JPH02182814A - Method for operating blast furnace - Google Patents

Method for operating blast furnace

Info

Publication number
JPH02182814A
JPH02182814A JP178089A JP178089A JPH02182814A JP H02182814 A JPH02182814 A JP H02182814A JP 178089 A JP178089 A JP 178089A JP 178089 A JP178089 A JP 178089A JP H02182814 A JPH02182814 A JP H02182814A
Authority
JP
Japan
Prior art keywords
furnace
raceway
heat flow
flow ratio
furnace wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP178089A
Other languages
Japanese (ja)
Inventor
Morimasa Ichida
一田 守政
Kenji Tamura
健二 田村
Yoichi Hayashi
洋一 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP178089A priority Critical patent/JPH02182814A/en
Publication of JPH02182814A publication Critical patent/JPH02182814A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To keep the temp. at raceway constant by beforehand detecting furnace heat condition at lower part of the furnace with the temp. near the raceway and controlling heat flow rate near furnace wall in a shaft part with the specific equation based on the detected temp. CONSTITUTION:Surface temp. of the charged material near the raceway 7 in the blast furnace is continuously measured, and when this measured value is varied by TR from the preset temp. near the raceway 7, variation HFR of the heat flow rate near the furnace wall within 2m from the furnace wall in a bosh part A or the shaft part B is made as a function of the temp. near the raceway 7 and calculated by using the equation HFR=(a)X TR, and the heat flow rate near the furnace wall in the bosh part A or the shaft part B is adjusted by HFR. Then, in the equation, (a) is factor and in the case of adjusting the heat flow rate in the bosh part A, this is made to the value in the range of 1.2-1.5X10<-3>, and in the case of adjusting the heat flow rate in the shaft part B, this is made to the value in the range of 4.8-5.9X10<-4>. By this method, the stable and efficient blast furnace operation is executed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、安定した条件下で高炉を操業する方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for operating a blast furnace under stable conditions.

〔従来の技術〕[Conventional technology]

高炉を操業する上で、安定した炉況の下で効率の良い操
業(低燃料比、高出銑比等)を行うことが目標とされる
。この操業を達成するためには、特に炉下部の炉熱状態
を精度良く制御することが要求される。この炉下部の炉
熱状態を検出する手段としては、数学モデルによって炉
下部の炉熱状態を推定する方法、各種の検出端により炉
熱状態を直接的に測定する方法、溶銑温度やSi 成分
等から炉熱状態を推定する方法等が知られている。
When operating a blast furnace, the goal is to operate efficiently (low fuel ratio, high iron production ratio, etc.) under stable furnace conditions. In order to achieve this operation, it is required to precisely control the furnace thermal state, especially in the lower part of the furnace. Methods for detecting the furnace thermal condition in the lower part of the furnace include methods that estimate the furnace thermal condition in the lower part of the furnace using a mathematical model, methods that directly measure the furnace thermal condition using various detection ends, hot metal temperature, Si content, etc. There are known methods for estimating the furnace thermal state from

数学モデルによって炉下部の炉熱状態を推定する方法は
、推定精度に若干の問題があるものの、はとんど全ての
高炉に導入されている。また、最近では各種の検出端に
よって羽口先端温度、炉壁温度等の炉熱状態を直接測定
する方法が、高炉に適用されるようになってきている。
The method of estimating the furnace thermal state in the lower part of the furnace using a mathematical model has been introduced in almost all blast furnaces, although there are some problems with estimation accuracy. Recently, methods for directly measuring furnace thermal conditions such as tuyere tip temperature and furnace wall temperature using various detection ends have been applied to blast furnaces.

他方、溶銑の温度やSi 成分から炉熱状態を推定する
方法は、推定精度が良好であるものの、アクションが遅
れがちになるという欠点を有している。
On the other hand, although the method of estimating the furnace thermal state from the temperature of hot metal or Si 2 content has good estimation accuracy, it has the disadvantage that action tends to be delayed.

