JP2022134616A - Carbon-containing agglomerated ore for blast furnace and blast furnace operation method using the same - Google Patents
Carbon-containing agglomerated ore for blast furnace and blast furnace operation method using the same Download PDFInfo
- Publication number
- JP2022134616A JP2022134616A JP2021033864A JP2021033864A JP2022134616A JP 2022134616 A JP2022134616 A JP 2022134616A JP 2021033864 A JP2021033864 A JP 2021033864A JP 2021033864 A JP2021033864 A JP 2021033864A JP 2022134616 A JP2022134616 A JP 2022134616A
- Authority
- JP
- Japan
- Prior art keywords
- carbon
- coal
- blast furnace
- ore
- mass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 137
- 229910052799 carbon Inorganic materials 0.000 title claims abstract description 133
- 238000000034 method Methods 0.000 title claims abstract description 23
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 141
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims abstract description 71
- 229910052742 iron Inorganic materials 0.000 claims abstract description 64
- 239000003245 coal Substances 0.000 claims description 119
- 239000000463 material Substances 0.000 abstract description 12
- 239000003638 chemical reducing agent Substances 0.000 description 46
- 239000002994 raw material Substances 0.000 description 34
- 239000000571 coke Substances 0.000 description 24
- 230000000694 effects Effects 0.000 description 24
- 239000007789 gas Substances 0.000 description 17
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 16
- 229910052760 oxygen Inorganic materials 0.000 description 16
- 239000001301 oxygen Substances 0.000 description 16
- 239000003575 carbonaceous material Substances 0.000 description 12
- 239000000428 dust Substances 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- 239000002245 particle Substances 0.000 description 8
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 6
- 239000011230 binding agent Substances 0.000 description 6
- 238000002309 gasification Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 230000003197 catalytic effect Effects 0.000 description 5
- 238000002156 mixing Methods 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000009423 ventilation Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 229910000805 Pig iron Inorganic materials 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- LIKBJVNGSGBSGK-UHFFFAOYSA-N iron(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Fe+3].[Fe+3] LIKBJVNGSGBSGK-UHFFFAOYSA-N 0.000 description 3
- SZVJSHCCFOBDDC-UHFFFAOYSA-N iron(II,III) oxide Inorganic materials O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 230000001737 promoting effect Effects 0.000 description 3
- 238000010298 pulverizing process Methods 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 239000002893 slag Substances 0.000 description 3
- 239000004484 Briquette Substances 0.000 description 2
- 239000011398 Portland cement Substances 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 230000001808 coupling effect Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910052595 hematite Inorganic materials 0.000 description 2
- 239000011019 hematite Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- RHZUVFJBSILHOK-UHFFFAOYSA-N anthracen-1-ylmethanolate Chemical compound C1=CC=C2C=C3C(C[O-])=CC=CC3=CC2=C1 RHZUVFJBSILHOK-UHFFFAOYSA-N 0.000 description 1
- 239000003830 anthracite Substances 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 238000009614 chemical analysis method Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000000368 destabilizing effect Effects 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- -1 etc.) Inorganic materials 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- GCLGEJMYGQKIIW-UHFFFAOYSA-H sodium hexametaphosphate Chemical compound [Na]OP1(=O)OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])O1 GCLGEJMYGQKIIW-UHFFFAOYSA-H 0.000 description 1
- 235000019982 sodium hexametaphosphate Nutrition 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
本発明は、高炉用含炭塊成鉱及びそれを用いた高炉の操業方法に関する。 TECHNICAL FIELD The present invention relates to a coal-containing agglomerate ore for blast furnace and a method of operating a blast furnace using the same.
鉄鋼業においては、高炉法が銑鉄製造工程の主流を担っている。高炉法においては、高炉の炉頂から高炉用鉄系原料(主として焼結鉱)及びコークスを高炉内に交互かつ層状に装入する一方で、高炉下部の羽口から熱風を高炉内に吹き込む。熱風は、熱風とともに吹き込まれる微粉炭、及び、高炉内のコークスと反応することで、高温の還元ガス(ここでは主としてCOガス)を発生させる。すなわち、熱風は、コークス及び微粉炭をガス化させる。還元ガスは、高炉内を上昇し、鉄系原料を加熱しながら還元する。鉄系原料は、高炉内を降下する一方で、還元ガスにより加熱及び還元される。その後、鉄系原料は溶融し、コークスによってさらに還元されながら高炉内を滴下する。鉄系原料は、最終的には炭素を5質量%弱含む溶銑(銑鉄)として炉床部に溜められる。炉床部の溶銑は、出銑口から取り出され、次の製鋼プロセスに供される。したがって、高炉法では、コークス及び微粉炭等の炭材を還元材として使用する。 In the steel industry, the blast furnace process is the mainstream of the pig iron manufacturing process. In the blast furnace method, iron-based raw materials for blast furnaces (mainly sintered ore) and coke are alternately and layeredly charged into the blast furnace from the top of the blast furnace, while hot air is blown into the blast furnace from the tuyeres at the bottom of the blast furnace. The hot air reacts with the pulverized coal blown together with the hot air and coke in the blast furnace to generate high-temperature reducing gas (here, mainly CO gas). That is, hot air gasifies coke and pulverized coal. The reducing gas rises in the blast furnace and reduces the iron-based raw material while heating it. The iron-based raw material is heated and reduced by the reducing gas while descending in the blast furnace. After that, the iron-based raw material melts and drips into the blast furnace while being further reduced by coke. The iron-based raw material is finally stored in the hearth as molten pig iron (pig iron) containing a little less than 5% by mass of carbon. Molten iron in the hearth is taken out from the tap hole and supplied to the next steelmaking process. Therefore, in the blast furnace method, carbonaceous materials such as coke and pulverized coal are used as reducing agents.
ところで、近年、地球温暖化防止が叫ばれ、温室効果ガスの一つである二酸化炭素(CO2ガス)の排出量削減が社会問題になっている。上述したように、高炉法では、還元材として炭材を使用するので、大量のCO2ガスを発生する。したがって、鉄鋼業はCO2ガス排出量において主要な産業のひとつとなっており、その社会的要請に応えねばならない。具体的には、高炉操業での更なる還元材比(溶銑1トンあたりの還元材使用量であり、RARとも称される)の削減が急務となっている。 By the way, in recent years, the prevention of global warming has been called for, and the reduction of emissions of carbon dioxide (CO 2 gas), which is one of the greenhouse gases, has become a social issue. As mentioned above, the blast furnace process uses carbonaceous material as a reducing agent, so it generates a large amount of CO2 gas. Therefore, the steel industry has become one of the major industries in terms of CO2 gas emissions and must meet the social demands. Specifically, there is an urgent need to further reduce the reducing agent ratio (the amount of reducing agent used per ton of hot metal, also called RAR) in blast furnace operation.
還元材比を低減させるための技術の1つとして、含炭塊成鉱を焼結鉱の一部に代替して使用することが知られている。ここに、含炭塊成鉱は、鉄鉱石等の酸化鉄原料と炭材とを配合し、塊成化させたものである。含炭塊成鉱においては、酸化鉄原料と炭材とが近接しているため、カップリング効果により炭材中のカーボン(C成分)がガス化しやすい。このため、含炭塊成鉱を高炉用鉄系原料として使用することで、還元材比の低減が期待される。 As one of techniques for reducing the reducing agent ratio, it is known to use coal-containing agglomerate ore as a substitute for a part of sintered ore. Here, the coal-containing agglomerated ore is obtained by blending an iron oxide raw material such as iron ore with a carbonaceous material and agglomerating the mixture. In the coal-containing agglomerate ore, since the iron oxide raw material and the carbonaceous material are close to each other, the carbon (component C) in the carbonaceous material is easily gasified due to the coupling effect. Therefore, the use of coal-containing agglomerate ore as an iron-based raw material for blast furnaces is expected to reduce the reducing agent ratio.
