the frequency of measurement also differs depending on the location of measurement. Therefore, it is difficult to simultaneously grasp the state of the sintered compound raw materials finally charged onto the pallet of the sintering machine, that is, the iron content, moisture, and density. This is interfering with the implementation of control. The present invention provides a measurement method that continuously measures the above-mentioned quantities at one location and ensures proper operation by combining measurement technology using radiation cotton. (Means for Solving the Problems) The present invention uses a long and thin probe equipped with one radioisotope source (hereinafter simply referred to as a radiation source) that emits neutrons and gamma rays and one gamma ray detector. The density of the raw material is measured by the gamma latitude from the source and the amount of scattered gamma rays generated by collision with the raw material. The relationship between the amount of captured gamma rays generated when thermal neutrons generated by being decelerated by hydrogen atoms are absorbed by hydrogen atoms, and the amount of captured gamma rays generated when the thermal neutrons are absorbed by iron atoms of iron in the raw material, This is also a method for simultaneously measuring the iron content, water content, and density of a sintered blended raw material, in which the moisture content and iron content are simultaneously measured using the density of the raw material. (Function) The present invention will be explained in detail below with reference to the drawings. In Figure 1, a radiation source l(
For example, californium 252). L, + Hei 2,
A gamma ray detector 3 and a gamma ray detector 3 are built into a long and narrow protection tube 4, and this is inserted into a sintering compound raw material 5. The primary gamma rays 6 emitted from the lattice source 1 collide with the sintering compound raw material 5 and become scattered gamma rays 7, which are detected by the gamma ray detector 3. On the other hand, in FIG. 2, fast neutrons 8 emitted from the radiation source 1
becomes a thermal neutron 9 after multiple collisions with hydrogen atoms 12 of water. This thermal neutron 9 is absorbed by another hydrogen atom 12 and generates captured gamma rays 10 of approximately 2.2 million electron volts. Furthermore, this thermal neutron 9 is absorbed by iron atoms 13 of iron, and generates captured gamma rays l1 of about 7.6 million electron volts. The captured gamma rays 1O, 1l are scattered gamma rays 7
Similarly, it is detected by gamma ray detector 3. By applying the signal from the gamma ray detector 3 to a pulse height discriminator, an energy spectrum l4 indicating the relationship between energy and the number of detected gamma rays shown in FIG. 3 is obtained. In the energy spectrum 14, a region 15 of about 0.2 to 0.5 million electron volts is set for detection of the scattered gamma Ai7, and a region 16 of about 2.1 to 2.3 million electron volts is set. Set to detect the captured gamma rays 10, about 7.0 to 8.
By setting the region of 0 million electron volts for the detection of the captured gamma rays l1, the number of detected gamma rays (third
(corresponding to the shaded area in the figure) can be found. First, based on the number of gamma rays observed in the region 15, the density of the sintered compound raw material 5 is known using the relationship l8 between density and scattered gamma rays shown in FIG. In general, the relationship 18 can be determined by experiment, making use of the tendency that the density decreases as the number of detections increases. This relationship is based on the sintering compound f! Tests at the steelworks sintering plant have shown that it is not affected by normal variations in the 45 components. Next, the number of gamma rays observed in the region 16 has a relationship with the number of hydrogen atoms 12 contained per unit volume in the sintered compound raw material 5. However, even if the same number of hydrogen atoms l2 are present, if the weight of the raw material per unit volume, that is, the density, differs, the weight percent (hereinafter referred to as wt%) when converted to water will differ. Therefore, use the calibration curve relationship 19 corresponding to the initially determined density to determine the moisture content. This relationship is shown in Figure 5. If the number of gamma rays detected is the same, the lower the density, the higher the wt% of water. Similarly, the number of gamma rays observed in the region 17 has a relationship with the number of iron atoms 13 contained per unit volume in the sintered compound raw material 5. However, even if the same number of iron atoms l3 are present, if the weight of the raw material per unit volume, that is, the density, differs, the wt% when converted to iron content will differ. Furthermore, the amount of thermal neutrons generated varies depending on the moisture content. In other words, the more water there is, the more thermal neutrons there are, and as a result, the number of gamma cotton increases even if the same 13 iron atoms are present. Therefore, as shown in Figure 6, the relationship 20 between iron content and the number of gamma rays captured from iron atoms is determined by varying the water content. The influence of density on the number of captured gamma rays detected can be ignored because the captured gamma rays l1 from iron have high energy and the distance from the source to the detector 3 is about 10 to 20 cm. Due to the above actions, the density, moisture, and iron content in the sintered compound raw material 5 can be measured continuously at the same location. (Example) An example of a sintering factory in operation is shown below. A 3.7 megabecquerel (100 microcurie) radiation source of californium 252 with a diameter of 20 mm and a length of 100 m.
35m diameter equipped with bismuth germanate detector
Insert a probe of m into the sintered compound raw material and measure for 100 seconds to find a density of 1.85±0.05g/cm''.The moisture content is 6.0±l.Owt% after the above density, and the iron content is at the above density. ,
A value of 50.6 ± 3.5 wt% was obtained for the water content of 6, demonstrating that it is sufficiently durable for practical use. Currently, two are being used continuously on the actual line. (Effects of the Invention) As explained above, the measuring method according to the present invention uses radiation to measure the iron content and moisture in 1 locations in addition to the conventional density of the sintered compounded raw materials charged on the pallet. It enables simultaneous and continuous measurement at measurement points, and by accurately understanding the raw material immediately after charging, it enables quick and appropriate raw material charging control, which helps maintain the quality of sintered ore. This contributes to improving productivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は放射線源を内蔵したプロープにより焼
結配合原料の測定をおこなう方法を説明する図面であり
、第1図は原料の密度、第2図は水分、鉄分の測定を説
明する図面、第3図はガンマ線のエネルギーと検出され
た数の関係をしめずエネルギースペクトル図、第4図は
原料の密度と散乱ガンマ線数との関係図、第5図は水分
と水素の捕獲ガンマ線数との関係図、第6図は鉄分と鉄
の捕獲ガンマ線数との関係図である. 1・・・中性子・ガンマ線源、2・・・しやへい、3・
・・ガンマ線検出器、4・・・保護管、5・・・焼結配
合原料、6・・・1次ガンマ線、7・・・散乱ガンマ線
、8・・・高速中性子、9・・・熱中性子、10・・・
水素からの捕獲ガンマ線、11・・・鉄からの捕獲ガン
マ線、l2・・・水素原子、13、鉄原子、14・・・
エネルギースペクトル、15・・・散乱ガンマ線領域、
16・・・水素原子からのガンマ線領域、l7・・・鉄
原子からのガンマ線領域、l8・・・密度と散乱ガンマ
線検出数の関係、l9・・・水分と水素原子からの捕獲
ガンマ線検出数の関係、20・・・鉄分と鉄原子からの
捕獲ガンマ線検出数の関係 弁I図
Figures 1 and 2 are diagrams explaining the method of measuring sintered compound raw materials using a probe with a built-in radiation source. Figure 1 explains the density of the raw materials, and Figure 2 explains the measurement of moisture and iron content. Figure 3 is an energy spectrum diagram showing the relationship between gamma ray energy and the number of detected gamma rays, Figure 4 is a diagram showing the relationship between raw material density and the number of scattered gamma rays, and Figure 5 is a diagram showing the captured gamma rays of moisture and hydrogen. Figure 6 is a diagram showing the relationship between iron content and the number of gamma rays captured by iron. 1... Neutron/gamma ray source, 2... Shiyahei, 3...
... Gamma ray detector, 4... Protection tube, 5... Sintering compound raw material, 6... Primary gamma ray, 7... Scattered gamma ray, 8... Fast neutron, 9... Thermal neutron , 10...
Gamma ray captured from hydrogen, 11... Gamma ray captured from iron, l2... Hydrogen atom, 13, Iron atom, 14...
Energy spectrum, 15...scattered gamma ray region,
16... Gamma ray region from hydrogen atoms, l7... Gamma ray region from iron atoms, l8... Relationship between density and number of detected scattered gamma rays, l9... Number of detected captured gamma rays from moisture and hydrogen atoms Relationship, 20... Relationship valve I diagram between iron content and the number of detected gamma rays captured from iron atoms