また、これらの検知方法も、炉熱を制御する手段と組み
合わせることにより、高炉の安定操業にを効なものとな
る。たとえば、特開昭55−104406号公報では、
検出端により測定したガス温度及び降下速度から、計算
した熱流比が設定した基準熱流比に一致するように装入
制御、送風制御、燃料吹込み制御、炉頂圧制御等を行っ
ている。また、特公昭63−31523号公報では、高
炉の炉腹部以下の炉体内壁に100mm以上の突起物が
存在する場合に、炉壁近傍の鉱石/コークスの層厚比を
平均層厚比に比較して10%以上増大するように原料を
装入制御している。
In addition, these detection methods can also be effective for stable operation of blast furnaces by combining them with means for controlling furnace heat. For example, in Japanese Patent Application Laid-open No. 55-104406,
Charge control, air blow control, fuel injection control, furnace top pressure control, etc. are performed so that the heat flow ratio calculated from the gas temperature and rate of fall measured by the detection end matches the set reference heat flow ratio. Furthermore, in Japanese Patent Publication No. 63-31523, when there is a protrusion of 100 mm or more on the wall of the blast furnace below the belly of the furnace, the layer thickness ratio of ore/coke near the furnace wall is compared with the average layer thickness ratio. The charging of raw materials is controlled so that the amount increases by 10% or more.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、前掲した特開昭55−104406号公報の方
法では、基準熱流比の設定方法が明確にされておらず、
そのためアクション基準が明確になっていない。また、
特公昭63−31523号公報の方法は、高炉を構築す
る耐火物の侵食が進んで炉体内壁に乱れが生じている場
合には極めて有効な方法であるが、火入れ直後の炉体内
壁面プロフィール又は炉壁レンガの侵食が少なく凸凹の
少ないプロフィールに対しては適用できない。
However, in the method of JP-A-55-104406 mentioned above, the method for setting the reference heat flow ratio is not clarified;
Therefore, the standards for action are not clear. Also,
The method disclosed in Japanese Patent Publication No. 63-31523 is an extremely effective method when erosion of the refractories constituting the blast furnace progresses and disturbances occur in the furnace wall, but it It cannot be applied to profiles with little erosion and unevenness of the furnace wall bricks.

そこで、本発明は、炉壁近傍の熱流比を制御することに
よって、安定で且つ効率良く高炉操業を行うことを目的
とする。
Therefore, an object of the present invention is to operate a blast furnace stably and efficiently by controlling the heat flow ratio near the furnace wall.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、炉下部の炉熱状態をレースウェイ近傍の温度
で事前に検知して、この検知した温度に基づき特定の関
係式でシャフト部の炉壁近傍における熱流比を制御する
ことにより、レースウェイの温度を一定に維持する。そ
の結果、炉下部の炉熱状態が制御されて、安定で且つ効
率の良い高炉操業(低燃料化、高出銑1ヒ)が達成され
る。
The present invention detects the furnace thermal state in the lower part of the furnace in advance at the temperature near the raceway, and controls the heat flow ratio near the furnace wall of the shaft part using a specific relational expression based on the detected temperature. Maintain a constant temperature in the way. As a result, the furnace thermal condition in the lower part of the furnace is controlled, and stable and efficient blast furnace operation (lower fuel consumption, higher iron output) is achieved.

すなわち、本発明は、高炉のレースウェイ近傍の温度を
測定し、予め設定したレースウェイ近傍の温度より測定
温度が変動したときに、炉壁から2m以内の炉壁近傍の
熱流比の変化量ΔI(piをレースウェイ近傍の温度の
函数として次式(1)を用いて算出し、炉壁近傍の熱流
比をΔHF11だけ調整制御することを特徴とする。
That is, the present invention measures the temperature near the raceway of a blast furnace, and when the measured temperature fluctuates from a preset temperature near the raceway, the amount of change ΔI in the heat flow ratio near the furnace wall within 2 m from the furnace wall (It is characterized in that pi is calculated as a function of the temperature near the raceway using the following equation (1), and the heat flow ratio near the furnace wall is adjusted and controlled by ΔHF11.

ΔHFa=aXΔT1    ・・・・(1)ここで、
Δ)(pi lま熱流比HF Rの変化量(無次元変数
)、ΔT、はレースウェイ近傍の温度の変動量(1)で
ある。そして、aは係数であり、朝顔部の熱流比を調整
する場合には1.2〜1.5X10−3の範囲の、シャ
フト部・の熱流比を調整する場合には4.8〜5.9 
X 10−’の範囲の値をとる。
ΔHFa=aXΔT1 (1) Here,
Δ)(pil) The amount of change in the heat flow ratio HF R (dimensionless variable), ΔT, is the amount of change in temperature near the raceway (1). And, a is the coefficient, and the heat flow ratio of the morning glory part is When adjusting the heat flow ratio of the shaft part, it is in the range of 1.2 to 1.5X10-3, and when adjusting the heat flow ratio of the shaft part, it is 4.8 to 5.9.
Takes a value in the range of X 10-'.