一方で、金属鉄にカーボンのガス化促進(カーボン反応性促進)の触媒作用があることはよく知られている。このような金属鉄の触媒作用を利用したフェロコークスも広く検討されている。フェロコークスは、例えば低品位の石炭と鉄鉱石とを混合して成型した後、空気を遮断した状態で加熱することで製造される。 On the other hand, it is well known that metallic iron has a catalytic action to promote gasification of carbon (promote carbon reactivity). Ferro-coke using the catalytic action of such metallic iron is also widely studied. Ferro-coke is produced, for example, by mixing low-grade coal and iron ore, molding the mixture, and then heating the mixture while shutting off the air.
特許文献1及び非特許文献1、2には、含炭塊成鉱及びフェロコークスの技術を併用した技術、すなわち含炭塊成鉱にさらに金属鉄(M.Fe)を混合する技術が開示されている。 Patent Literature 1 and Non-Patent Literatures 1 and 2 disclose a technique that combines the technology of coal-containing agglomerate ore and ferro-coke, that is, a technique of further mixing metallic iron (M.Fe) with coal-containing agglomerate ore. ing.
しかし、金属鉄を含有する含炭塊成鉱において、金属鉄とカーボンとの好適な組み合わせ条件はこれまで全く知られておらず、上述した含炭塊成鉱及びフェロコークスの利点を十分に生かしているとは言い難かった。 However, in a coal-containing agglomerate ore containing metallic iron, no suitable combination condition of metallic iron and carbon has been known so far, and the advantages of the above-mentioned coal-containing agglomerate ore and ferro-coke are fully utilized. It was hard to say.
本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、還元材比をより低減することが可能な高炉用含炭塊成鉱及びそれを用いた高炉の操業方法を提供することである。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a coal-containing agglomerate ore for blast furnaces capable of further reducing the reducing agent ratio, and a blast furnace operation using the same. to provide a method.
上記課題を解決するために、本発明のある観点によれば、カーボン、金属鉄、及び酸化鉄を合計で70質量%以上含有する高炉用含炭塊成鉱であって、カーボンの含有量が高炉用含炭塊成鉱の総質量に対して15~25質量%であり、金属鉄とカーボンの質量比が0.4~0.8であることを特徴とする、高炉用含炭塊成鉱が提供される。 In order to solve the above problems, according to one aspect of the present invention, a carbon-containing agglomerate ore for blast furnace containing a total of 70% by mass or more of carbon, metallic iron, and iron oxide, wherein the carbon content is A coal-containing agglomerate for blast furnace, characterized in that it is 15 to 25% by mass with respect to the total mass of the coal-containing agglomerate ore for blast furnace, and the mass ratio of metallic iron to carbon is 0.4 to 0.8. ore is provided.
本発明の他の観点によれば、上記の高炉用含炭塊成鉱を用いた高炉の操業方法であって、高炉用含炭塊成鉱由来のカーボン原単位を5~30kg/t-HMとすることを特徴とする、高炉の操業方法が提供される。 According to another aspect of the present invention, there is provided a method for operating a blast furnace using the above-described coal-containing agglomerate ore for blast furnace use, wherein the carbon intensity derived from the coal-containing agglomerate ore for blast furnace use is 5 to 30 kg/t-HM. A method for operating a blast furnace is provided, characterized by:
本発明の上記観点によれば、還元材比をより低減することが可能な高炉用含炭塊成鉱及びそれを用いた高炉の操業方法を提供することができる。 ADVANTAGE OF THE INVENTION According to the said viewpoint of this invention, the coal-containing agglomerate for blast furnaces which can reduce a reducing material ratio more, and the operating method of a blast furnace using the same can be provided.
以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。本発明者は、金属鉄を含む高炉用含炭塊成鉱(以下、単に「含炭塊成鉱」とも称する)の組成について鋭意検討し、その結果、金属鉄とカーボンとの好適な組み合わせ条件を見出すことができた。そして、本発明者は、このような知見の下、本実施形態に係る含炭塊成鉱及びそれを用いた高炉の操業方法に想到することができた。なお、本実施形態において、「カーボン」とは、含炭塊成鉱等に使用される「炭材」そのものではなく、「炭材」に含まれる「炭素(C)成分」を意味するものとする。「酸化鉄」には、ウスタイト(FeO)、マグネタイト(Fe3O4)及びヘマタイト(Fe2O3)が含まれる。また、本実施形態に係る単位の「/t-HM」は、溶銑1トンの製造に必要な量、いわゆる原単位を示す。本実施形態において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。以下、本実施形態に係る含炭塊成鉱及びそれを用いた高炉の操業方法について詳細に説明する。 Preferred embodiments of the present invention will be described in detail below with reference to the accompanying drawings. The present inventors have extensively studied the composition of coal-containing agglomerates for blast furnaces containing metallic iron (hereinafter also simply referred to as "coal-containing agglomerates"), and as a result, have found suitable conditions for combining metallic iron and carbon. was able to find Based on such knowledge, the present inventor was able to come up with the coal-containing agglomerate ore according to the present embodiment and the method of operating a blast furnace using the same. In the present embodiment, "carbon" means "carbon (C) component" contained in "carbonaceous material" rather than "carbonaceous material" itself used in coal-containing agglomerates or the like. do. "Iron oxide" includes wustite (FeO), magnetite ( Fe3O4 ) and hematite ( Fe2O3 ). Further, the unit "/t-HM" according to the present embodiment indicates the amount required to manufacture 1 ton of hot metal, that is, the so-called basic unit. In the present embodiment, a numerical range represented using "-" means a range including the numerical values described before and after "-" as lower and upper limits. Hereinafter, the coal-containing agglomerate ore and the method of operating a blast furnace using the same according to the present embodiment will be described in detail.
<1.含炭塊成鉱の組成>
本実施形態に係る含炭塊成鉱は、少なくともカーボン、金属鉄、及び酸化鉄を合計で含炭塊成鉱の総質量に対して70質量%以上含有する。この条件が満たされない場合、還元材比を十分に低減することができない。つまり、含炭塊成鉱は、主にカーボン、金属鉄、及び酸化鉄で構成されるが、残部はスラグ(CaO、SiO2、Al2O3等)、結晶水などで構成される。カーボン、金属鉄、及び酸化鉄の含有量が少ないことは、その分スラグ成分が増加することになる。したがって、高炉内でスラグ成分の溶解に必要な還元材が増大し、ひいては還元材比が増大する。
<1. Composition of coal-bearing agglomerate>
The coal-containing agglomerate ore according to the present embodiment contains at least carbon, metallic iron, and iron oxide in a total amount of 70% by mass or more with respect to the total mass of the coal-containing agglomerate ore. If this condition is not met, the reducing agent ratio cannot be sufficiently reduced. That is, the coal-containing agglomerate ore is mainly composed of carbon, metallic iron, and iron oxide, and the balance is composed of slag (CaO, SiO 2 , Al 2 O 3 , etc.), water of crystallization, and the like. A low content of carbon, metallic iron, and iron oxide results in an increase in slag components. Therefore, the reducing agent required for dissolving the slag components in the blast furnace increases, and thus the reducing agent ratio increases.
さらに、本実施形態に係る含炭塊成鉱では、カーボンの含有量が高炉用含炭塊成鉱の総質量に対して15~25質量%である。カーボンの含有量がこの範囲内の値となる場合に、カーボンによる効果が効果的に現れ、ひいては、還元材比が低減する。ここに、カーボンによる効果としては、酸化鉄にカーボンが近接することによるカーボンのガス化促進効果(所謂カップリング効果)、金属鉄の触媒作用によるカーボンのガス化促進効果等が挙げられる。カーボン含有量の好ましい上限値は20質量%である。つまり、カーボン含有量は、好ましくは15~20質量%である。 Furthermore, in the coal-containing agglomerate ore according to the present embodiment, the carbon content is 15 to 25% by mass with respect to the total mass of the coal-containing agglomerate ore for blast furnace use. When the carbon content falls within this range, the effect of carbon is effectively exhibited, and the reducing agent ratio is reduced. Here, the effects of carbon include the effect of promoting gasification of carbon (so-called coupling effect) due to the proximity of carbon to iron oxide, and the effect of promoting gasification of carbon due to the catalytic action of metallic iron. A preferable upper limit of the carbon content is 20% by mass. That is, the carbon content is preferably 15-20 mass %.