Claims (1)

【特許請求の範囲】[Claims] 中性子とガンマ線を放出する1個の放射性同位元素線源
と、1台のガンマ線検出器を装備した細長いプロープを
焼結配合原料中に挿入して、前記線源からのガンマ線と
原料との衝突によって生ずる散乱ガンマ線の量により原
料の密度を測定すると共に、前記線源からの高速中性子
が原料中の水分の水素原子によって減速されて生ずる熱
中性子が水素原子に吸収されて発生する捕獲ガンマ線の
量、および該熱中性子が原料中の鉄分の鉄原子に吸収さ
れて発生する捕獲ガンマ線の量の両者の関係、ならびに
前記原料の密度を用い、水分、鉄分を同時に測定する焼
結配合原料の鉄分、水分、密度の同時測定方法。
An elongated probe equipped with a radioisotope source that emits neutrons and gamma rays and a gamma ray detector is inserted into the sintered compound material, and the gamma rays from the source collide with the material. The density of the raw material is measured by the amount of scattered gamma rays generated, and the amount of captured gamma rays generated when the fast neutrons from the source are slowed down by hydrogen atoms in the moisture in the raw material and thermal neutrons are absorbed by the hydrogen atoms. The relationship between the amount of captured gamma rays generated when the thermal neutrons are absorbed by iron atoms in the raw material, and the density of the raw material to simultaneously measure the moisture and iron content of the sintered compound raw material. , a method for simultaneous measurement of density.
JP1157017A 1989-06-20 1989-06-20 Simultaneous measurement of iron content, water content, and density of sintering compound raw materials Expired - Fee Related JPH0774395B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1157017A JPH0774395B2 (en) 1989-06-20 1989-06-20 Simultaneous measurement of iron content, water content, and density of sintering compound raw materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1157017A JPH0774395B2 (en) 1989-06-20 1989-06-20 Simultaneous measurement of iron content, water content, and density of sintering compound raw materials