なお、熱流比HF、lは、次式で表される。Note that the heat flow ratio HF,l is expressed by the following formula.

C1×G、    C1×ρ、× ただし、CSは装入物の比熱 C1はガスの1ヒ熱 G、、は装入物の質量速度 G、はガスの質量速度 ρ5は装入物の嵩密度 ρ9はガスの密度 Vsは装入物の降下速度 v9はガスの上昇速度 V。C1×G, C1×ρ, × However, CS is the specific heat of the charge C1 is 1 heat of gas G, is the mass velocity of the charge G is the mass velocity of the gas ρ5 is the bulk density of the charge ρ9 is the density of the gas Vs is the rate of descent of the charge v9 is the rising speed of gas V.

kcal/(kg−k) kcal/(kg−k> kg/(m″・秒) kg/(m″・秒) kg / m’ kg / m’ m7秒 m7秒 〔作用〕 前掲した式〔1)は、以下に説明する実験結果から得ら
れたものである。
kcal/(kg-k) kcal/(kg-k>kg/(m''・sec)kg/(m''・sec)kg/m'kg/m' m7 seconds m7 seconds [action] The above formula [1 ) were obtained from the experimental results described below.

この実験では、第2図に示すような構造をもち現実の高
炉の1X20程度の大きさの模型を使用した。この模型
の炉床径は345關であり、炉腹径は378 ll1m
、  羽口からシャフト上端までの有効高さは1217
mmであった。また、装置の前面には、コークスや擬似
鉱石(固液の流量比及び充填物の密度が実際の高炉内の
条件と近似するように調整した易融合金とステアリン酸
との混合物)の降下・溶融挙動を観察できるように耐熱
性のガラスを装着した。
In this experiment, a model of an actual blast furnace approximately 1×20 in size and having the structure shown in FIG. 2 was used. The hearth diameter of this model is 345 cm, and the hearth diameter is 378 ll1m.
, the effective height from the tuyere to the top of the shaft is 1217
It was mm. In addition, at the front of the equipment, coke and pseudo-ore (a mixture of easily melted metal and stearic acid whose solid-liquid flow rate ratio and packing density are adjusted to approximate the conditions in the actual blast furnace) are deposited. A heat-resistant glass was attached so that the melting behavior could be observed.

コークスl及び擬似鉱石2は、装置上部のベル3からム
ーバブルアーマ4を介して交互に層状に装入された。他
方、180 ℃の加熱空気を装置下部の18本の羽口5
から吹き込み、擬似鉱石2を溶融滴下させた。溶融物は
、炉床に溜められた後、出銑口6から排出された。コー
クスは、レースウェイ7直下に設けた6台のロータリフ
ィーダ8によって下部ホッパーに運ばれ、更にチニーブ
ラコンベア9によって密閉庫内に排出された。また、こ
の高炉模型において、炉内の温度状態9通気性。
Coke 1 and pseudo ore 2 were alternately charged in layers from a bell 3 at the top of the device via a movable armor 4. On the other hand, heated air at 180°C is passed through 18 tuyeres 5 at the bottom of the device.
The pseudo ore 2 was molten and dripped. The molten material was collected in the hearth and then discharged from the tap hole 6. The coke was conveyed to a lower hopper by six rotary feeders 8 installed directly below the raceway 7, and further discharged into a closed storage by a chiny bra conveyor 9. In addition, in this blast furnace model, the temperature state inside the furnace 9 air permeability.

壁面近傍の応力状態及びガス流れを検出するため、温度
計、圧力計及び熱線風速計を設置した。
A thermometer, pressure gauge, and hot wire anemometer were installed to detect the stress state and gas flow near the wall.

そして、炉下部の炉熱状態を代表しているレースウェイ
7近傍のコークスの表面温度とシャフト部B近傍の熱流
比との関係を求めたところ、両者の間には、第1図に示
すように一次函数的な関係が成立していることが判明し
た。この関係式は、レースウェイ7近傍のコークスの表
面温度をT Rsシャフト部B近傍の熱流比をHPIと
するとき、次式で表せる。
When we determined the relationship between the coke surface temperature near raceway 7, which represents the furnace thermal state in the lower part of the furnace, and the heat flow ratio near shaft section B, there was a relationship between the two as shown in Figure 1. It was found that a linear functional relationship holds true. This relational expression can be expressed by the following equation, where the coke surface temperature near the raceway 7 is TRs and the heat flow ratio near the shaft portion B is HPI.

T* −−125,Ox H,+225.2したがって
、レースウェイ7近傍のコークスの表面温度T、の変動
量ΔTRと熱流比HF lの変化量ΔHF 11は次式
の関係となり、レースウェイ7近傍の炉内温度T、をで
きるかぎり0とするためには、次式を満足するように熱
流比の変化量ΔHF lを制御する必要がある。
T* −−125, Ox H, +225.2 Therefore, the amount of variation ΔTR in the surface temperature T of coke near raceway 7 and the amount of variation ΔHF 11 in the heat flow ratio HF1 have the following relationship, and In order to make the furnace temperature T, as low as possible, it is necessary to control the amount of change in the heat flow ratio ΔHF l so as to satisfy the following equation.

Δ”r、=125、OXΔHF 1 本発明におけるレースウェイ近傍とは、炉下部の・炉熱
と密接な関係があるレースウェイ空間部周辺から1mの
範囲である。また、熱流比HFIIを炉壁から2m以内
の炉壁近傍にある装入物の熱流比とした理由は、炉下部
の炉熱状態に及ぼす炉壁近傍、特に炉壁から2m以内の
範囲にある装入物の降下速度の影響の大きいことが本模
型実験で判明したためである。
Δ”r, = 125, OXΔHF 1 In the present invention, the vicinity of the raceway is a range of 1 m from the periphery of the raceway space in the lower part of the furnace, which is closely related to the furnace heat. The reason for setting the heat flow ratio of the charge near the furnace wall within 2 m from This is because it was found in this model experiment that the

前述の式をスタントン数基準で実炉に換算するとき、次
式(2)が得られる。なお、スタントン数はガス−固体
間の熱伝達量と装入物の蓄積熱量の比であり、本模型実
験の送風温度は、実炉のスタントン数と模型のスタント
ン数が一致するように決定されている。したがって、ス
タントン数が一定と仮定することにより、本模型実験の
温度測定値からスタントン数基準の実炉換算値を計算す
ることができる。
When converting the above equation to an actual furnace based on the Stanton number, the following equation (2) is obtained. The Stanton number is the ratio of the amount of heat transfer between gas and solid to the amount of heat accumulated in the charge, and the blast temperature in this model experiment was determined so that the Stanton number in the actual furnace and the Stanton number in the model matched. ing. Therefore, by assuming that the Stanton number is constant, it is possible to calculate the actual reactor conversion value based on the Stanton number from the temperature measurement value of this model experiment.

Δ T ll ;; +875  x  Δ トI□ 
          ・  ・  ・ (2〕そこで、
削成から ΔHPa=aXΔTR”’m を得、この関係式を使用してレースウェイ7近傍にある
コークスの表面温度TRの変動量Δ1゛、を基準として
装入物の熱流比I(piの変化量ΔHFRを制御すると
き、安定した炉況下での操業が可能となる。すなわち、
変動量ΔTl がプラス側に大きくなったときには、熱
流比HF&の変化量ΔHFRがプラス側に大きくなるよ
うな操業を行う。また、変動量ΔTRがマイナス側に大
きくなったとき、熱流比Hpxの変化量ΔHFRがマイ
ナス側に大きくなるような操業を行う。これにより、炉
熱状況を常に安定した範囲内に収め、効率の良い操業が
行われる。
Δ T ll ;; +875 x Δ T □
・ ・ ・ (2) So,
From the abrasion, ΔHPa=aXΔTR'''m is obtained, and using this relational expression, the change in heat flow ratio I (pi When controlling the amount ΔHFR, operation under stable furnace conditions becomes possible. That is,
When the amount of variation ΔTl increases to the positive side, an operation is performed such that the amount of change ΔHFR of the heat flow ratio HF& increases to the positive side. Furthermore, when the amount of variation ΔTR increases to the negative side, the operation is performed such that the amount of change ΔHFR of the heat flow ratio Hpx increases to the negative side. As a result, the furnace heat condition is always kept within a stable range, and efficient operation is performed.

なお、変化量Δ)lpmを変動させる手段としては、燃
料吹込み条件、装入物分布条件、送風条件等を制御する
方法がある。たとえば、炉壁近傍に装入する鉱石或いは
コークスの粒度或いは量を変化させることにより、炉壁
近傍のガス流速成いは降下速度が変化し、炉壁近傍の熱
流比を制御することができる。
Note that as means for varying the amount of change Δ)lpm, there is a method of controlling fuel injection conditions, charge distribution conditions, air blowing conditions, etc. For example, by changing the particle size or amount of ore or coke charged near the furnace wall, the gas flow velocity or descent rate near the furnace wall can be changed, and the heat flow ratio near the furnace wall can be controlled.

なお、前述した式(1)は、シャフト部已における熱流
比ΔHPIを制御するため導き出された関係式である。
Note that the above-mentioned equation (1) is a relational equation derived for controlling the heat flow ratio ΔHPI at the end of the shaft portion.

しかし、レースウェイ7近傍の温度TRは、朝顔部Δに
おける熱流比HF1lに対しても一次函数で表される関
係にあることが、同様な実験から判明した。そこで、こ
の朝顔部Aにおける熱流比HPIを調整することにより
、炉熱状態をコントロールすることもできる。この場合
、式(1)の係数aは、次のように若干変更した範囲で
表される。
However, similar experiments have revealed that the temperature TR in the vicinity of the raceway 7 also has a relationship expressed by a linear function with respect to the heat flow ratio HF1l in the morning glory section Δ. Therefore, by adjusting the heat flow ratio HPI in this morning glory section A, the furnace heat state can also be controlled. In this case, the coefficient a in equation (1) is expressed in a slightly modified range as follows.

a =1.2〜1.5X10−’ このようにして、熱流比HPaを調整することによって
、炉熱状態が制御され、安定した状況下で高炉を操業す
ることができる。また、本発明による場合、炉内温度を
検知してから所定の対応をとり、その結果が炉熱に現れ
るまでの時間が短く、迅速で且つ高精度の炉況制御が可
能となる。
a = 1.2 to 1.5X10-' In this way, by adjusting the heat flow ratio HPa, the furnace thermal state is controlled, and the blast furnace can be operated under stable conditions. Further, according to the present invention, the time required for taking a predetermined response after detecting the temperature inside the furnace and for the result to appear in the furnace heat is short, making it possible to control the furnace condition quickly and with high precision.

〔実施例〕〔Example〕

一実施例1− 高炉の実操業において、高炉のレースウェイ7近傍に光
学式温度計を装着して、レースウェイ7近傍にあるコー
クスの表面温度を連続的に測定した。測定開始から終了
までのレースウェイ7近傍のコークスの表面温度は、平
均1700℃を中心とし上下に約300℃の範囲で変動
した。そこで、このレースウェイ7近傍のコークスの表
面温度の変動量ΔTIlが+200℃を超えたときに、
燃料吹込みを中止しコークスの燃焼量を増加させると同
時に、炉壁から2mの範囲に装入する鉱石の粒度を小さ
くして炉壁近傍のガス流通量を減少させた。これによっ
て、シャフト部已における熱流比が0.70から0.7
8に増加し、20分間でレースウェイ7近傍のコークス
の表面温度Ti が目標温度1700℃に復帰した。
Example 1 - In actual operation of a blast furnace, an optical thermometer was installed near the raceway 7 of the blast furnace, and the surface temperature of coke near the raceway 7 was continuously measured. The surface temperature of the coke near the raceway 7 from the start to the end of the measurement fluctuated upward and downward in a range of about 300°C, centered around an average of 1700°C. Therefore, when the amount of variation ΔTIl in the surface temperature of coke near raceway 7 exceeds +200°C,
Fuel injection was stopped to increase the amount of coke combustion, and at the same time, the particle size of the ore charged within 2 m from the furnace wall was reduced to reduce the gas flow rate near the furnace wall. This increases the heat flow ratio at the shaft end from 0.70 to 0.7.
8, and the coke surface temperature Ti near raceway 7 returned to the target temperature of 1700°C in 20 minutes.

また、レースウェイ7近傍のコークスの表面温度の変動
量ΔT、が一200℃になったとき、燃料吹込み量を増
加して、コークスの燃焼量を抑制すると同時に、炉壁か
ら2mの範囲に装入する鉱石の粒度を大きくして、炉壁
近傍のガス流通量を増加させた。これによって、シャフ
ト部Bにおける熱流比が0.70から0.62に低下し
、20分間でレースウェイ7近傍のコークスの表面温度
T、が目標温度1700℃に復帰した。
In addition, when the amount of variation ΔT in the surface temperature of coke near raceway 7 reaches 1200°C, the amount of fuel injection is increased to suppress the amount of coke combustion, and at the same time, the amount of variation ΔT in the surface temperature of coke near raceway 7 is increased to suppress the amount of coke combustion. The particle size of the charged ore was increased to increase the amount of gas flowing near the furnace wall. As a result, the heat flow ratio in the shaft portion B decreased from 0.70 to 0.62, and the surface temperature T of the coke near the raceway 7 returned to the target temperature of 1700° C. in 20 minutes.

一実施例2− 同様に高炉のレースウェイ7近傍に光学式温度計を装着
し、レースウェイ7近傍の装入物の表面温度を連続的に
測定した。測定開始から終了までの炉壁温度は、平均1
700℃を中心として上下に約300 ℃の範囲で変動
した。そこで、このレースウェイ7近傍のコークスの表
面温度の変動量ΔTQが+200℃を超えたとき、燃料
吹込みを中止して、コークスの燃焼量を増加させると同
時に、炉壁から2mの範囲に装入する鉱石の粒度を小さ
くして、炉壁近傍のガス流通量を減少させた。これによ
って、朝顔部へにおける熱流比が0.70から0.89
に増加し、20分間でレースウェイ7近傍のコークスの
表面温度TIが目標温度1700℃に復帰した。
Example 2 - Similarly, an optical thermometer was installed near the raceway 7 of the blast furnace, and the surface temperature of the charge near the raceway 7 was continuously measured. The furnace wall temperature from the start to the end of the measurement was on average 1
It fluctuated within a range of approximately 300°C above and below 700°C. Therefore, when the amount of variation ΔTQ in the coke surface temperature near raceway 7 exceeds +200°C, the fuel injection is stopped and the amount of coke combustion is increased. The particle size of the incoming ore was reduced to reduce the amount of gas flowing near the furnace wall. This increases the heat flow ratio to the morning glory from 0.70 to 0.89.
The coke surface temperature TI near raceway 7 returned to the target temperature of 1700° C. in 20 minutes.

また、レースウェイ7近傍のコークスの表面温度の変動
量ΔT、が一200℃になったとき、燃料吹込み塁を増
加して、コークスの燃焼量を抑制すると同時に、炉壁か
ら2mの範囲に装入する鉱石の粒度を大きくして、炉壁
近傍のガス流通量を増加させた。これにより、朝顔部A
における熱流比が070から0.51に低下し、20分
間でレースウェイ7近傍のコークスの表面温度T11 
が目標温度1700℃に復帰した。
In addition, when the amount of variation ΔT in the surface temperature of coke near raceway 7 reaches 1200°C, the number of fuel injection bases is increased to suppress the amount of coke combustion, and at the same time, the fuel injection base is increased within a range of 2 m from the furnace wall. The particle size of the charged ore was increased to increase the amount of gas flowing near the furnace wall. As a result, morning glory part A
The heat flow ratio at T11 decreased from 070 to 0.51, and the surface temperature of coke near Raceway 7 decreased in 20 minutes.
The temperature returned to the target temperature of 1700°C.

〔発明の効果〕〔Effect of the invention〕

以上に説明したように、本発明においては、高炉内の熱
流比の変化量をを調整することにより、炉熱状態を代表
的に表しているレースウェイ近傍の温度を制御すること
ができる。そのため、炉況を常に安定な状態に維持し、
低燃料比、高出銑比で効率良く高炉操業することが可能
となる。
As explained above, in the present invention, the temperature near the raceway, which typically represents the furnace thermal state, can be controlled by adjusting the amount of change in the heat flow ratio in the blast furnace. Therefore, the furnace condition is always maintained in a stable state,
It becomes possible to operate the blast furnace efficiently with a low fuel ratio and high iron production ratio.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はレースウェイ近傍の温度と熱流比との関係を表
したグラフ、第2図は本発明において使用した高炉模型
を示す。 1:コークス     2:擬似鉱石 3;ベル       4:ムーバブルアーマ   1
5:羽口       6:出銑ロ ア:レースウェイ    8:ロークリフイーダ9:チ
ューブラコンベア A:朝顔部 B:シャフト部
FIG. 1 is a graph showing the relationship between the temperature near the raceway and the heat flow ratio, and FIG. 2 shows the blast furnace model used in the present invention. 1: Coke 2: Pseudo ore 3; Bell 4: Movable armor 1
5: Tuyere 6: Tapping lower: Raceway 8: Raw cliff feeder 9: Tubular conveyor A: Morning glory section B: Shaft section

Claims (1)

【特許請求の範囲】 1、高炉のレースウェイ近傍の温度を測定し、該測定値
が予め設定したレースウェイ近傍の温度よりΔT_Rだ
け変動したとき、朝顔部又はシャフト部の炉壁から2m
以内の炉壁近傍の熱流比の変化量ΔH_F_Rをレース
ウェイ近傍の温度の函数として次式を用い算出し、朝顔
部又はシャフト部の炉壁近傍の熱流比をΔH_F_Rだ
け調整することを特徴とする高炉操業法。 ΔH_F_R=a×ΔT_R 〔ただし、aは係数であり、朝顔部の熱流比を調整する
場合には1.2〜1.5×10^−^3の範囲、シャフ
ト部の熱流比を調整する場合には4.8〜5.9×10
^−^4の範囲の値をとる。〕
[Claims] 1. When the temperature near the raceway of the blast furnace is measured and the measured value fluctuates by ΔT_R from the preset temperature near the raceway, 2 m from the furnace wall of the morning glory section or the shaft section.
The amount of change in the heat flow ratio near the furnace wall within ΔH_F_R is calculated as a function of the temperature near the raceway using the following formula, and the heat flow ratio near the furnace wall in the morning glory part or the shaft part is adjusted by ΔH_F_R. Blast furnace operation method. ΔH_F_R=a×ΔT_R [However, a is a coefficient, which is in the range of 1.2 to 1.5 × 10^-^3 when adjusting the heat flow ratio of the morning glory part, and when adjusting the heat flow ratio of the shaft part 4.8~5.9×10
Takes a value in the range ^-^4. ]
JP178089A 1989-01-07 1989-01-07 Method for operating blast furnace Pending JPH02182814A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP178089A JPH02182814A (en) 1989-01-07 1989-01-07 Method for operating blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP178089A JPH02182814A (en) 1989-01-07 1989-01-07 Method for operating blast furnace

Publications (1)

Publication Number Publication Date
JPH02182814A true JPH02182814A (en) 1990-07-17

Family

ID=11511090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP178089A Pending JPH02182814A (en) 1989-01-07 1989-01-07 Method for operating blast furnace

Country Status (1)

Country Link
JP (1) JPH02182814A (en)

Similar Documents

Publication Publication Date Title
JPS6111289B2 (en)
WO1999023262A1 (en) Method of operating blast furnace
JPH02182814A (en) Method for operating blast furnace
JPH02182813A (en) Method for operating blast furnace
JP3099322B2 (en) Blast furnace heat management method
JPH01290709A (en) Operation of blast furnace
JP7111278B1 (en) METHOD AND DEVICE FOR DETECTING RESIDUAL MELTS, AND METHOD OF OPERATING VERTICAL FURNACE
JPS62188733A (en) Manufacture of sintered ore
WO2022168556A1 (en) Method for detecting remaining amount of liquid and detection device for same, method for detecting remaining amount of molten substance and detection device for same, and vertical furnace operation method
JP2002115007A (en) Structure for inner wall surface at lower part in blast furnace
WO2022168557A1 (en) Detection method and detection device for liquid level height of liquid, detection method and detection device for liquid level height of molten material, and operation method for vertical furnace
WO2022168503A1 (en) Method for detecting height of molten material and method for operating blast furnace
JPH06306420A (en) Operation of blast furnace
JPS60113156A (en) Method for measuring deviation in circumferential direction of dropping speed of material loaded into shaft furnace
JPS5946283B2 (en) How to operate a blast furnace
JPH06228617A (en) Two step shaft blast furnace
JPH0118963B2 (en)
JP3646361B2 (en) Blast furnace charge distribution control method
JP2931502B2 (en) Blast furnace operation method
JPH0317209A (en) Method for operating blast furnace
JPH04301013A (en) Method for operating blast furnace
SU1121292A1 (en) Method for controlling working of blast furnace
JPH01259109A (en) Method for charging raw material in bell type blast furnace
JPS5985841A (en) Manufacture of ferrochromium
JP2897363B2 (en) Hot metal production method