カーボンの含有量が15質量%未満となる場合、カーボンによる効果を十分に享受できず、還元材比が十分に低減しない。つまり、含炭塊成鉱からは還元ガス(CO)が容易に発生するため、還元材比の低減に寄与する。しかし、カーボンの含有量が15質量%未満となる場合、そもそも含炭塊成鉱から発生する還元ガス自体が少なくなるので、還元材比が十分に低減しない。 If the carbon content is less than 15% by mass, the effect of carbon cannot be fully enjoyed, and the reducing agent ratio is not sufficiently reduced. That is, since reducing gas (CO) is easily generated from the coal-containing agglomerate ore, it contributes to the reduction of the reducing agent ratio. However, if the carbon content is less than 15% by mass, the reducing gas itself generated from the carbon-containing agglomerate ore is reduced in the first place, so the reducing material ratio is not sufficiently reduced.
一方、カーボンの含有量が25質量%を超えると、含炭塊成鉱中の酸化鉄の含有量、すなわち被還元酸素量(酸化鉄に結合した酸素量)が極端に少なくなる。このため、カーボンによる効果を十分に享受できない。つまり、含炭塊成鉱からは還元ガス(CO)が容易に発生する。しかし、カーボンの含有量が25質量%を超えると、還元ガスの直近に存在する被還元酸素が少なくなるため、還元ガスによる効果を十分に享受できない。すなわち、カーボンによる効果を十分に享受できない。さらに、カーボンの含有量が25質量%を超えると、含炭塊成鉱の熱間強度が低下して、操業が不安定化する可能性もある。これらの結果、還元材比が十分に低減しないのみならず、かえって上昇してしまう可能性もある。 On the other hand, when the carbon content exceeds 25% by mass, the content of iron oxide in the carbon-containing agglomerate ore, that is, the amount of oxygen to be reduced (the amount of oxygen bound to iron oxide) becomes extremely small. Therefore, the effects of carbon cannot be sufficiently enjoyed. That is, reducing gas (CO) is easily generated from the coal-bearing agglomerate ore. However, if the carbon content exceeds 25% by mass, the amount of reducible oxygen present in the immediate vicinity of the reducing gas is reduced, so that the effects of the reducing gas cannot be fully enjoyed. That is, the effects of carbon cannot be sufficiently enjoyed. Furthermore, if the carbon content exceeds 25% by mass, the hot strength of the carbon-containing agglomerate ore may decrease, and the operation may become unstable. As a result of these, not only the reducing agent ratio is not sufficiently reduced, but there is also the possibility that it may even increase.
さらに、金属鉄とカーボンの質量比(M.Fe/T.C)が0.4~0.8である。この場合、金属鉄の触媒作用によるカーボンのガス化促進効果が十分に得られ、還元材比が低減する。金属鉄とカーボンの質量比が0.4未満となる場合、カーボンのガス化促進効果が十分に得られず、特に50~150kg/t-HMで高炉操業を行う場合に、還元材比が十分に低減しない。一方、金属鉄とカーボンの質量比が0.8を超える場合、カーボン量が相対的に低くなり、カーボンによる効果を十分に享受できない。つまり、金属鉄は十分に存在するのでカーボンのガス化は十分に促進されるが、そもそも発生する還元ガス自体が少なくなるので、還元材比が十分に低減しない。すなわち、カーボンによる効果を十分に享受できない。金属鉄とカーボンの質量比(M.Fe/T.C)の好ましい下限値は0.5であり、好ましい上限値は0.7である。 Furthermore, the mass ratio (M.Fe/T.C) of metallic iron and carbon is 0.4 to 0.8. In this case, the catalytic action of metallic iron provides a sufficient effect of promoting the gasification of carbon, thereby reducing the reducing agent ratio. When the mass ratio of metallic iron and carbon is less than 0.4, the gasification promotion effect of carbon is not sufficiently obtained, especially when the blast furnace is operated at 50 to 150 kg / t-HM, the reducing agent ratio is sufficient. does not reduce to On the other hand, when the mass ratio of metallic iron and carbon exceeds 0.8, the amount of carbon becomes relatively low, and the effect of carbon cannot be fully enjoyed. In other words, since metallic iron is sufficiently present, the gasification of carbon is sufficiently promoted, but since the amount of reducing gas itself generated is reduced in the first place, the reducing material ratio is not sufficiently reduced. That is, the effects of carbon cannot be sufficiently enjoyed. A preferable lower limit of the mass ratio (M.Fe/T.C) of metallic iron and carbon (M.Fe/T.C) is 0.5, and a preferable upper limit is 0.7.
図1は、本実施形態に係る金属鉄とカーボンとの組み合わせの範囲と従来の範囲とを対比して示すグラフである。 FIG. 1 is a graph showing a comparison between the range of the combination of metallic iron and carbon according to the present embodiment and the conventional range.
図1の横軸は含炭塊成鉱に含まれるカーボン(T.C)の含有量(質量%)を示し、縦軸は含炭塊成鉱に含まれる金属鉄(M.Fe)の含有量(質量%)を示す。グラフL1はM.Fe/T.C=0.8を示し、グラフL2はM.Fe/T.C=0.4を示す。グラフL3、L4はそれぞれカーボン含有量=15質量%、25質量%を示す。したがって、グラフL1~L4で囲まれる領域A1が本実施形態に係る含炭塊成鉱が満たすべき条件(金属鉄とカーボンとの組み合わせ条件)を示す。 The horizontal axis of FIG. 1 indicates the content (% by mass) of carbon (T.C) contained in the coal-bearing agglomerate ore, and the vertical axis indicates the content of metallic iron (M.Fe) contained in the coal-bearing agglomerate ore. Amount (% by mass) is indicated. Graph L1 is M. Fe/T. C=0.8 and graph L2 shows M.C=0.8. Fe/T. C=0.4 is shown. Graphs L3 and L4 indicate carbon content=15% by mass and 25% by mass, respectively. Therefore, the area A1 surrounded by the graphs L1 to L4 indicates the conditions (combination conditions of metallic iron and carbon) to be satisfied by the carbon-containing agglomerate ore according to the present embodiment.
一方、領域Bは非特許文献2に開示された範囲を示し、点C1、点C2、及びこれらを連結するグラフCは特許文献1に開示された範囲を示す。図示は省略するが、非特許文献1では、概ねカーボン含有量を10質量%程度としている。したがって、いずれの範囲も本実施形態に係る含炭塊成鉱が満たすべき範囲を外れている。 On the other hand, area B indicates the range disclosed in Non-Patent Document 2, and points C1, C2, and a graph C connecting them indicate the range disclosed in Patent Document 1. Although illustration is omitted, in Non-Patent Document 1, the carbon content is approximately 10% by mass. Therefore, both ranges are outside the range that the coal-containing agglomerate ore according to the present embodiment should satisfy.
図2は、含炭塊成鉱に含まれる金属鉄とカーボンの好ましい質量比を説明するためのグラフである。具体的には、図2は、含炭塊成鉱に含まれる金属鉄とカーボンとの質量比(M.Fe/T.C)と、還元材比RAR(kg/t-HM)との関係を含炭塊成鉱に含まれるカーボン含有量(含炭塊成鉱の総質量に対する質量%)毎に示す。図2の横軸は含炭塊成鉱に含まれる金属鉄とカーボンの質量比(M.Fe/T.C)を示し、縦軸は還元材比RAR(kg/t-HM)を示す。還元材比は後述の実施例で測定された値である。なお、実施例では高炉を模擬したBIS炉(内藤ほか:鉄と鋼、87巻(2001年)、No.5、P.357-364)により還元材比を測定した。詳細な試験条件は後述する実施例と同様とし、含炭塊成鉱由来のカーボン原単位は20kg/t-HMとした。 FIG. 2 is a graph for explaining a preferable mass ratio of metallic iron and carbon contained in the coal-containing agglomerate ore. Specifically, FIG. 2 shows the relationship between the mass ratio (M.Fe/T.C) of metallic iron and carbon contained in the coal-bearing agglomerate ore and the reducing agent ratio RAR (kg/t-HM). is shown for each carbon content contained in the coal-containing agglomerate ore (% by mass with respect to the total mass of the coal-containing agglomerate ore). The horizontal axis of FIG. 2 indicates the mass ratio (M.Fe/T.C) of metallic iron and carbon contained in the coal-bearing agglomerate ore, and the vertical axis indicates the reducing agent ratio RAR (kg/t-HM). The reducing agent ratio is a value measured in Examples described later. In the examples, the reducing agent ratio was measured using a BIS furnace (Naito et al.: Tetsu to Hagane, Vol. 87 (2001), No. 5, pp. 357-364) simulating a blast furnace. The detailed test conditions were the same as those of the examples described later, and the unit carbon consumption derived from the coal-containing agglomerate ore was set to 20 kg/t-HM.
点P10はカーボン含有量=15質量%となる場合におけるM.Fe/T.C及び還元材比の測定値を示し、グラフL10は点P10を連結したグラフである。点P20はカーボン含有量=25質量%となる場合におけるM.Fe/T.C及び還元材比の測定値を示し、グラフL20は点P20を連結したグラフである。グラフL30、L40はそれぞれM.Fe/T.C=0.4、0.8を示す。グラフL10~L40で囲まれる領域A2が本実施形態に係る含炭塊成鉱が満たすべき条件(金属鉄とカーボンとの組み合わせ条件)を示す。点P30は含炭塊成鉱を使用しないベース操業(カーボン含有量=0質量となる操業)を示す。図1及び図2から明らかな通り、領域A1、A2の条件を満たす場合、還元材比がカーボン含有量=0質量となる操業と比べて大きく低減していることがわかる。また、カーボン含有量が同一の条件下で比較してみると、金属鉄とカーボンとの質量比(M.Fe/T.C)が0.4~0.8となる場合に、還元材比が大きく低減していることがわかる。つまり、本実施形態の目的は、含炭塊成鉱中のカーボンを如何に効率よく使用するかという点にあるので、カーボン含有量が同一となる含炭塊成鉱同士で還元材比の低減効果を比較する必要がある。 Point P10 is the M.O.M. Fe/T. Measured values of C and the reducing agent ratio are shown, and graph L10 is a graph connecting points P10. Point P20 is the M.O.D. when the carbon content is 25% by mass. Fe/T. Measured values of C and the reducing agent ratio are shown, and graph L20 is a graph connecting points P20. Graphs L30 and L40 are M.M. Fe/T. C = 0.4, 0.8. A region A2 surrounded by graphs L10 to L40 indicates conditions (combination conditions of metallic iron and carbon) to be satisfied by the carbon-containing agglomerate ore according to the present embodiment. Point P30 indicates a base operation (operation where carbon content=0 mass) in which no carbon-containing agglomerate is used. As is clear from FIGS. 1 and 2, when the conditions of regions A1 and A2 are satisfied, the reducing material ratio is greatly reduced compared to the operation in which the carbon content=0 mass. Also, when the carbon content is compared under the same conditions, when the mass ratio of metallic iron and carbon (M.Fe/T.C) is 0.4 to 0.8, the reducing agent ratio is found to be greatly reduced. In other words, the purpose of the present embodiment is to efficiently use the carbon in the carbon-containing agglomerate ore. We need to compare the effects.
含炭塊成鉱は上記の条件を満たしていればよいが、さらにC/Oが1.0~2.0程度であってもよい。この場合、還元材比がさらに低減される場合がある。なお、C/O中のCは含炭塊成鉱中のカーボンを示し、Oは含炭塊成鉱中の被還元酸素を示す。C/Oはこれらのモル比を示す。また、含炭塊成鉱の粒度も特に制限されず、従来の含炭塊成鉱と同程度であってもよい。例えば、含炭塊成鉱の粒度は5~15mm程度であってもよい。なお、含炭塊成鉱の粒度は目開きの異なる篩で分級することができる。目開き15mmの篩から落ち、目開き5mmの篩に残る含炭塊成鉱の粒度は、5~15mmの範囲内となる。 The coal-containing agglomerate ore may satisfy the above conditions, and may further have a C/O of about 1.0 to 2.0. In this case, the reducing agent ratio may be further reduced. C in C/O indicates carbon in the coal-containing agglomerate ore, and O indicates reducible oxygen in the coal-containing agglomerate ore. C/O indicates their molar ratio. Also, the particle size of the coal-containing agglomerate ore is not particularly limited, and may be approximately the same as that of the conventional coal-containing agglomerate ore. For example, the grain size of the coal-bearing agglomerate ore may be about 5 to 15 mm. In addition, the particle size of the coal-containing agglomerate ore can be classified with sieves having different openings. The particle size of the coal-containing agglomerate ore that falls from a sieve with a mesh size of 15 mm and remains on a sieve with a mesh size of 5 mm falls within the range of 5 to 15 mm.
<2.含炭塊成鉱の製造方法>
次に、本実施形態に係る含炭塊成鉱の製造方法について説明する。製造方法自体は特に制限されず、含炭塊成鉱が上述した条件を満たすように各原料を配合し、成型すればよい。
<2. Method for producing coal-bearing agglomerate ore>
Next, a method for producing a coal-containing agglomerate ore according to the present embodiment will be described. The production method itself is not particularly limited, and each raw material may be blended and molded so that the coal-containing agglomerate ore satisfies the above conditions.
含炭塊成鉱を製造するための原料としては、酸化鉄原料、炭材、バインダ等が挙げられる。酸化鉄原料の種類は問われず、従来の含炭塊成鉱に使用される酸化鉄原料を特に制限なく使用することができる。酸化鉄原料の例としては、表1に示す組成の転炉ダスト、高炉1次灰、焼結ダスト等が挙げられる。表1中の各数値は酸化鉄原料の総質量に対する各成分の質量%である。また、表1中の「T.Fe」は金属鉄、酸化鉄を含む全鉄を意味し、「T.C」は酸化鉄原料に含まれるカーボンを意味する。複数種類の酸化鉄原料を混合して使用してもよいし、いずれかの酸化鉄原料を単独で使用してもよい。ただし、本実施形態では、含炭塊成鉱に金属鉄を配合する必要があるので、少なくとも金属鉄を含有する酸化鉄原料を使用する必要がある。この点、表1に示す高炉1次灰は金属鉄を50質量%以上含むので、本実施形態に係る含炭塊成鉱を製造するための酸化鉄原料として好適である。つまり、金属鉄を50質量%以上含む酸化鉄原料を使用することで、金属鉄とカーボンの質量比(M.Fe/T.C)の調整が容易になる。また、金属鉄分が不足する場合、別途還元鉄粉やスクラップなどの金属鉄源を購入し、それを適宜使用してもよい。ただし、省資源、リサイクルの観点からは、なるべく金属鉄源を使用せず、転炉ダスト、高炉1次灰、焼結ダスト等を使用することが好ましい。 Raw materials for producing the coal-containing agglomerate ore include iron oxide raw materials, carbon materials, binders, and the like. Any type of iron oxide raw material can be used, and iron oxide raw materials used for conventional carbon-containing agglomerates can be used without particular limitations. Examples of the iron oxide raw material include converter dust, blast furnace primary ash, sintering dust and the like having the compositions shown in Table 1. Each numerical value in Table 1 is mass % of each component with respect to the total mass of the iron oxide raw material. Further, "T.Fe" in Table 1 means total iron including metallic iron and iron oxide, and "T.C" means carbon contained in the iron oxide raw material. A plurality of types of iron oxide raw materials may be mixed and used, or any iron oxide raw material may be used alone. However, in the present embodiment, since it is necessary to mix metallic iron with the coal-containing agglomerate ore, it is necessary to use an iron oxide raw material containing at least metallic iron. In this regard, since the primary blast furnace ash shown in Table 1 contains 50% by mass or more of metallic iron, it is suitable as an iron oxide raw material for producing the coal-containing agglomerate ore according to the present embodiment. That is, by using an iron oxide raw material containing 50% by mass or more of metallic iron, it becomes easy to adjust the mass ratio (M.Fe/TC) of metallic iron and carbon. Moreover, when the metallic iron content is insufficient, a metallic iron source such as reduced iron powder or scrap may be separately purchased and used as appropriate. However, from the viewpoint of resource saving and recycling, it is preferable to use converter dust, blast furnace primary ash, sintering dust, etc., without using metallic iron sources as much as possible.
含炭塊成鉱の原料となる炭材の種類も特に制限されず、従来の含炭塊成鉱に使用される炭材を本実施形態でも好適に使用することができる。例えば、炭材としては、コークス、石炭、無煙炭、コークスダスト(コークスの製造過程で生じるダスト)、石炭チャー等が挙げられる。 The type of carbonaceous material that is the raw material of the coal-containing agglomerate ore is not particularly limited, and the carbonaceous materials used in conventional coal-containing agglomerate ore can be suitably used in the present embodiment. Examples of carbonaceous materials include coke, coal, anthracite, coke dust (dust generated during the coke manufacturing process), coal char, and the like.
含炭塊成鉱の原料となるバインダの種類も特に制限されず、従来の含炭塊成鉱に使用されるバインダを本実施形態でも好適に使用することができる。例えば、バインダとしては、水硬性バインダ、より具体的にはセメント(早強ポルトランドセメント等)が挙げられる。 The type of binder used as a raw material for the coal-containing agglomerate ore is not particularly limited, and binders used for conventional coal-containing agglomerate ore can be suitably used in the present embodiment. For example, binders include hydraulic binders, more specifically cements (high-early-strength Portland cement, etc.).
各原料の成分は、一般的な化学分析法あるは蛍光X線分析法によって特定することができる。そこで、各原料を含炭塊成鉱が上述した条件を満たすように配合し、成型すればよい。例えば、配合原料及び適量の水分をペレタイザー、ブリケットマシーン等の造粒機で混錬及び成型した後、養生する(バインダを硬化させる)ことで含炭塊成鉱とすればよい。 The components of each raw material can be specified by a general chemical analysis method or a fluorescent X-ray analysis method. Therefore, each raw material may be blended and molded so that the coal-containing agglomerate ore satisfies the above conditions. For example, after kneading and molding the blended raw materials and an appropriate amount of water in a granulator such as a pelletizer or briquette machine, the mixture is cured (hardened the binder) to form a coal-containing agglomerate ore.
<3.高炉の操業方法>
つぎに、本実施形態に係る高炉の操業方法について説明する。本実施形態では、鉄系原料(焼結鉱等)の一部を本実施形態に係る含炭塊成鉱に代替して高炉の操業を行う。ここで、含炭塊成鉱由来のカーボン原単位を5~30kg/t-HMとすることが好ましい。この場合、還元材比がより低減する。含炭塊成鉱由来のカーボン原単位が5kg/t-HM未満では、還元材比を十分に低減することができない場合がある。一方、含炭塊成鉱由来のカーボン原単位が30kg/t-HMを超えた場合、還元材比の改善効果が飽和する。上記以外の操業は従来の高炉の操業方法と同様に行えばよい。
<3. Blast Furnace Operation Method>
Next, a method for operating a blast furnace according to this embodiment will be described. In this embodiment, the blast furnace is operated by substituting part of the iron-based raw material (sintered ore, etc.) with the coal-containing agglomerate ore according to this embodiment. Here, it is preferable to set the carbon intensity derived from the coal-containing agglomerate ore to 5 to 30 kg/t-HM. In this case, the reducing material ratio is further reduced. If the carbon intensity derived from the coal-containing agglomerate ore is less than 5 kg/t-HM, the reducing agent ratio may not be sufficiently reduced. On the other hand, when the carbon intensity derived from the coal-containing agglomerate ore exceeds 30 kg/t-HM, the effect of improving the reducing agent ratio is saturated. Operations other than the above may be performed in the same manner as in the conventional blast furnace operation method.
次に、本実施形態の実施例を説明する。本実施例では、本実施形態の効果を検証するために、以下の試験を行った。もちろん、本発明は以下に説明する実施例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。 Next, an example of this embodiment will be described. In this example, the following tests were conducted in order to verify the effects of this embodiment. Of course, the invention is not limited to the examples described below. It is obvious that a person having ordinary knowledge in the technical field to which the present invention belongs can conceive of various modifications or modifications within the scope of the technical idea described in the claims. It is understood that these also naturally belong to the technical scope of the present invention.
まず、表1に示す酸化鉄原料、実機コークスダスト、試薬鉄粉(純度98%)、及び早強ポルトランドセメントを準備した。酸化鉄原料、実機コークスダストの成分は蛍光X線分析法で特定した。また、各原料の粒度はd50(体積基準)で50μm、53μm、50μm、13μmであった。ここで、各原料のd50はレーザー回折式粒度分布測定装置を用いた以下の測定方法によって測定した。すなわち、測定対象となる試料を水でスラリー化し、分散剤としてヘキサメタりん酸ナトリウム溶液を少量添加した。ついで、混合液の撹拌及び超音波照射により混合液中に試料を分散させた。ついで、この混合液をレーザー回折式粒度分布測定装置にセットし、粒度分布を測定し、d50を特定した。 First, iron oxide raw materials shown in Table 1, actual coke dust, reagent iron powder (purity 98%), and early-strength Portland cement were prepared. The iron oxide raw material and the components of the actual coke dust were identified by fluorescent X-ray analysis. In addition, the particle size of each raw material was 50 μm, 53 μm, 50 μm and 13 μm in terms of d50 (volume basis). Here, d50 of each raw material was measured by the following measuring method using a laser diffraction particle size distribution analyzer. That is, a sample to be measured was slurried with water, and a small amount of sodium hexametaphosphate solution was added as a dispersant. Then, the sample was dispersed in the mixed liquid by stirring the mixed liquid and applying ultrasonic waves. Next, this mixed liquid was set in a laser diffraction particle size distribution analyzer, the particle size distribution was measured, and d50 was specified.
ついで、これらの原料を適量の水と共に配合した後、ブリケットマシーンで成型した。ついで、成型した造粒物を養生した。以上の工程を酸化鉄原料の種類、各原料の配合比を変更して繰り返し行うことで、表2に示す組成の含炭塊成鉱(試験例No.1~22)を作製した。作製された含炭塊成鉱のうち、粒度が8~13mmのもの(目開き13mmの篩から落ち、目開き8mmの篩に残ったもの)を以下のBIS炉試験に使用した。 Then, these raw materials were blended with an appropriate amount of water and molded with a briquette machine. Then, the molded granules were cured. By repeating the above steps while changing the type of iron oxide raw material and the blending ratio of each raw material, coal-containing agglomerates (Test Example Nos. 1 to 22) having the compositions shown in Table 2 were produced. Among the produced coal-bearing agglomerate ores, those having a particle size of 8 to 13 mm (dropped from a sieve with an opening of 13 mm and remaining on a sieve with an opening of 8 mm) were used in the following BIS furnace tests.
表2中の各成分は、含炭塊成鉱中の各成分の質量%、モル比、原単位等を示す。例えば、「T.Fe」は含炭塊成鉱中の全鉄の質量%を示し、「M.Fe」は含炭塊成鉱中の金属鉄の質量%を示し、「T.C」は含炭塊成鉱中のカーボン含有量(質量%)を示す。「FeO」及び「Fe2O3」は、含炭塊成鉱中の「酸化鉄」の含有量(質量%)を示す。「被還元酸素量」は、「酸化鉄」に結合した酸素の質量%を示す。「C+M.Fe+FeO+Fe2O3」は、含炭塊成鉱中のカーボン、金属鉄、及び酸化鉄の合計の質量%を示す。各成分の質量%は、含炭塊成鉱の試料の総質量に対する質量%である。「M.Fe/T.C」は含炭塊成鉱中の金属鉄とカーボンの質量比を示し、C/Oは含炭塊成鉱中のカーボンと被還元酸素のモル比を示す。 Each component in Table 2 shows the mass %, molar ratio, basic unit, etc. of each component in the coal-containing agglomerate ore. For example, "T.Fe" indicates mass% of total iron in the coal-bearing agglomerate, "M.Fe" indicates mass% of metallic iron in the coal-bearing agglomerate, and "TC" indicates The carbon content (% by mass) in the coal-containing agglomerate ore is shown. “FeO” and “Fe 2 O 3 ” indicate the content (% by mass) of “iron oxide” in the coal-containing agglomerate ore. "Amount of oxygen to be reduced" indicates mass % of oxygen bound to "iron oxide". “C+M.Fe+FeO+Fe 2 O 3 ” indicates the total mass % of carbon, metallic iron and iron oxide in the carbon-containing agglomerate ore. The % by mass of each component is % by mass with respect to the total mass of the sample of the coal-bearing agglomerate ore. "M.Fe/T.C" indicates the mass ratio of metallic iron and carbon in the coal-containing agglomerate ore, and C/O indicates the molar ratio of carbon and reducible oxygen in the coal-containing agglomerate ore.
ついで、BIS炉試験を行った。なお、BIS炉試験の詳細は「内藤ほか:鉄と鋼、87巻(2001年)、No.5、P.357-364)」に記載された通りであり、本試験もこの非特許文献に記載された方法に従って行った。具体的には、装入チャージ当りのT.C、T.Fe(ここでのT.C、T.Feは、装入チャージ全体の総質量に対する装入チャージ内のカーボンの質量%、全鉄の質量%を示す)が一定となるように焼結鉱量、コークス量をそれぞれ調整した。 A BIS furnace test was then performed. The details of the BIS furnace test are as described in "Naito et al.: Tetsu to Hagane, Vol. 87 (2001), No. 5, P. 357-364)", and this test is also in this non-patent document. Performed according to the described method. Specifically, the T.V. C, T. The amount of sintered ore is adjusted so that Fe (T.C, T.Fe here indicates the mass% of carbon in the charged charge with respect to the total mass of the entire charged charge, and the mass% of all iron) is constant. , the amount of coke was adjusted respectively.
また、含炭塊成鉱由来のカーボン原単位が表2に示す値となるように含炭塊成鉱の使用量を調整した。すなわち、T.Cが15.0質量%の含炭塊成鉱を使用する場合、含炭塊成鉱の使用量(原単位)を133kg/t-HMとし、T.Cが25.0質量%の含炭塊成鉱を使用する場合、含炭塊成鉱の使用量(原単位)を80kg/t-HMとした。さらに、還元材比が481kg/t-HM、コークス比が349kg/t-HMとなるように、送風温度1178℃、送風湿分18.6g/Nm3、酸素富化率2.7%の下でボッシュガス組成(CO:36.0体積%、H2:7.0体積%、N2:57.0体積%)と送風量(1343Nm3/t-HM)を設定した。 In addition, the amount of the coal-containing agglomerate ore used was adjusted so that the carbon unit consumption derived from the coal-containing agglomerate ore was the value shown in Table 2. That is, when using a coal-containing agglomerate ore with a T.C of 15.0% by mass, the amount of coal-containing agglomerate ore used (basic unit) is 133 kg / t-HM, and the T.C is 25.0 mass % coal-containing agglomerate ore, the amount of coal-containing agglomerate ore used (basic unit) was set to 80 kg/t-HM. Furthermore, under a blast temperature of 1178 ° C., a blast moisture content of 18.6 g/Nm 3 , and an oxygen enrichment rate of 2.7%, so that the reducing agent ratio is 481 kg / t-HM and the coke ratio is 349 kg / t-HM. set the bosh gas composition (CO: 36.0% by volume, H 2 : 7.0% by volume, N 2 : 57.0% by volume) and the air flow rate (1343 Nm 3 /t-HM).
ここで、酸素富化率は、概略的には、熱風の総体積に対する熱風中の酸素の体積割合であり、酸素富化率(%)={(空気の送風量(流量)[Nm3/min]×0.21+酸素富化量[Nm3/min])/(空気の送風量[Nm3/min]+酸素富化量[Nm3/min])}×100-21であらわされる。また、Ore/Coke(焼結鉱とコークスの質量比)は4.63とした。 Here, the oxygen enrichment rate is roughly the volume ratio of oxygen in the hot air to the total volume of the hot air, and the oxygen enrichment rate (%) = {(blowing air volume (flow rate) [Nm 3 / min]×0.21+oxygen enrichment amount [Nm 3 /min])/(air flow rate [Nm 3 /min]+oxygen enrichment amount [Nm 3 /min])}×100−21. Moreover, Ore/Coke (mass ratio of sintered ore and coke) was set to 4.63.
また、高炉内のアルカリ循環を考慮して、試薬KOHを、コークスに対して1.8質量%のK量となるように添加した。BIS炉で得られるシャフト効率をもとに、熱物質収支を取って、還元材比を評価した。この際に、還元材比は、熱風と共に吹き込まれる微粉炭+コークス+含炭塊成鉱中の炭材(ここでは実機コークスダスト)をコークス相当量に補正した量の原単位として評価した。また、含炭塊成鉱中のM.Feによる被還元酸素減少の効果は、還元ガス量を変更せず、実験データをヘマタイト補正することで間接的に評価した。つまり、M.Feには被還元酸素が結合していないので、M.Feの分だけ還元ガス量を減らす操業を行えば、装入チャージ中のM.Feが多いほどより少ない還元材で多くの還元鉄が見かけ上製造されることになる。しかし、本実施形態が得るべき効果は、M.Feに結合する酸素が存在しないことによる還元材比の低下ではなく、M.Feによる触媒作用による還元材比の低下である。そこで、本実施形態では、還元ガス量を減らさずにBIS試験を実施し、得られた結果をM.Feがすべてヘマタイトである状態に補正し、還元材比を評価した。また、比較のために、含炭塊成鉱を使用しないベース操業(図2の点P30に相当する操業)も行った。 Also, taking into consideration the circulation of alkali in the blast furnace, the reagent KOH was added so that the amount of K was 1.8% by mass with respect to the coke. Based on the shaft efficiency obtained in the BIS furnace, the heat and mass balance was taken to evaluate the reducing agent ratio. At this time, the reducing material ratio was evaluated as a basic unit of the amount of pulverized coal blown with hot air + coke + carbonaceous material in the coal-bearing agglomerate (here, actual coke dust) corrected to the amount equivalent to coke. Moreover, M. in the coal-bearing agglomerate ore The effect of reducing oxygen to be reduced by Fe was indirectly evaluated by correcting the experimental data for hematite without changing the reducing gas amount. That is, M. Since no reducible oxygen is bound to Fe, M.I. If an operation is performed in which the amount of reducing gas is reduced by the amount of Fe, the M.O. The more Fe is, the more reduced iron is apparently produced with less reducing material. However, the effect to be obtained by this embodiment is Rather than reducing the reducing agent ratio due to the absence of oxygen bound to Fe, M. This is the decrease in the reducing agent ratio due to the catalytic action of Fe. Therefore, in the present embodiment, the BIS test is performed without reducing the amount of reducing gas, and the obtained results are compared with those of M.I. The reducing material ratio was evaluated after correcting the state in which all Fe was hematite. For comparison, a base operation (operation corresponding to point P30 in FIG. 2) was also performed without using the coal-containing agglomerate ore.
結果を表2及び図2に示す。なお、図2は上述したように含炭塊成鉱由来のカーボン原単位が20kg/t-HMとなる際のデータをまとめたものである。表2の試験例No.1~6は、含炭塊成鉱に含まれるカーボンの含有量(T.C)を15質量%とした例であり、試験例No.7~12は、含炭塊成鉱に含まれるカーボンの含有量(T.C)を25質量%とした例である。試験例No.1~12では含炭塊成鉱由来のカーボン原単位を20kg/t-HMで統一している。試験例No.13~22では、含炭塊成鉱に含まれるカーボンの含有量を15質量%または25質量%としつつ、含炭塊成鉱由来のカーボン原単位、または含炭塊成鉱中のカーボン、金属鉄、及び酸化鉄の合計の質量%を変動させた例である。 The results are shown in Table 2 and FIG. As described above, FIG. 2 summarizes the data when the carbon intensity derived from coal-bearing agglomerate ore is 20 kg/t-HM. Test Example No. in Table 2. 1 to 6 are examples in which the carbon content (T.C) contained in the carbon-containing agglomerate ore is 15% by mass. 7 to 12 are examples in which the carbon content (T.C) contained in the carbon-bearing agglomerate ore is 25% by mass. Test example no. In 1 to 12, the basic unit of carbon derived from coal-bearing agglomerate ore is unified at 20 kg/t-HM. Test example no. In 13 to 22, while the content of carbon contained in the coal-containing agglomerate ore is set to 15% by mass or 25% by mass, the carbon intensity derived from the coal-containing agglomerate ore, or the carbon and metal in the coal-containing agglomerate ore This is an example in which the total mass % of iron and iron oxide is varied.
まず、試験例No.1~6について検討すると、含炭塊成鉱が本実施形態の要件を満たし、さらに含炭塊成鉱由来のカーボン原単位を5~30kg/t-HMの範囲内の20kg/t-HMとした試験例No.3~5では極めて良好な還元材比が得られた。具体的には、還元材比が490kg/t-HM以下となった。 First, Test Example No. Considering 1 to 6, the coal-containing agglomerate ore satisfies the requirements of the present embodiment, and the carbon unit consumption derived from the coal-containing agglomerate ore is 20 kg/t-HM within the range of 5 to 30 kg/t-HM. Test example no. At 3 to 5, a very good reducing agent ratio was obtained. Specifically, the reducing material ratio was 490 kg/t-HM or less.
一方、含炭塊成鉱の他の要件を満たさない試験例No.1、2、6は、含炭塊成鉱に含まれるカーボンの含有量が同水準である試験例3~5に比べて還元材比が増加した。具体的には、試験例No.1、2では、金属鉄とカーボンの質量比(M.Fe/T.C)が0.4未満となっており、試験例No.6では、金属鉄とカーボンの質量比(M.Fe/T.C)が0.8を超えている。 On the other hand, test example No. which does not satisfy other requirements for coal-bearing agglomerate ore. In Nos. 1, 2, and 6, the reducing agent ratio increased compared to Test Examples 3 to 5, in which the carbon-containing agglomerate ore had the same carbon content. Specifically, Test Example No. 1 and 2, the mass ratio of metallic iron to carbon (M.Fe/T.C) is less than 0.4. 6, the mass ratio of metallic iron to carbon (M.Fe/T.C) exceeds 0.8.
つぎに、試験例No.7~12について検討すると、含炭塊成鉱が本実施形態の要件を満たし、さらに含炭塊成鉱由来のカーボン原単位を5~30kg/t-HMの範囲内の20kg/t-HMとした試験例No.9~11では極めて良好な還元材比が得られた。具体的には、還元材比が480kg/t-HM以下となった。 Next, Test Example No. 7 to 12, the coal-containing agglomerate ore satisfies the requirements of the present embodiment, and the carbon intensity derived from the coal-containing agglomerate ore is 20 kg/t-HM within the range of 5 to 30 kg/t-HM. Test example no. In 9 to 11, a very good reducing agent ratio was obtained. Specifically, the reducing material ratio was 480 kg/t-HM or less.
一方、含炭塊成鉱の他の要件を満たさない試験例No.7、8、12は、含炭塊成鉱に含まれるカーボンの含有量が同水準である試験例7~12に比べて還元材比が増加した。具体的には、試験例No.7、8では、金属鉄とカーボンの質量比(M.Fe/T.C)が0.4未満となっており、試験例No.12では、金属鉄とカーボンの質量比(M.Fe/T.C)が0.8を超えている。 On the other hand, test example No. which does not satisfy other requirements for coal-bearing agglomerate ore. In Nos. 7, 8, and 12, the reducing agent ratio increased compared to Test Examples 7 to 12, in which the carbon content in the carbon-containing agglomerate ore was at the same level. Specifically, Test Example No. 7 and 8, the mass ratio of metallic iron to carbon (M.Fe/T.C) is less than 0.4. In No. 12, the mass ratio of metallic iron to carbon (M.Fe/T.C) exceeds 0.8.
つぎに、試験例No.13~16について検討する。試験例No.13~16は、試験例No.4において含炭塊成鉱由来のカーボン原単位を変動させたものである。具体的には、試験例No.13では、含炭塊成鉱由来のカーボン原単位が5kg/t-HM未満となっている。含炭塊成鉱に含まれるカーボンの含有量が同水準である試験例No.1、2、6と比べると試験例No.13でも還元材比の低減効果が得られたが、試験例No.3~5に比べると還元材比が若干増加した。 Next, Test Example No. Consider 13-16. Test example no. 13 to 16 are Test Example Nos. 4 in which the carbon intensity derived from the coal-containing agglomerate ore is varied. Specifically, Test Example No. In No. 13, the carbon intensity derived from the coal-containing agglomerate ore is less than 5 kg/t-HM. Test example No. in which the content of carbon contained in the coal-containing agglomerate ore is at the same level. Compared with 1, 2 and 6, Test Example No. Although the effect of reducing the reducing agent ratio was also obtained in Test Example No. 13, Compared to 3-5, the reducing agent ratio increased slightly.
試験例No.14、15は、試験例No.4において含炭塊成鉱由来のカーボン原単位を本実施形態の境界値である5kg/t-HMまたは30kg/t-HMとしたものである。試験例No.14、15では含炭塊成鉱に含まれるカーボンの含有量が同水準である試験例No.3~5と同様の結果が得られた。 Test example no. 14 and 15 are Test Example Nos. 4, the carbon intensity derived from the coal-containing agglomerate ore is set to 5 kg/t-HM or 30 kg/t-HM, which is the boundary value of the present embodiment. Test example no. In Test Example No. 14 and 15, the content of carbon contained in the carbon-containing agglomerate ore is at the same level. Similar results to 3-5 were obtained.
試験例No.16では、含炭塊成鉱由来のカーボン原単位が30kg/t-HM超となっている。含炭塊成鉱に含まれるカーボンの含有量が同水準である試験例No.1、2、6と比べると試験例No.16でも還元材比の低減効果が得られたが、試験例No.3~5に比べると還元材比が若干増加した。なお、この場合、還元材比の低減効果が飽和して485kg/t-HMとなった。しかし、含炭塊成鉱の熱間粉化量が増大し、シャフト部の通気抵抗が上昇したので、通気抵抗を一定とするためにコークス比を上昇させた結果、最終的にRARは495kg/t-HMとなった。 Test example no. In No. 16, the basic unit of carbon derived from coal-bearing agglomerate ore is over 30 kg/t-HM. Test example No. in which the content of carbon contained in the coal-containing agglomerate ore is at the same level. Compared with 1, 2 and 6, Test Example No. Although the effect of reducing the reducing agent ratio was also obtained in Test Example No. 16, Compared to 3-5, the reducing agent ratio increased slightly. In this case, the effect of reducing the reducing agent ratio was saturated to 485 kg/t-HM. However, as the amount of hot pulverization of the coal-bearing agglomerate ore increased and the ventilation resistance of the shaft part increased, the coke ratio was increased to keep the ventilation resistance constant. As a result, the final RAR was 495 kg/ became t-HM.
つぎに、試験例No.17~20について検討する。試験例No.17~20は、試験例No.10において含炭塊成鉱由来のカーボン原単位を変動させたものである。具体的には、試験例No.17では、含炭塊成鉱由来のカーボン原単位が5kg/t-HM未満となっている。含炭塊成鉱に含まれるカーボンの含有量が同水準である試験例No.7、8、12と比べると試験例No.17でも還元材比の低減効果が得られたが、試験例No.9~11に比べると還元材比が若干増加した。 Next, Test Example No. Consider 17-20. Test example no. 17 to 20 are Test Example Nos. 10 in which the carbon intensity derived from the coal-containing agglomerate ore is varied. Specifically, Test Example No. In No. 17, the carbon intensity derived from the coal-containing agglomerate ore is less than 5 kg/t-HM. Test example No. in which the content of carbon contained in the coal-containing agglomerate ore is at the same level. Test example No. 7, 8 and 12 are compared. Although the effect of reducing the reducing agent ratio was obtained in Test Example No. 17 as well. Compared to 9-11, the reducing agent ratio increased slightly.
試験例No.18、19は、試験例No.10において含炭塊成鉱由来のカーボン原単位を本実施形態の境界値である5kg/t-HMまたは30kg/t-HMとしたものである。試験例No.18、19では含炭塊成鉱に含まれるカーボンの含有量が同水準である試験例No.9~11と同様の結果が得られた。 Test example no. 18 and 19 are Test Example Nos. 10, the carbon unit consumption derived from the coal-containing agglomerate ore is set to 5 kg/t-HM or 30 kg/t-HM, which is the boundary value of the present embodiment. Test example no. In Test Example No. 18 and 19, the content of carbon contained in the carbon-containing agglomerate ore is at the same level. Results similar to 9-11 were obtained.
試験例No.20では、含炭塊成鉱由来のカーボン原単位が30kg/t-HM超となっている。含炭塊成鉱に含まれるカーボンの含有量が同水準である試験例No.7、8、12と比べると試験例No.20でも還元材比の低減効果が得られたが、試験例No.9~11に比べると還元材比が若干増加した。なお、この場合、還元材比の低減効果が飽和して475kg/t-HMとなった。しかし、含炭塊成鉱の熱間粉化量が増大し、シャフト部の通気抵抗が上昇したので、通気抵抗を一定とするためにコークス比を上昇させた結果、最終的にRARは482kg/t-HMとなった。 Test example no. In No. 20, the basic unit of carbon derived from coal-bearing agglomerate ore is over 30 kg/t-HM. Test example No. in which the content of carbon contained in the coal-containing agglomerate ore is at the same level. Test example No. 7, 8 and 12 are compared. Although the effect of reducing the reducing agent ratio was obtained even with Test Example No. 20, Compared to 9-11, the reducing agent ratio increased slightly. In this case, the effect of reducing the reducing agent ratio was saturated to 475 kg/t-HM. However, as the amount of hot pulverization of the coal-containing agglomerate ore increased and the ventilation resistance of the shaft part increased, the coke ratio was increased in order to keep the ventilation resistance constant. became t-HM.
試験例No.21、22では、カーボン、金属鉄、及び酸化鉄を合計で70質量%未満となっている。このため、還元材比が十分に低減しなかった。 Test example no. In Nos. 21 and 22, the total content of carbon, metallic iron, and iron oxide is less than 70% by mass. Therefore, the reducing material ratio was not sufficiently reduced.
試験例23は、試験例No.4において含炭塊成鉱のカーボン含有量を変動させたものである。具体的には、含炭塊成鉱のカーボン含有量が15%未満となっている。C/Oが十分高くないので、試験例No.4に比べると還元材比が増加した。 Test Example 23 corresponds to Test Example No. 4 in which the carbon content of the coal-containing agglomerate ore is varied. Specifically, the carbon content of the coal-containing agglomerate ore is less than 15%. Since the C/O is not high enough, Test Example No. Compared to 4, the reducing agent ratio increased.
試験例24は、試験例No.10において含炭塊成鉱のカーボン含有量を変動させたものである。具体的には、含炭塊成鉱のカーボン含有量が25%超となっている。C/Oが過剰に高く、効率良く効果が発現しないのに加えて、含炭塊成鉱の炉内粉化が著しくなり高炉操業が不安定化したため、試験例No.10に比べると還元材比が増加した。 Test Example 24 corresponds to Test Example No. 10 in which the carbon content of the coal-containing agglomerate ore is varied. Specifically, the carbon content of the coal-containing agglomerate ore is more than 25%. The C/O was excessively high, and in addition to the fact that the effect was not efficiently exhibited, the pulverization of the coal-containing agglomerate ore in the furnace became significant, destabilizing the operation of the blast furnace. Compared to 10, the reducing agent ratio increased.
以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。 Although the preferred embodiments of the present invention have been described in detail above with reference to the accompanying drawings, the present invention is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field to which the present invention belongs can conceive of various modifications or modifications within the scope of the technical idea described in the claims. It is understood that these also naturally belong to the technical scope of the present invention.
Claims (2)
前記カーボンの含有量が前記高炉用含炭塊成鉱の総質量に対して15~25質量%であり、
前記金属鉄と前記カーボンの質量比が0.4~0.8であることを特徴とする、高炉用含炭塊成鉱。 A carbon-containing agglomerate ore for blast furnace containing a total of 70% by mass or more of carbon, metallic iron, and iron oxide,
The carbon content is 15 to 25% by mass with respect to the total mass of the carbon-containing agglomerate ore for blast furnace,
A carbon-containing agglomerate ore for blast furnace, characterized in that the mass ratio of the metallic iron and the carbon is 0.4 to 0.8.
前記高炉用含炭塊成鉱由来のカーボン原単位を5~30kg/t-HMとすることを特徴とする、高炉の操業方法。 A method of operating a blast furnace using the coal-containing agglomerate ore for blast furnace according to claim 1,
A method for operating a blast furnace, characterized in that the carbon unit consumption derived from the coal-containing agglomerate ore for blast furnace is 5 to 30 kg/t-HM.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021033864A JP7575683B2 (en) | 2021-03-03 | 2021-03-03 | Carbon-containing agglomerate for blast furnace and method for operating blast furnace using same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021033864A JP7575683B2 (en) | 2021-03-03 | 2021-03-03 | Carbon-containing agglomerate for blast furnace and method for operating blast furnace using same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022134616A true JP2022134616A (en) | 2022-09-15 |
JP7575683B2 JP7575683B2 (en) | 2024-10-30 |
Family
ID=83231602
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021033864A Active JP7575683B2 (en) | 2021-03-03 | 2021-03-03 | Carbon-containing agglomerate for blast furnace and method for operating blast furnace using same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7575683B2 (en) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101768663B (en) | 2010-02-01 | 2011-11-16 | 泉州市豪胜铸造有限公司 | Cold bonded iron-carbon pellets, and manufacturing method and applications thereof as ironmaking burden in shaft furnace or blast furnace |
JP5540859B2 (en) | 2010-04-19 | 2014-07-02 | Jfeスチール株式会社 | Carbon steel interior agglomerate for iron making and method for producing the same |
JP6111810B2 (en) | 2013-04-15 | 2017-04-12 | 新日鐵住金株式会社 | Blast furnace operation method |
CN105658820B (en) | 2013-08-19 | 2018-04-06 | 鲁道夫安东尼奥M·戈麦斯 | For producing the method with reducing iron oxides agglomerate |
-
2021
- 2021-03-03 JP JP2021033864A patent/JP7575683B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP7575683B2 (en) | 2024-10-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4167101B2 (en) | Production of granular metallic iron | |
ZA200600445B (en) | Self-reducing ,cold -bonded pellets | |
JP5384175B2 (en) | Titanium oxide-containing agglomerates for the production of granular metallic iron | |
CN111910072A (en) | Preparation and use methods of pre-reduced fluxed pellets with steel slag as partial raw material | |
CN104862436B (en) | A kind of large blast furnace banking distribution | |
TWI396749B (en) | Producing method of reduced iron | |
CN1940092A (en) | Fuse reducing iron-smelting process for rotating furnace | |
WO2011099070A1 (en) | Process for production of reduced iron, and process for production of pig iron | |
CN110079665A (en) | A kind of preparation method of the high-carbon metallized pellet for electric furnace | |
JPWO2010041770A1 (en) | Blast furnace operation method using carbon-containing unfired pellets | |
CN107142120A (en) | High-reactivity coke and preparation method thereof | |
JP7575683B2 (en) | Carbon-containing agglomerate for blast furnace and method for operating blast furnace using same | |
JP2006291255A (en) | Method for operating blast furnace | |
CN102206725A (en) | Process for producing and reducing iron powder through two-step method | |
CN117867267B (en) | Premelted pellet for reducing free calcium oxide in steel slag and preparation method | |
CN112981049A (en) | Heating slag melting agent for steelmaking and preparation method thereof | |
Mourão | Evolution and growth of iron ore pelletizing | |
CN102676723B (en) | Method for smelting ash iron by using cupola furnace | |
WO2024202851A1 (en) | Method for producing molten iron | |
JP5910182B2 (en) | Hot metal manufacturing method using vertical melting furnace | |
JP5910542B2 (en) | Hot metal manufacturing method using vertical melting furnace | |
CN109797263A (en) | The carbon containing iron charge machinery pressure ball preparation process of converter direct steelmaking | |
JP6696376B2 (en) | Blast furnace operation method | |
JP2022144966A (en) | Blast furnace operation method | |
WO2024170464A1 (en) | Method of producing direct reduced iron |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20231120 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20240815 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240917 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240930 |