Publications (2)

Publication Number Publication Date
JPH0324235A true JPH0324235A (en) 1991-02-01
JPH0774395B2 JPH0774395B2 (en) 1995-08-09

Family

ID=15640362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1157017A Expired - Fee Related JPH0774395B2 (en) 1989-06-20 1989-06-20 Simultaneous measurement of iron content, water content, and density of sintering compound raw materials

Country Status (1)

Country Link
JP (1) JPH0774395B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0545784A2 (en) * 1991-11-29 1993-06-09 Troxler Electronic Laboratories, Inc. Apparatus and method for detecting subterranean leakage from a large storage vessel
JP2011523577A (en) * 2008-06-04 2011-08-18 チェック−キャップ リミテッド Apparatus and method for imaging tissue
CN112313504A (en) * 2018-06-21 2021-02-02 澳洲快索有限公司 System and method for humidity measurement
CN112313504B (en) * 2018-06-21 2024-04-26 澳洲快索有限公司 System and method for humidity measurement

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6345327A (en) * 1986-08-12 1988-02-26 Nippon Steel Corp Method for controlling charging of raw material to sintering machine
JPS6345328A (en) * 1986-08-12 1988-02-26 Nippon Steel Corp Method for controlling charging of raw material to sintering machine
JPS6362694A (en) * 1986-09-02 1988-03-18 株式会社 スギノマシン Small-diameter hole processing equipment
JPS63247318A (en) * 1987-04-02 1988-10-14 Nippon Steel Corp Method for charging sintering raw material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6345327A (en) * 1986-08-12 1988-02-26 Nippon Steel Corp Method for controlling charging of raw material to sintering machine
JPS6345328A (en) * 1986-08-12 1988-02-26 Nippon Steel Corp Method for controlling charging of raw material to sintering machine
JPS6362694A (en) * 1986-09-02 1988-03-18 株式会社 スギノマシン Small-diameter hole processing equipment
JPS63247318A (en) * 1987-04-02 1988-10-14 Nippon Steel Corp Method for charging sintering raw material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0545784A2 (en) * 1991-11-29 1993-06-09 Troxler Electronic Laboratories, Inc. Apparatus and method for detecting subterranean leakage from a large storage vessel
JP2011523577A (en) * 2008-06-04 2011-08-18 チェック−キャップ リミテッド Apparatus and method for imaging tissue
CN112313504A (en) * 2018-06-21 2021-02-02 澳洲快索有限公司 System and method for humidity measurement
CN112313504B (en) * 2018-06-21 2024-04-26 澳洲快索有限公司 System and method for humidity measurement

Also Published As

Publication number Publication date
JPH0774395B2 (en) 1995-08-09

Similar Documents

Publication Publication Date Title
US3889112A (en) Method and apparatus for measuring the concentration of water, iron and aluminum in iron ore by neutron radiation
JPS5853732B2 (en) Coal analysis method
US4350887A (en) Method of assaying uranium with prompt fission and thermal neutron borehole logging adjusted by borehole physical characteristics
US6438189B1 (en) Pulsed neutron elemental on-line material analyzer
CN108535770A (en) Twilight sunset detection device and twilight sunset detection method
CA1193371A (en) Neutron method for elemental analysis independent of bulk density
JPH0324235A (en) Method for simultaneous measurement of iron component, moisture and density of compounded raw material for sintering
JPH03123881A (en) Method and apparatus for analyzing gamma ray nuclide
US3626183A (en) Radioisotope analytical instrument for cement analysis of concrete
CN208283569U (en) Twilight sunset detection device
US7242747B2 (en) Method for determining a gsm substance and/or a chemical composition of a conveyed material sample, and a device for this purpose
WO2019241830A1 (en) System and method for moisture measurement
CN205958486U (en) Sintering material composition detecting system
Weber et al. Fast and precise determination of fluorine in geological samples by 14 MeV neutron activation analysis
JPS5582006A (en) Measuring method for thickness
CN112313504B (en) System and method for humidity measurement
CN108693551A (en) A kind of probe and device for the monitoring of uranium ore grade
GB872464A (en) Apparatus for measuring the thickness of a coating on a base material
JP3728220B2 (en) Γ-ray sensitivity test method for proportional counter neutron detector
CN206038561U (en) Composition analyzer
Snyder et al. Upper Limit for the Time between Fission and the Emission of Neutrons
US3424902A (en) Method and apparatus for measuring
JPS60113173A (en) Background subtracting method of pollutive radiation dode measuring device
US4066897A (en) Chemical change measuring apparatus
CN112432965A (en) Method for on-line detection of sinter components

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees