JP2018044199A - Operation method of blast furnace - Google Patents

Operation method of blast furnace Download PDF

Info

Publication number
JP2018044199A
JP2018044199A JP2016178883A JP2016178883A JP2018044199A JP 2018044199 A JP2018044199 A JP 2018044199A JP 2016178883 A JP2016178883 A JP 2016178883A JP 2016178883 A JP2016178883 A JP 2016178883A JP 2018044199 A JP2018044199 A JP 2018044199A
Authority
JP
Japan
Prior art keywords
blast furnace
carbon
furnace
mass
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016178883A
Other languages
Japanese (ja)
Other versions
JP6696376B2 (en
Inventor
小暮 聡
Satoshi Kogure
聡 小暮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2016178883A priority Critical patent/JP6696376B2/en
Publication of JP2018044199A publication Critical patent/JP2018044199A/en
Application granted granted Critical
Publication of JP6696376B2 publication Critical patent/JP6696376B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress increase of solution loss carbon amount while maintaining a furnace top temperature of a blast furnace in a prescribed temperature range which is lower than conventional ones.SOLUTION: There is provided an operation method of a blast furnace using a sintered ore and a carbon-containing non-burned agglomerate as blast furnace iron raw material, the content of the carbon-containing non-burned agglomerate is 3 mass% to 10 mass% when the blast furnace iron raw material is 100 mass%, and the blast furnace is operated with temperature control with a furnace top temperature of the blast furnace of 100°C to 120°C.SELECTED DRAWING: Figure 3

Description

本発明は、高炉を安定操業させる技術に関するものである。   The present invention relates to a technique for stably operating a blast furnace.

高炉操業を安定化させる上で、塊状帯における還元ガスの流れを十分に確保すること、或いは塊状帯の圧力損失が増大することによる高炉原料の瞬間的な吹き上がり(吹き抜け)を抑制するために、塊状帯の通気抵抗を低減させることが重要である。   In order to stabilize the blast furnace operation, to ensure a sufficient flow of reducing gas in the massive band, or to suppress the instantaneous blow-up of the blast furnace raw material due to increased pressure loss in the massive band It is important to reduce the airflow resistance of the massive band.

特許文献1には、焼結鉱を細粒焼結鉱と粗粒焼結鉱とに分別し、前記細粒焼結鉱に小粒コークスをあらかじめ混合しておき、該混合物と前記粗粒焼結鉱とを別々に装入する粒度別装入法を採用している高炉操業方法において、前記細粒焼結鉱の平均粒径が3〜5mmであり、かつ、前記小粒コークスの平均粒径が、前記細粒焼結鉱の平均粒径の1.2〜2.0倍であることを特徴とする高炉操業方法が開示されている。   In Patent Document 1, the sintered ore is separated into fine-grained sintered ore and coarse-grained sintered ore, and small-grain coke is mixed in advance with the fine-grained sintered ore. In the blast furnace operation method adopting a charging method classified by particle size for charging ore separately, the average particle size of the fine-grained sintered ore is 3 to 5 mm, and the average particle size of the small-grain coke is A method for operating a blast furnace is disclosed, which is 1.2 to 2.0 times the average particle size of the fine-grained sintered ore.

この特許文献1に記載されている高炉操業方法は、平均粒径が3〜5mmの非常に粒度が小さい細粒焼結鉱を小粒コークスと予め混合した状態で高炉に装入することで、細粒焼結鉱を装入することによる不具合(高炉周辺部の通気性悪化)を起こりにくくしている。   The blast furnace operating method described in Patent Document 1 is a method in which a fine sintered ore having an average particle size of 3 to 5 mm is charged into a blast furnace in a state of being premixed with small coke. This makes it difficult to cause problems (deterioration of air permeability around the blast furnace) caused by charging the grain sinter.

また、高炉塊状帯の通気性を確保するその他の方法として、高炉の炉頂温度を低下させることによって、還元ガスのガスボリュームを小さくして圧力損失を低減することが考えられる。   Further, as another method for ensuring the air permeability of the blast furnace massive band, it is conceivable to reduce the pressure loss by reducing the gas volume of the reducing gas by lowering the top temperature of the blast furnace.

特開2011−202229号公報JP 2011-202229 A 特開2008−95177号公報JP 2008-95177 A

しかしながら、特許文献1の方法では、以下の問題がある。高炉装入物には焼結鉱以外の原料(例えば、石灰石)も含まれているため、高炉装入物全体の粒度分布を考慮した場合、高炉周辺部の通気性が低下することが懸念される。さらに、目的とする粒度の焼結鉱を得るために篩い分けを行ったときに、篩下に落下する細粒焼結鉱の量が多く、高炉で使用する細粒焼結鉱の使用量とバランスしないことも懸念される。   However, the method of Patent Document 1 has the following problems. Since the blast furnace charge contains raw materials other than sintered ore (for example, limestone), there is a concern that the air permeability around the blast furnace charge may decrease when considering the particle size distribution of the entire blast furnace charge. The In addition, when sieving is performed to obtain sintered ore of the desired particle size, the amount of fine-grained sinter that falls under the sieve is large, and the amount of fine-grained sinter used in the blast furnace is There is also concern about not balancing.

一方、炉頂部の温度を低下させる方法では、還元ガスの利用効率(以下、還元効率と称する)を低下させ、ソリューションロスカーボン量が増加する問題が懸念される。ここで、高炉では、炉下部の羽口から吹き込まれたガスにより微粉炭が燃焼してCOガスが発生し、この発生したCOガスが高炉内を上昇する間に鉱石を還元することによりCOガスが生成され、この生成されたCOガスが炉内のコークスに衝突して再度COガスに戻る現象が見られる。この再度生成されたCOガスは、焼結鉱の還元に寄与することなく高炉から排出される場合があり、本明細書では、このCOガスに含まれるカーボンの量をソリューションロスカーボン量と定義する。ソリューションロスカーボン量の単位は「kg/tp」であり、出銑量1トン当たりのカーボン量で表わされる。 On the other hand, in the method of reducing the temperature at the top of the furnace, there is a concern that the use efficiency of the reducing gas (hereinafter referred to as reduction efficiency) is reduced and the amount of solution loss carbon is increased. Here, in the blast furnace, pulverized coal is burned by the gas blown from the tuyeres at the lower part of the furnace to generate CO gas, and CO 2 is reduced by reducing the ore while the generated CO gas rises in the blast furnace. There is a phenomenon in which gas is generated, and the generated CO 2 gas collides with coke in the furnace and returns to CO gas again. This regenerated CO gas may be discharged from the blast furnace without contributing to the reduction of the sintered ore. In this specification, the amount of carbon contained in this CO gas is defined as the amount of solution loss carbon. . The unit of the solution loss carbon amount is “kg / tp”, and is represented by the carbon amount per ton of the output.

一方、炉頂部の温度が下がりすぎると、結露が生じて炉頂部から排出されるダストの集塵効率が低下する。   On the other hand, if the temperature at the top of the furnace is too low, condensation occurs and the dust collection efficiency of dust discharged from the top of the furnace decreases.

そこで、本願発明は高炉の炉頂温度を従来よりも低い所定の温度範囲に維持しながら、ソリューションロスカーボン量の増大を抑制することを目的とする。   Then, this invention aims at suppressing the increase in the amount of solution loss carbon, maintaining the furnace top temperature of a blast furnace in the predetermined temperature range lower than before.

(本発明を創作するに至った経緯)
上述したように、本発明者は高炉における塊状帯の通気性を確保するために、高炉の炉頂温度を従来よりも温度低下させ、還元ガスのガスボリュームを小さくすることを検討した。還元ガスのガスボリュームが小さくなることで、圧力損失が小さくなり、塊状帯の通気性が向上する。
(Background to the creation of the present invention)
As described above, in order to ensure the air permeability of the massive band in the blast furnace, the present inventor has studied to lower the temperature at the top of the blast furnace than before and to reduce the gas volume of the reducing gas. By reducing the gas volume of the reducing gas, the pressure loss is reduced and the air permeability of the massive band is improved.

一方、炉頂温度が下がると還元効率が低下して、ソリューションロスカーボン量が増大するとともに、炉頂部が結露する問題が懸念された。そこで、炉頂温度を従来の操業温度よりも低い所定の温度範囲に維持しながら、ソリューションロスカーボン量の増大を抑制する方法について鋭意検討し、含炭非焼成塊成鉱を焼結鉱とともに所定の比率で高炉に装入することを知見した。   On the other hand, when the furnace top temperature is lowered, the reduction efficiency is reduced, the amount of solution loss carbon is increased, and there is a concern that the top of the furnace may be condensed. Therefore, intensive studies were conducted on a method for suppressing the increase in the amount of solution loss carbon while maintaining the furnace top temperature in a predetermined temperature range lower than the conventional operating temperature, and the carbon-containing unfired agglomerated ore was determined together with the sintered ore. It was found that the blast furnace was charged at the ratio of

すなわち、本願発明は、(1)焼結鉱及び含炭非焼成塊成鉱を高炉鉄原料として使用する高炉の操業方法であって、前記高炉鉄原料を100質量%としたとき、前記含炭非焼成塊成鉱の含有量は3質量%以上10質量%以下であり、高炉の炉頂温度を100℃以上120℃以下に温度制御しながら高炉を操業することを特徴とする。   That is, the present invention is (1) a method of operating a blast furnace using a sintered ore and a carbon-containing unfired agglomerated ore as a blast furnace iron raw material, and when the blast furnace iron raw material is 100% by mass, The content of the unfired agglomerated mineral is 3% by mass or more and 10% by mass or less, and the blast furnace is operated while the temperature at the top of the blast furnace is controlled to 100 ° C. or more and 120 ° C. or less.

(2)前記焼結鉱として、ヤード焼結鉱を使用することを特徴とする(1)に記載の高炉の操業方法。   (2) The method for operating a blast furnace according to (1), wherein a yard sintered ore is used as the sintered ore.

(3)前記含炭非焼成塊成鉱は、鉄分を40質量%以上含有する微粉状鉄含有原料と、炭素分を10質量%以上含有する微粉状炭材とに、水硬性バインダーを添加し、水分を調整しつつ混合、造粒した造粒物であり、かつ、冷間圧潰強度が50kg/cm以上、該含炭非焼成塊成鉱中における炭素含有割合(T.C)が15〜25質量%であることを特徴とする(1)又は(2)に記載の高炉の操業方法。 (3) The carbon-containing unfired agglomerated mineral is obtained by adding a hydraulic binder to a finely divided iron-containing raw material containing 40 mass% or more of iron and a finely divided carbonaceous material containing 10 mass% or more of carbon. , A granulated product mixed and granulated while adjusting moisture, and has a cold crushing strength of 50 kg / cm 2 or more, and a carbon content (TC) in the carbon-containing unfired agglomerated mineral is 15 The method of operating a blast furnace according to (1) or (2), characterized in that it is ˜25% by mass.

(4)前記炉頂温度を監視しながら高炉を操業することを特徴とする(1)乃至(3)のうちいずれか一つに記載の高炉の操業方法。   (4) The blast furnace operating method according to any one of (1) to (3), wherein the blast furnace is operated while monitoring the furnace top temperature.

本願発明によれば、高炉の炉頂温度を従来よりも低い所定の温度範囲に維持しながら、ソリューションロスカーボン量の増大を抑制することができる。   According to the present invention, it is possible to suppress an increase in the amount of solution loss carbon while maintaining the top temperature of the blast furnace in a predetermined temperature range lower than that in the past.

高炉の付帯設備を除いた炉体の概略図である。It is the schematic of the furnace body except the incidental equipment of the blast furnace. 炉頂温度と塊状帯の圧力損失の関係を示すグラフである。It is a graph which shows the relationship between a furnace top temperature and the pressure loss of a lump. 炉頂温度とソリューションロスカーボン量の関係を示すグラフである。It is a graph which shows the relationship between a furnace top temperature and the amount of solution loss carbon. 焼結鉱の温度と炉頂温度との関係を調べたグラフである。It is the graph which investigated the relationship between the temperature of a sintered ore, and furnace top temperature.

図1は、高炉の付帯設備を除いた炉体の概略図である。炉体100は、炉口部K、炉口部Kの下端部に連設するシャフト部L、シャフト部Lの下端部に連設する炉腹部M、炉腹部Mの下端部に連設する朝顔部N、朝顔部Nの下端部に連設する羽口部O及び羽口部Oの下端部に連設する炉底部Pからなる。シャフト部Lは、上部から下部に向かって徐々に径寸法が拡大する末広がり形状に形成されている。羽口部Oには、羽口101が形成されており、この羽口101を介して、炉体の内部に微粉炭とともに熱風が吹き込まれる。   FIG. 1 is a schematic diagram of a furnace body excluding incidental facilities of a blast furnace. The furnace body 100 includes a furnace opening K, a shaft L connected to the lower end of the furnace opening K, a furnace belly M connected to the lower end of the shaft L, and a morning glory connected to the lower end of the furnace bell M. Part N, tuyere part O connected to the lower end part of morning glory part N, and furnace bottom part P connected to the lower end part of tuyere part O. The shaft portion L is formed in a divergent shape in which the diameter dimension gradually increases from the upper portion toward the lower portion. A tuyere 101 is formed in the tuyere portion O, and hot air is blown into the furnace body through the tuyere 101 together with pulverized coal.

炉体100の炉頂部102には垂直軸周りに回転する旋回シュート(不図示)が設けられており、この旋回シュートから炉体100の内部に向かって高炉鉄原料及びコークスが交互に層状に装入される。これにより、炉口部K及びシャフト部Lの上部において、高炉鉄原料とコークスとが交互に並ぶ塊状帯103が形成される。ここで、高炉鉄原料は焼結鉱及び含炭非焼成塊成鉱からなるが、詳細については後述する。炉頂部102には、炉頂温度Tを検出するための温度検出部102aが設けられている。温度検出部102aには、例えば、ゾンデを用いることができる。   The furnace top portion 102 of the furnace body 100 is provided with a turning chute (not shown) that rotates around a vertical axis. Entered. Thereby, in the upper part of the furnace port part K and the shaft part L, a massive band 103 in which blast furnace iron raw materials and coke are alternately arranged is formed. Here, although the blast furnace iron raw material consists of a sintered ore and a carbon-containing unbaking agglomerated ore, it mentions later for details. The furnace top part 102 is provided with a temperature detection part 102a for detecting the furnace top temperature T. For the temperature detector 102a, for example, a sonde can be used.

塊状帯103は、炉内を降下しながら、羽口101から吹き込まれた熱風によって順次昇温され、高炉鉄原料が溶融する。すなわち、コークス燃焼および高炉鉄原料の溶融は、塊状帯103の下部で順次進行し、朝顔部Nからシャフト部Lの下部に向かって略円錐形の融着帯104が形成される。   The lump 103 is sequentially heated by hot air blown from the tuyere 101 while descending the furnace, and the blast furnace iron raw material is melted. That is, the coke combustion and the melting of the blast furnace iron material proceed sequentially at the lower part of the massive band 103, and a substantially conical fusion band 104 is formed from the morning glory part N toward the lower part of the shaft part L.

融着帯104で溶融した鉄分105は、滴下帯106を通過し、炉底部Pに向かって滴下し、溶銑107として炉底部Pに貯留される。コークス等は滴下帯106を通過して降下し、炉底部Pに積み上がり、溶銑107の上に円錐形の炉芯109を形成する。炉底部Pには、出銑口108が形成されており、出銑口108から炉底部Pに溜まった溶銑107が高炉の外部に取り出される。   The iron component 105 melted in the fusion zone 104 passes through the dripping zone 106, drops toward the furnace bottom P, and is stored in the furnace bottom P as the molten iron 107. Coke or the like descends after passing through the dripping zone 106, accumulates in the furnace bottom P, and forms a conical furnace core 109 on the hot metal 107. An outlet 108 is formed in the furnace bottom P, and the hot metal 107 collected in the furnace bottom P is extracted from the outlet 108 to the outside of the blast furnace.

本発明者は高炉の炉頂温度Tを低下させることにより、塊状帯103における還元ガスの圧力損失を低減させることを検討した。図2は、炉頂温度Tと塊状帯103の圧力損失の関係を示すグラフであり、黒色で塗り潰した丸印のプロットは実測値であり、白抜き丸印のプロットは計算値である。すなわち、下記の式(1)に示すエルガンの公式に高炉操業データを代入して係数αを求めるとともに、炉頂温度Tが変化した際のガス密度及び粘度の変化を考慮して、各炉頂温度Tでの塊状帯103における圧力損失を算出した。
式(1)において、△Pは圧力損失[Pa]であり、△Lは塊状帯の層高[m]であり、eは空隙率[−]であり、dは粒子径[m]であり、rはガス密度[kg/m]であり、mはガス粘度[kg/(m・s)]であり、Uは空塔ガス流速[m/s]であり、0.Cは塊状帯のコークス層を表す記号であり、0.SPは塊状帯の焼結鉱層を表す記号であり、Loは焼結鉱層高[m]であり、Lcはコークス層高[m]である。
The present inventor studied reducing the pressure loss of the reducing gas in the massive band 103 by lowering the top temperature T of the blast furnace. FIG. 2 is a graph showing the relationship between the furnace top temperature T and the pressure loss of the massive strip 103. The black circles are actually measured values, and the white circles are the calculated values. That is, by substituting the blast furnace operation data into the Elgan formula shown in the following formula (1) to obtain the coefficient α, and taking into account changes in gas density and viscosity when the furnace top temperature T changes, The pressure loss in the massive band 103 at the temperature T was calculated.
In formula (1), ΔP is the pressure loss [Pa], ΔL is the layer height [m] of the massive band, e is the porosity [−], and d is the particle size [m]. , R is the gas density [kg / m 3 ], m is the gas viscosity [kg / (m · s)], U is the superficial gas flow velocity [m / s], and 0. Is a symbol representing a coke layer, 0. SP is a symbol representing a sintered ore layer of a massive band, Lo is a sintered ore layer height [m], and Lc is a coke layer height [m].

図2から明らかなように、炉頂温度Tが高くなるほど塊状帯103における圧力損失が大きくなり、炉頂温度Tが低くなるほど塊状帯103における圧力損失が小さくなる。   As is clear from FIG. 2, the pressure loss in the massive band 103 increases as the furnace top temperature T increases, and the pressure loss in the massive band 103 decreases as the furnace top temperature T decreases.

また、本発明者は、炉頂温度Tとソリューションロスカーボン量(kg/tp)との関係を調べ、図3の結果を得た。矩形印でプロットしたグラフIは、従来の操業方法、つまり、高炉鉄原料として焼結鉱のみを装入した場合のデータである。グラフIのデータは、高炉内の還元反応を模擬できる試験装置(例えば、BIS炉)により取得した。炉頂温度Tは、BIS炉に導入する還元ガスのガス量を調節することにより温度調節した。また、ソリューションロスカーボン量(kg/tp)は、定常時にBIS炉から排出される排ガスを分析し、炉内に導入したカーボン量と前述の排ガスの分析結果から算出したカーボン量の差分から求めた。   Further, the present inventor investigated the relationship between the furnace top temperature T and the amount of solution loss carbon (kg / tp), and obtained the result of FIG. Graph I plotted with a rectangular mark is data in the case of charging only a sintered ore as a conventional operation method, that is, a blast furnace iron raw material. The data of graph I was acquired by a test apparatus (for example, BIS furnace) that can simulate the reduction reaction in the blast furnace. The furnace top temperature T was adjusted by adjusting the amount of reducing gas introduced into the BIS furnace. The solution loss carbon amount (kg / tp) was obtained from the difference between the amount of carbon introduced into the furnace and the amount of carbon calculated from the analysis result of the exhaust gas described above by analyzing the exhaust gas discharged from the BIS furnace in a steady state. .

また、LSVは操業実績から得られる基準値であり、ソリューションロスカーボン量(kg/tp)が基準値LSVよりも多くなると、融着帯104の温度が下がり、操業が不安定になる。つまり、ソリューションロスカーボン量(kg/tp)が多くなると、間接還元が進んでいない焼結鉱が融着帯104により多く落下してきて、コークスに衝突することで直接還元されるところ、この直接還元は吸熱反応であるため、融着帯104の温度を大きく低下させる。したがって、塊状帯103における通気抵抗軽減のために炉頂温度Tを低下させることに加えて、ソリューションロスカーボン量(kg/tp)を所定値以下に抑制することも、高炉の操業条件として極めて重要である。 L SV is a reference value obtained from the operation results. When the amount of solution loss carbon (kg / tp) is larger than the reference value L SV , the temperature of the cohesive zone 104 is lowered and the operation becomes unstable. In other words, when the amount of solution loss carbon (kg / tp) increases, the sintered ore that has not progressed indirect reduction falls to the cohesive zone 104 and is directly reduced by colliding with coke. Since this is an endothermic reaction, the temperature of the cohesive zone 104 is greatly reduced. Therefore, in addition to lowering the furnace top temperature T in order to reduce the airflow resistance in the massive band 103, it is also extremely important as a blast furnace operating condition to suppress the solution loss carbon amount (kg / tp) below a predetermined value. It is.

グラフIに示すように、炉頂温度Tが120℃よりも低い温度領域では、ソリューションロスカーボン量(kg/tp)が基準値LSVよりも大きくなるため、操業が不安定になる。この傾向は、炉頂温度Tが低くなるほど顕著になる。なお、基準値LSVは高炉の種類に応じて異なるため一義的に定めることはできないが、本実施形態では操業実績から88(kg/tp)としている。 As shown in the graph I, in the temperature region where the furnace top temperature T is lower than 120 ° C., the solution loss carbon amount (kg / tp) becomes larger than the reference value L SV , so that the operation becomes unstable. This tendency becomes more prominent as the furnace top temperature T becomes lower. The reference value L SV differs depending on the type of blast furnace and cannot be uniquely determined. However, in the present embodiment, the reference value L SV is 88 (kg / tp) based on the operation results.

本実施形態では、高炉鉄原料として焼結鉱とともに所定の含炭非焼成塊成鉱を装入することで、ソリューションロスカーボン量(kg/tp)の増大を抑制して、還元効率を改善している。ここで、含炭非焼成塊成鉱は、微粉状鉄含有原料及び微粉状炭材を造粒し、養生(正石炭などの水和反応や塩化処理)により造粒物の強度を高めた後、焼結せずに、そのまま高炉用鉄原料として使用する非焼成型の塊成鉱であり、公知のものを適宜使用することができる。含炭非焼成塊成鉱を高炉に装入すると約800℃でカーボンがガス化してCOが生成される。このCOは、含炭非焼成塊成鉱に含まれる酸化鉄の近傍で発生するため、酸化鉄が還元されやすくなる。また、酸化鉄を還元することにより生成されたCOはカーボンと反応してCOガスが再び生成され、周辺の焼結鉱を還元する。これにより、高炉鉄原料の間接還元が促進され、融着帯104における温度低下を抑制することができる。 In this embodiment, by introducing a predetermined carbon-containing unfired agglomerate together with sintered ore as a blast furnace iron raw material, an increase in the amount of solution loss carbon (kg / tp) is suppressed and the reduction efficiency is improved. ing. Here, after carbonized non-calcined agglomerated granulated pulverized iron-containing raw material and pulverized carbonaceous material, and after increasing the strength of the granulated material by curing (hydration reaction and chlorination treatment of regular coal, etc.) It is a non-fired agglomerated ore that is used as it is as an iron raw material for a blast furnace without being sintered, and a known one can be used as appropriate. When the carbon-containing unfired agglomerated ore is charged into a blast furnace, carbon is gasified at about 800 ° C. to generate CO. Since this CO is generated in the vicinity of iron oxide contained in the carbon-containing unfired agglomerated mineral, iron oxide is easily reduced. Further, CO 2 generated by reducing iron oxide reacts with carbon to generate CO gas again, and reduces the surrounding sintered ore. Thereby, the indirect reduction | restoration of a blast furnace iron raw material is accelerated | stimulated, and the temperature fall in the cohesive zone 104 can be suppressed.

含炭非焼成塊成鉱は、好ましくは、鉄分を40質量%以上含有する微粉状鉄含有原料及び炭素分を10質量%以上含有する微粉状炭材に、水硬性バインダーを添加し、水分を調整しつつ混合、造粒した造粒物である。   The carbon-containing non-calcined agglomerated mineral is preferably prepared by adding a hydraulic binder to a finely divided iron-containing raw material containing 40 mass% or more of iron and a finely divided carbonaceous material containing 10 mass% or more of carbon and adding moisture. It is a granulated product that is mixed and granulated while adjusting.

微粉状鉄含有原料には、焼結ダスト、および、微粉状鉄鉱石の1種または2種を用いることができる。微粉状炭材には、高炉一次灰、コークスダスト、および、粉コークスのいずれか1種または2種以上を用いることができる。前記微粉状鉄含有原料及び前記微粉状炭材の粒度は、好ましくは、1mm以下であるが、原料の気孔構造、表面形状などの原料性状や成型手法等によりその最適粒度構成は異なる。   As the pulverized iron-containing raw material, one or two of sintered dust and pulverized iron ore can be used. As the pulverized carbonaceous material, one or more of blast furnace primary ash, coke dust, and powder coke can be used. The particle sizes of the finely divided iron-containing raw material and the finely divided carbonaceous material are preferably 1 mm or less, but the optimum particle size configuration differs depending on the raw material properties such as the pore structure and surface shape of the raw material, the molding technique, and the like.

水硬性バインダーは、原料中に含まれる水分や添加水分との水和反応により硬化することにより造粒物の冷間圧潰強度を高める機能を有するバインダーのことであり、バインダーの種類は特に限定されない。一例として、本実施形態では、高炉水砕スラグを主成分とする微粉末とアルカリ刺激剤からなる時効性バインダー、ポルトランドセメント、ベントナイトを用いることができる。   The hydraulic binder is a binder having a function of increasing the cold crushing strength of the granulated product by curing by a hydration reaction with moisture contained in the raw material or added moisture, and the type of the binder is not particularly limited. . As an example, in this embodiment, an aging binder, Portland cement, and bentonite composed of fine powder mainly composed of blast furnace granulated slag and an alkali stimulant can be used.

微粉状鉄含有原料、微粉状炭材及び水硬性バインダーの総和を100質量%としたとき、水硬性バインダーの添加量は、好ましくは、5〜10質量%である。また、水分は、好ましくは、5〜15質量%となるように調整される。造粒設備は、とくに限定する必要はなく、原料の混錬、加水、造粒、成品篩の機能を有するものであればよく、混錬機、造粒機などは、特に限定されるものではない。また、造粒物はペレット、或いはブリケットであってもよい。ペレットの場合には、例えば、ディスクペレタイザーにより球状に成形することができる。ブリケットの場合には、例えば、くぼみ形状の型を備え相対する一対の成型ロールで成型する左右対称のピロー型ブリケット、アーモンド形ブリケットであってもよい。   When the total of the finely divided iron-containing raw material, finely divided carbonaceous material and hydraulic binder is 100% by mass, the amount of hydraulic binder added is preferably 5 to 10% by mass. The moisture is preferably adjusted to 5 to 15% by mass. The granulation equipment is not particularly limited, and may be any material having functions of kneading raw materials, hydration, granulation, and product sieving, and kneading machines, granulating machines, etc. are not particularly limited. Absent. The granulated product may be a pellet or a briquette. In the case of pellets, for example, it can be formed into a spherical shape by a disk pelletizer. In the case of a briquette, for example, a bilaterally symmetric pillow-type briquette or almond-type briquette that is provided with a hollow mold and is molded by a pair of opposed molding rolls may be used.

また、含炭非焼成塊成鉱の冷間圧潰強度は、好ましくは、50kg/cm以上である。冷間圧潰強度を50kg/cm以上確保することで、搬送時および高炉装入時の衝撃による破壊に十分耐えられる冷間強度が得られるため、製造時のハンドリング、高炉への輸送、装入時に粉化の心配がない。 Further, the cold crushing strength of the carbon-containing unfired agglomerated mineral is preferably 50 kg / cm 2 or more. By securing a cold crushing strength of 50 kg / cm 2 or more, it is possible to obtain a cold strength that can sufficiently withstand the damage caused by impact during transportation and blast furnace loading, so handling during manufacture, transportation to the blast furnace, charging Sometimes there is no worry of pulverization.

含炭非焼成塊成鉱中における炭素含有割合(T.C)は、好ましくは、15〜25質量%である。炭素含有割合(T.C)を15質量%以上にすることで、含炭非焼成塊成鉱自身の酸化鉄の直接還元に加えて、余剰炭素のガス化により、含炭非焼成塊成鉱の周囲に位置する焼結鉱の間接還元をより促進することができる。一方、炭素含有割合(T.C)を25質量%以下に制限することで、含炭非焼成塊成鉱に含まれる酸化鉄粒子間の距離が大きくなることによる圧潰強度の低下を抑制することができる。   The carbon content (TC) in the carbon-containing unfired agglomerated mineral is preferably 15 to 25% by mass. By setting the carbon content ratio (TC) to 15% by mass or more, in addition to direct reduction of iron oxide of the carbon-containing non-fired agglomerated mineral itself, the carbonization-free non-fired agglomerated mineral is obtained by gasification of surplus carbon. The indirect reduction of the sintered ore located around can be further promoted. On the other hand, by restricting the carbon content (TC) to 25% by mass or less, it is possible to suppress a decrease in crushing strength due to an increase in the distance between iron oxide particles contained in the carbon-containing unfired agglomerated ore. Can do.

図3において、三角印でプロットしたグラフIIは、焼結鉱を97質量%、含炭非焼成塊成鉱を3質量%の割合で装入したものであり、丸印でプロットしたグラフIIIは、焼結鉱を90質量%、含炭非焼成塊成鉱を10質量%の割合で装入したものである。使用した含炭非焼成塊成鉱の主たる組成は、T.Feが48.39質量%、M.Feが0.37質量%、FeOが0.43質量%、CaOが2.85質量%、SiOが2.99質量%、Alが1.12質量%、MgOが0.13質量%、T.Cが19.8質量%であり、ペレット状に形成した。なお、T.Feは含炭非焼成ペレットに含まれる全鉄の質量であり、M.Feは含炭非焼成ペレットに含まれる金属鉄の質量であり、T.Cは含炭非焼成ペレットに含まれるカーボンの質量である。これらのデータは、グラフIの場合と同様に、高炉内の還元反応を模擬できる試験装置(例えば、BIS炉)により取得した。含炭非焼成塊成ペレットはBIS炉内の焼結鉱層中に略均一に分散させた。なお、炉頂温度Tの制御方法及びソリューションロスカーボン量(kg/tp)の測定方法は、グラフIと同様である。 In FIG. 3, graph II plotted with triangle marks is obtained by charging 97 mass% of sintered ore and carbon-containing uncalcined agglomerate at a ratio of 3 mass%, and graph III plotted with circle marks is , 90% by mass of sintered ore and 10% by mass of carbon-containing unfired agglomerated ore. The main composition of the carbon-containing unfired agglomerated mineral used was 48.39% by mass of T.Fe, 0.37% by mass of M.Fe, 0.43% by mass of FeO, 2.85% by mass of CaO, SiO 2 was 2.99% by mass, Al 2 O 3 was 1.12% by mass, MgO was 0.13% by mass, and TC was 19.8% by mass. T.Fe is the mass of total iron contained in the carbon-containing non-fired pellet, M.Fe is the mass of metallic iron contained in the carbon-containing non-fired pellet, and TC is the mass of the carbon-containing non-fired pellet. The mass of carbon contained. These data were acquired by a test apparatus (for example, BIS furnace) that can simulate the reduction reaction in the blast furnace, as in the case of Graph I. The carbon-containing non-fired agglomerated pellets were dispersed substantially uniformly in the sintered ore layer in the BIS furnace. The method for controlling the furnace top temperature T and the method for measuring the solution loss carbon amount (kg / tp) are the same as those in the graph I.

グラフIIから、炉頂温度Tを100℃に温度低下させても、含炭非焼成塊成鉱を3質量%装入することで、ソリューションロスカーボン量(kg/tp)を基準値LSV以下に抑制できることがわかった。ここで、グラフIIIから含炭非焼成塊成鉱の含有量を10質量%に増大することで、炉頂温度Tを100℃より低くしても、ソリューションロスカーボン量(kg/tp)を基準値LSV以下に抑制できることがわかった。しかしながら、炉頂温度Tが100℃よりも低くなると、炉上部が結露して、高炉から排出されるダストの集塵効率が低下する。そこで、本発明では、炉頂温度Tの範囲を100℃以上120℃以下に制限している。 From graph II, even if the furnace top temperature T is lowered to 100 ° C., the amount of solution loss carbon (kg / tp) is less than the reference value L SV by charging 3% by mass of the carbon-containing unfired agglomerated ore. It was found that it can be suppressed. Here, even if the top temperature T is lower than 100 ° C. by increasing the content of the carbon-containing unfired agglomerated mineral to 10% by mass from the graph III, the amount of solution loss carbon (kg / tp) is the standard. It turned out that it can suppress to below value LSV . However, when the furnace top temperature T is lower than 100 ° C., the upper part of the furnace is condensed, and the dust collection efficiency of the dust discharged from the blast furnace is lowered. Therefore, in the present invention, the range of the furnace top temperature T is limited to 100 ° C. or more and 120 ° C. or less.

ここで、炉頂温度Tは、温度検出部102aの検出結果を用いて、温度制御することができる。温度制御は、焼結鉱の温度を制御する方法であってもよい。焼結機から排出される焼結鉱は無端回動するベルトにより高炉の炉頂部102に運び上げられるが、焼結機から排出された直後の焼結鉱は非常に温度が高いため、通常、焼結機出側に設けられた排熱クーラを用いてベルト移送に適した温度(例えば、150℃)に冷却される。本実施形態では、この排熱クーラの冷却能力を上げることにより、焼結鉱の温度を下げ、炉頂温度Tを100℃以上120℃以下に制御することができる。   Here, the furnace top temperature T can be temperature-controlled using the detection result of the temperature detector 102a. The temperature control may be a method for controlling the temperature of the sintered ore. The sintered ore discharged from the sintering machine is carried to the furnace top 102 of the blast furnace by an endlessly rotating belt, but the sintered ore immediately after being discharged from the sintering machine has a very high temperature. It cools to the temperature (for example, 150 degreeC) suitable for belt conveyance using the exhaust heat cooler provided in the sintering machine exit side. In the present embodiment, by increasing the cooling capacity of the exhaust heat cooler, the temperature of the sintered ore can be lowered, and the furnace top temperature T can be controlled to 100 ° C. or higher and 120 ° C. or lower.

また、ヤード焼結鉱を用いることにより、炉頂温度Tを制御する方法であってもよい。焼結鉱は、通常製造直後に装入されるが、高炉への装入タイミングが合わない場合には一時的にヤードに保管されことがあり、この一時的に保管される焼結鉱をヤード焼結鉱という。ヤード焼結鉱は、常温(環境温度にもよるが、25℃を例示できる)まで冷却されているため、高炉鉄原料として用いることで炉頂温度Tを下げることができる。なお、製造直後の温度が高い焼結鉱と冷却されたヤード焼結鉱とを併用してもよい。   Moreover, the method of controlling the furnace top temperature T by using a yard sintered ore may be used. Sinter is usually charged immediately after production, but may be temporarily stored in the yard if the timing of charging into the blast furnace does not match. It is called sintered ore. Since the yard sintered ore is cooled to room temperature (it can be exemplified by 25 ° C. depending on the environmental temperature), the top temperature T can be lowered by using it as a blast furnace iron raw material. In addition, you may use together the sintered ore with high temperature immediately after manufacture, and the cooled yard sintered ore.

ここで、従来、常温まで温度低下したヤード焼結鉱をそのまま高炉に装入すると、高炉の温度低下により還元率が悪化するため、還元材(微粉炭)を増やすことにより還元率の悪化を抑制していた。本実施形態では、ヤード焼結鉱を用いることにより低下する還元率を含炭塊成鉱の使用によって改善しているため、還元材の増大によるコスト高を抑制することができる。   Here, conventionally, when the yard sintered ore whose temperature has been lowered to room temperature is charged into the blast furnace as it is, the reduction rate deteriorates due to the temperature reduction of the blast furnace, so the reduction rate is suppressed by increasing the reducing material (pulverized coal). Was. In this embodiment, since the reduction rate reduced by using a yard sintered ore is improved by using a carbon-containing agglomerated ore, the high cost by the increase of a reducing material can be suppressed.

さらに、含炭非焼成塊成鉱の使用量を変更することにより、炉頂温度Tを制御してもよい。含炭非焼成塊成鉱の固化したバインダー中には結晶水が含まれており、この結晶水は高炉装入時の熱を受熱することにより熱分解される。この熱分解反応は、吸熱反応であるため、炉頂温度Tを低下させる。したがって、含炭非焼成塊成鉱の使用量を増やすことで炉頂温度Tを低下させてもよい。なお、含炭非焼成塊成鉱に含まれるバインダーの含有量を変更することで、炉頂温度Tを制御してもよい。   Furthermore, you may control the furnace top temperature T by changing the usage-amount of a carbon-containing non-baking agglomerated ore. Crystallized water is contained in the solidified binder of the carbon-containing unfired agglomerated mineral, and this crystallized water is thermally decomposed by receiving heat at the time of charging the blast furnace. Since this thermal decomposition reaction is an endothermic reaction, the furnace top temperature T is lowered. Therefore, you may reduce the furnace top temperature T by increasing the usage-amount of a carbon-containing non-baking agglomerated mineral. In addition, you may control the furnace top temperature T by changing content of the binder contained in a carbon-containing non-baking agglomerated ore.

このように、炉頂温度Tを100℃以上及び120℃以下に温度制御しながら、ソリューションロスカーボン量(kg/tp)を基準値LSV以下に抑制する方法には、種々の態様が含まれるため、温度制御の方法及び含炭非焼成塊成鉱の組成については請求項1で限定しない。 As described above, various methods are included in the method of suppressing the solution loss carbon amount (kg / tp) to the reference value L SV or less while controlling the furnace top temperature T to 100 ° C. or more and 120 ° C. or less. Therefore, the temperature control method and the composition of the carbon-containing unfired agglomerated mineral are not limited in claim 1.

ここで、高炉鉄原料を100質量%としたとき、含炭非焼成塊成鉱の含有量は3質量%以上10質量%以下ある。つまり、高炉鉄原料には、焼結鉱が90質量%以上97質量%以下、含炭非焼成塊成鉱が3質量%以上10質量%以下含まれている。   Here, when a blast furnace iron raw material is 100 mass%, content of a carbon-containing non-baking agglomerated mineral is 3 mass% or more and 10 mass% or less. That is, the blast furnace iron raw material contains 90 to 97% by mass of sintered ore and 3 to 10% by mass of carbon-containing unfired agglomerated ore.

図3のグラフIに示すように、含炭非焼成塊成鉱が3質量%以上含まれていない場合には、炉頂温度Tが100℃のときソリューションロスカーボン量(kg/tp)が基準値LSVを超過する。一方、含炭非焼成塊成鉱の含有量を10質量%以下に制限した理由は以下の通りである。 As shown in graph I in FIG. 3, when 3% by mass or more of the carbon-containing unfired agglomerated ore is not included, the amount of solution loss carbon (kg / tp) is the standard when the furnace top temperature T is 100 ° C. The value L SV is exceeded. On the other hand, the reason for limiting the content of the carbon-containing unfired agglomerated mineral to 10% by mass or less is as follows.

図4は、焼結鉱の温度と炉頂温度Tとの関係を調べたグラフである。炉頂温度Tは、原料温度、原料比熱、炉頂ガス量、炉頂ガス組成、各ガス組成の比熱、含炭非焼成塊成鉱に含まれるバインダーの分解熱を基に、熱バランス計算によって算出した。矩形印でプロットしたグラフIVは高炉鉄原料として焼結鉱のみを装入した場合であり、三角印でプロットしたグラフVは含炭非焼成塊成鉱が3質量%の割合で装入された場合であり、丸印でプロットしたグラフVIは含炭非焼成塊成鉱が10質量%の割合で装入された場合である。   FIG. 4 is a graph in which the relationship between the temperature of the sintered ore and the furnace top temperature T is examined. The furnace top temperature T is calculated based on the heat balance calculation based on the raw material temperature, the raw material specific heat, the furnace top gas amount, the furnace top gas composition, the specific heat of each gas composition, and the decomposition heat of the binder contained in the carbon-containing unfired agglomerated ore. Calculated. Graph IV plotted with a rectangular mark is a case where only sintered ore was charged as a blast furnace iron raw material, and graph V plotted with a triangular mark was charged with a carbon-containing unfired agglomerated ore at a rate of 3% by mass. The graph VI plotted with circles is the case where the carbon-containing unfired agglomerated ore was charged at a rate of 10% by mass.

グラフVIに示すように、焼結鉱温度を25℃まで温度低下させた状態で、含炭非焼成塊成鉱を10質量%添加すると、炉頂温度Tが約100℃に低下する。したがって、含炭非焼成塊成鉱の割合が10質量%を超過し、かつ、ヤード焼結鉱のような常温(本実施形態では25℃)まで冷却された焼結鉱を使用すると、含炭非焼成塊成鉱に含まれる結晶水の分解熱及び焼結鉱を昇温させる際の顕熱による温度低下によって炉頂温度Tが100℃未満に低下するおそれがある。加えて、炉内に装入されるスラグ量が増大することによって、高炉内における融着帯104の層厚が増して、炉下部の圧力損失が増大することが懸念される。以上の理由から、高炉鉄原料に含まれる含炭非焼成塊成鉱の使用割合は、3質量%以上10質量%以下とした。   As shown in Graph VI, when 10% by mass of the carbon-containing unfired agglomerated ore is added in a state where the temperature of the sintered ore is lowered to 25 ° C., the furnace top temperature T is lowered to about 100 ° C. Therefore, if the ratio of the carbon-containing unfired agglomerated mineral exceeds 10% by mass and the sintered ore cooled to room temperature (25 ° C. in the present embodiment) such as a yard sintered ore is used, The furnace top temperature T may be lowered to less than 100 ° C. due to the heat of decomposition of crystal water contained in the unfired agglomerated mineral and the temperature decrease due to sensible heat when the sintered ore is heated. In addition, there is a concern that the increase in the amount of slag charged in the furnace increases the thickness of the fusion zone 104 in the blast furnace and increases the pressure loss in the lower part of the furnace. For the above reasons, the use ratio of the carbon-containing unfired agglomerated mineral contained in the blast furnace iron raw material is set to 3% by mass or more and 10% by mass or less.

次に、実施例を示して、本発明についてより具体的に説明する。高炉内容積4000mレベルの高炉において、出銑比:2.1、CR(以下、コークス比という):320(kg/tp)、酸素冨化5%の操業をベースにした。全ての操業において、装入T.C量(つまり、高炉操業時に使用したカーボンの総量)を同じにした。ソリューションロスカーボン量(kg/tp)の基準値LSVを88(kg/tp)に設定し、ソリューションロスカーボン量(kg/tp)が基準値LSVよりも小さい場合には還元効率が良好であるとして○で評価し、ソリューションロスカーボン量(kg/tp)が基準値LSV以上の場合には還元効率が不良であるとして×で評価した。また、塊状帯の圧力損失が645hPa以下である場合には塊状帯の通気性が良好であるとして○で評価し、塊状帯の圧力損失が645hPa超である場合には塊状帯の通気性が不良であるとして×で評価した。炉頂での結露によりダスト排出が不良となった場合には、ダスト排出性が不良として×で評価した。 Next, an Example is shown and this invention is demonstrated more concretely. In a blast furnace with a blast furnace internal volume of 4000 m 3 level, the operation was based on an operation with a tapping ratio of 2.1, CR (hereinafter referred to as coke ratio): 320 (kg / tp), and oxygen enrichment of 5%. In all operations, the charged TC amount (that is, the total amount of carbon used during blast furnace operation) was made the same. When the reference value L SV of the solution loss carbon amount (kg / tp) is set to 88 (kg / tp) and the solution loss carbon amount (kg / tp) is smaller than the reference value L SV , the reduction efficiency is good. evaluated by ○ as being, solution loss amount of carbon in the case (kg / tp) is equal to or larger than the reference value L SV was evaluated by × as the reducing efficiency is poor. In addition, when the pressure loss of the massive band is 645 hPa or less, it is evaluated as “good” because the permeability of the massive band is good, and when the pressure loss of the massive band exceeds 645 hPa, the permeability of the massive band is poor. It was evaluated by x as being. When the dust discharge became defective due to dew condensation at the top of the furnace, the dust discharge was evaluated as x.

還元効率、通気性及びダスト排出性の評価が全て○である場合には、総合評価が良好であるとして○で評価した。還元効率、通気性及びダスト排出性のうちいずれかの評価が×の場合には、総合評価が不良であるとして×で評価した。表1は、ベース操業、比較例及び実施例のデータを纏めたものである。   When the evaluations of reduction efficiency, air permeability, and dust discharge were all ○, the overall evaluation was evaluated as “good”. When any of the reduction efficiency, air permeability, and dust discharge performance was evaluated as x, the overall evaluation was evaluated as x. Table 1 summarizes the data of the base operation, comparative examples and examples.

ベース操業1は、含炭非焼成塊成鉱を未使用とした従来の焼結鉱のみの操業であり、炉頂温度Tは130℃であった。炉頂温度Tは高温のままであるため、還元効率の評価は○になったが、通気性の評価は×で、総合評価は×になった。   Base operation 1 was an operation of only a conventional sintered ore in which no carbon-containing unfired agglomerate was used, and the furnace top temperature T was 130 ° C. Since the furnace top temperature T remained high, the evaluation of the reduction efficiency was ○, but the evaluation of air permeability was ×, and the overall evaluation was ×.

ベース操業2は、ベース操業1において吹き込まれる微粉炭の一部を含炭非焼成塊成鉱の製造に振り向けたものであり、具体的には、高炉鉄原料の中に含炭非焼成塊成鉱を6質量%含めた。また、ベース操業1よりも焼結鉱の温度を上昇させた。炉頂温度Tは高温のままであるため、還元効率の評価は○になったが、通気性の評価は×であり、総合評価は×になった。ベース操業1及び2を比較して、含炭非焼成塊成鉱を装入することでソリューションロスカーボン量(kg/tp)は低減したが、炉頂温度Tが高温のままであるため通気性は改善しないことがわかった。   Base operation 2 is a part of the pulverized coal blown in base operation 1 for the production of carbon-containing unfired agglomerated minerals. 6% by mass of ore was included. Moreover, the temperature of the sintered ore was raised rather than the base operation 1. Since the furnace top temperature T remained high, the evaluation of the reduction efficiency was ○, but the evaluation of air permeability was ×, and the overall evaluation was ×. Comparing base operations 1 and 2, the solution loss carbon amount (kg / tp) was reduced by charging the carbon-containing unfired agglomerated ore, but the furnace top temperature T remained high, so it was breathable. Was found not to improve.

比較例1ではベース操業1の焼結鉱をヤード焼結鉱に変更して炉頂温度Tを低下させた。炉頂温度Tが120℃以下に低下したため通気性の評価は○に改善したが、温度低下に起因してソリューションロスカーボン量(kg/tp)が増大したため、総合評価は×になった。そこで、比較例1において吹き込まれる微粉炭の一部を含炭非焼成塊成鉱の製造に振り向けることで、ソリューションロスカーボン量(kg/tp)の低減と通気性の確保とを両立するための最適な含炭非焼成塊成鉱の使用量を検討し、比較例2〜3、実施例1〜3の結果を得た。なお、これらの比較例及び実施例では、比較例1と同様に25℃のヤード焼結鉱を使用することで、炉頂温度Tを低下させた。また、使用した含炭非焼成塊成鉱は、焼結ダスト(微粉状鉄含有原料)を56質量%、高炉一次灰(微粉状炭材)を34質量%配合し、セメント(水硬性バインダー)を10質量%添加した後に、パンペレタイザーによって造粒し、ヤードで2週間養生を行うことにより製造した。   In Comparative Example 1, the furnace top temperature T was lowered by changing the sintered ore of the base operation 1 to a yard sintered ore. Since the furnace top temperature T decreased to 120 ° C. or lower, the evaluation of air permeability was improved to ○, but the solution loss carbon amount (kg / tp) was increased due to the temperature decrease, so the overall evaluation was x. Therefore, in order to achieve both reduction in the amount of solution loss carbon (kg / tp) and securing of air permeability by diverting a part of the pulverized coal blown in Comparative Example 1 to the production of the carbon-containing unfired agglomerated ore. The optimal amount of carbon-containing unfired agglomerated ore was examined, and the results of Comparative Examples 2-3 and Examples 1-3 were obtained. In these comparative examples and examples, the furnace top temperature T was lowered by using a yard sintered ore at 25 ° C. as in comparative example 1. In addition, the carbon-containing non-fired agglomerated mineral used is 56% by mass of sintered dust (fine powdered iron-containing raw material) and 34% by mass of blast furnace primary ash (fine powdered carbonaceous material), and cement (hydraulic binder) After adding 10% by mass, the mixture was granulated with a pan pelletizer and cured in a yard for 2 weeks.

比較例2では、含炭非焼成塊成鉱の含有量が僅か2質量%であるため、還元効率の評価が×のままで、総合評価も×になった。比較例3では、含炭非焼成塊成鉱が10質量%超含まれているため、還元効率の評価は○になったが、含炭非焼成塊成鉱に含まれる結晶水の熱分解熱の増加に起因して、炉頂温度Tが100℃以下に低下した。そのため、ダスト排出性が×になり、総合評価は×になった。   In Comparative Example 2, since the content of the carbon-containing unfired agglomerated mineral was only 2% by mass, the evaluation of the reduction efficiency remained as x, and the overall evaluation was also x. In Comparative Example 3, since the carbon-containing non-calcined agglomerated ore contained more than 10% by mass, the evaluation of the reduction efficiency was ○, but the thermal decomposition heat of crystal water contained in the carbon-containing unfired agglomerated ore Due to this increase, the furnace top temperature T decreased to 100 ° C. or lower. For this reason, the dust discharge performance was x, and the overall evaluation was x.

一方、実施例1〜3では、含炭非焼成塊成鉱の使用量が3質量%以上10質量%以下であり、かつ、炉頂温度Tが100℃以上120℃以下に温度制御されているため、還元効率、通気性及びダスト排出性の評価が全て○になり、総合評価が○になった。   On the other hand, in Examples 1-3, the usage-amount of a carbon-containing non-baking agglomerated mineral is 3 mass% or more and 10 mass% or less, and the furnace top temperature T is temperature-controlled at 100 degreeC or more and 120 degrees C or less. Therefore, the evaluations of reduction efficiency, air permeability, and dust discharge were all “good”, and the overall evaluation was “good”.

100 炉体 101 羽口 102 炉頂部 102a 温度検出部
103 塊状帯 104 融着帯 105 鉄分 106 滴下帯
107 溶銑 108 出銑口 109 炉芯
DESCRIPTION OF SYMBOLS 100 Furnace body 101 tuyere 102 furnace top part 102a temperature detection part 103 lump band 104 fusion band 105 iron content 106 dripping band 107 hot metal 108 spout port 109 furnace core

Claims (4)

焼結鉱及び含炭非焼成塊成鉱を高炉鉄原料として使用する高炉の操業方法であって、
前記高炉鉄原料を100質量%としたとき、前記含炭非焼成塊成鉱の含有量は3質量%以上10質量%以下であり、高炉の炉頂温度を100℃以上120℃以下に温度制御しながら高炉を操業することを特徴とする高炉の操業方法。
A method for operating a blast furnace that uses sintered ore and carbon-containing unfired agglomerated ore as a raw material for blast furnace iron,
When the blast furnace iron raw material is 100% by mass, the content of the carbon-containing unfired agglomerated mineral is 3% by mass or more and 10% by mass or less, and the blast furnace top temperature is controlled to 100 ° C. or more and 120 ° C. or less. A method of operating a blast furnace, characterized by operating the blast furnace.
前記焼結鉱として、ヤード焼結鉱を使用することを特徴とする請求項1に記載の高炉の操業方法。   The blast furnace operating method according to claim 1, wherein a yard sintered ore is used as the sintered ore. 前記含炭非焼成塊成鉱は、鉄分を40質量%以上含有する微粉状鉄含有原料と、炭素分を10質量%以上含有する微粉状炭材とに、水硬性バインダーを添加し、水分を調整しつつ混合、造粒した造粒物であり、かつ、冷間圧潰強度が50kg/cm以上、該含炭非焼成塊成鉱中における炭素含有割合(T.C)が15〜25質量%であることを特徴とする請求項1又は2に記載の高炉の操業方法。 The carbon-containing non-fired agglomerated mineral is obtained by adding a hydraulic binder to a pulverized iron-containing raw material containing 40 mass% or more of iron and a pulverized carbonaceous material containing 10 mass% or more of carbon and adding moisture. It is a granulated product that is mixed and granulated while adjusting, and has a cold crushing strength of 50 kg / cm 2 or more, and a carbon content (TC) in the carbon-containing unfired agglomerated mineral is 15 to 25 mass. The method for operating a blast furnace according to claim 1 or 2, wherein the operating method is%. 前記炉頂温度を監視しながら高炉を操業することを特徴とする請求項1乃至3のうちいずれか一つに記載の高炉の操業方法。
The blast furnace operating method according to any one of claims 1 to 3, wherein the blast furnace is operated while monitoring the furnace top temperature.
JP2016178883A 2016-09-13 2016-09-13 Blast furnace operation method Active JP6696376B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016178883A JP6696376B2 (en) 2016-09-13 2016-09-13 Blast furnace operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016178883A JP6696376B2 (en) 2016-09-13 2016-09-13 Blast furnace operation method

Publications (2)

Publication Number Publication Date
JP2018044199A true JP2018044199A (en) 2018-03-22
JP6696376B2 JP6696376B2 (en) 2020-05-20

Family

ID=61693556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016178883A Active JP6696376B2 (en) 2016-09-13 2016-09-13 Blast furnace operation method

Country Status (1)

Country Link
JP (1) JP6696376B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03243703A (en) * 1990-02-20 1991-10-30 Nkk Corp Piling up method in yard for raw material for blast furnace
JPH0913110A (en) * 1995-06-29 1997-01-14 Kawasaki Steel Corp Method for evaluating ventilation of charged material layer in vertical type furnace
JP2008095177A (en) * 2006-09-11 2008-04-24 Nippon Steel Corp Method for producing carbon-containing non-calcined pellet for blast furnace
WO2010041770A1 (en) * 2008-10-10 2010-04-15 新日本製鐵株式会社 Blast furnace operating method using carbon-containing unfired pellets
JP2012107288A (en) * 2010-11-17 2012-06-07 Nippon Steel Corp Method for operating blast furnace using non-calcinating carbon-containing agglomerated ore

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03243703A (en) * 1990-02-20 1991-10-30 Nkk Corp Piling up method in yard for raw material for blast furnace
JPH0913110A (en) * 1995-06-29 1997-01-14 Kawasaki Steel Corp Method for evaluating ventilation of charged material layer in vertical type furnace
JP2008095177A (en) * 2006-09-11 2008-04-24 Nippon Steel Corp Method for producing carbon-containing non-calcined pellet for blast furnace
WO2010041770A1 (en) * 2008-10-10 2010-04-15 新日本製鐵株式会社 Blast furnace operating method using carbon-containing unfired pellets
JP2012107288A (en) * 2010-11-17 2012-06-07 Nippon Steel Corp Method for operating blast furnace using non-calcinating carbon-containing agglomerated ore

Also Published As

Publication number Publication date
JP6696376B2 (en) 2020-05-20

Similar Documents

Publication Publication Date Title
JP2015014015A (en) Production method of sintered ore
CN106414778B (en) The manufacturing method of granulated metal iron
WO1996015277A1 (en) Method of operating blast furnace
JP2011063835A (en) Method for improving strength of agglomerated raw material for blast furnace
JP2010138427A (en) Method for manufacturing reduced iron agglomerate for steel-making
JP2018044199A (en) Operation method of blast furnace
JP7339222B2 (en) Pig iron manufacturing method
JP4792753B2 (en) Blast furnace operation method
TWI632241B (en) Method for manufacturing sinter ore in carbon material
JP3589016B2 (en) Blast furnace operation method
JP4867394B2 (en) Non-calcined agglomerate for iron making
JP7273305B2 (en) Method for producing sintered ore
EP4317464A1 (en) Raw material particles for production of agglomerate, method for producing raw material particles for production of agglomerate, agglomerate, method for producing agglomerate, and method for producing reduced iron
Zhuravlev et al. Fluxed local sinters—agglomerated iron ore mono raw material for blast-furnace smelting
JP5867428B2 (en) Hot metal manufacturing method using vertical melting furnace
JP2018070932A (en) Method of charging raw material into blast furnace
WO2022259563A1 (en) Pig iron production method and ore raw material
CN116829739A (en) Pig iron production method
JP2023018430A (en) Estimation method of cohesive zone slag amount in blast furnace and operation method
JP6287021B2 (en) Blast furnace operation method
CN105829552A (en) Method for exploiting dusts generated in a ferronickel process and sintered pellets produced by the method
JP2022134616A (en) Carbon-containing agglomerated ore for blast furnace and blast furnace operation method using the same
JP6250482B2 (en) Manufacturing method of granular metallic iron
CN116997666A (en) Pig iron production method
JP2013082971A (en) Method for operating blast furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200406

R151 Written notification of patent or utility model registration

Ref document number: 6696376

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151