JPH03291315A - Method for operating blast furnace - Google Patents

Method for operating blast furnace

Info

Publication number
JPH03291315A
JPH03291315A JP9343990A JP9343990A JPH03291315A JP H03291315 A JPH03291315 A JP H03291315A JP 9343990 A JP9343990 A JP 9343990A JP 9343990 A JP9343990 A JP 9343990A JP H03291315 A JPH03291315 A JP H03291315A
Authority
JP
Japan
Prior art keywords
blast furnace
tuyere
coke
constant
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9343990A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Yamaguchi
一良 山口
Hiromitsu Ueno
上野 浩光
Kenji Tamura
健二 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP9343990A priority Critical patent/JPH03291315A/en
Publication of JPH03291315A publication Critical patent/JPH03291315A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To improve productivity and to lower fuel ratio by using highly accurate coke temp. at raceway part in a blast furnace as information of furnace heat, combining it with the theoretical combustion temp. and rapidly executing operation under blasting condition for adjusting the furnace heat. CONSTITUTION:The coke temp. Tc at the raceway part in the blast furnace is detected from the tuyere part and also the ratio Tc/Tf of Tc to the theoretical combustion temp. Tf is calculated, and Tf and/or fine powdered coal quantity blown from the tuyere part are adjusted beforehand so that this ratio is in the set range. Tc can be detected under good accuracy by arranging a radiation thermometer at peeping hole part in the tuyere to measure the coke surface temp. and Tf is obtd. with the prescribed equation. At the time of maintaining Tc to the constant by adjusting Tf and the fine powdered coal quantity blown from the tuyere part, Si content in molten iron as the representative index for the furnace heat in the blast furnace, can be maintained to the constant and the furnace heat is stabilized. When Tc/Tf is not the constant only by maintaining Tc to the constant, as Tc can not be maintained to the constant, it is necessary to adjust both of Tc and Tc/Tf.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、高炉レースウェイ部のコークス温度を一定に
維持することにより、高炉の炉熱を安定させ、生産性を
向上させ燃料比を低下させる高炉操業法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention stabilizes the furnace heat of the blast furnace by maintaining a constant coke temperature in the blast furnace raceway, thereby improving productivity and reducing the fuel ratio. Regarding blast furnace operation method.

[従来の技術] 高炉操業にあっては、羽口覗孔部より肉眼でレースウェ
イ内を観察し、高炉の炉熱を判断して、炉頂から装入す
る鉱石とコークスの比率(0/Cと略す)、送風条件(
送m温度、酸素量、蒸気量、微粉炭量)を調整すること
により、出銑口から流出する溶銑の温度、溶銑中シリコ
ン含有量を一定に維持している。
[Prior art] During blast furnace operation, the inside of the raceway is observed with the naked eye through the tuyere peephole, the furnace heat of the blast furnace is judged, and the ratio of ore and coke charged from the top of the furnace (0/ (abbreviated as C), ventilation conditions (
The temperature of the hot metal flowing out from the tap hole and the silicon content in the hot metal are maintained constant by adjusting the feeding temperature, oxygen amount, steam amount, and pulverized coal amount.

肉眼で観察するかわりに、覗孔部にカメラを設置してレ
ースウェイ内を観察することも一部には実施されている
Instead of observing with the naked eye, some cameras are installed in the peepholes to observe the inside of the raceway.

これらの観察により高炉の炉熱を判断する基準は、レー
スウェイ内におけるコークスの旋回速度、コークスの輝
度(明るさ)などであり、観察する人間の主観的な要素
が大きい。
The criteria for determining the furnace heat of a blast furnace based on these observations are the swirling speed of coke in the raceway, the brightness (brightness) of coke, etc., and are largely subjective to the observer.

[発明が解決しようとする課題] ところで従来の高炉操業において、炉熱を判断するため
に行っているレースウェイ内観察は、人間が直接覗孔部
から覗くか、カメラにより撮影された画像を人間が見る
かのいずれかであり、観察する人間によってその判断基
準が異るし、また連続的に観察することは事実上できな
いから、断片的な情報となる。したがって炉熱の情報と
しては精度が悪い。
[Problems to be Solved by the Invention] In conventional blast furnace operations, the inside of the raceway is observed to determine the furnace heat by either a person looking directly through a peephole, or a person looking through an image taken by a camera. The criteria for judgment differs depending on the person observing, and it is practically impossible to observe continuously, so the information is fragmentary. Therefore, the accuracy of furnace heat information is low.

このために、出銑口から流出する溶銑の温度、溶銑中シ
リコン含有量を測定してから、炉熱調整の操作を実施し
ているが、羽口部で生成した溶銑滓が出銑口から流出す
るまでに1〜2時間を要し、溶銑温度はすぐ測定できる
が、溶銑中シリコン含有量の分析にはさらに1時間を要
するので、2〜3時間おくれて情報がでてくる。よって
炉熱を一定に維持する操作が遅れ、炉熱が変動すること
による生産性の低下、燃料比の上昇により、高炉操業成
績の向上には限界があった。
For this purpose, the temperature of the hot metal flowing out from the taphole and the silicon content in the hot metal are measured before the furnace heat adjustment is performed. It takes one to two hours for the hot metal to flow out, and the temperature of the hot metal can be measured immediately, but it takes an additional hour to analyze the silicon content in the hot metal, so information is available after a two to three hour delay. As a result, there was a delay in the operation to maintain a constant furnace heat, a decrease in productivity due to fluctuating furnace heat, and an increase in the fuel ratio, which limited the ability to improve blast furnace operational performance.

そこで本発明は、レースウェイ内における炉熱の情報を
精度よく検出し、炉熱調整のために送風条件の操作を迅
速に行うことにより、生産性向上、燃料比低下を達成す
ることを目的とする。
Therefore, the present invention aims to improve productivity and reduce the fuel ratio by accurately detecting information on the furnace heat in the raceway and quickly controlling the air blowing conditions to adjust the furnace heat. do.

[課題を解決するための手段および作用]本発明の高炉
操業法は、その目的を達成するために、羽口部から高炉
レースウェイ部のコークス温度を検出するとともに、前
記コークス温度と理論燃焼温度との比率を計算し、前記
コークス温度および前記比率があらかじめ設定した範囲
に入るように、理論燃焼温度および/または羽口部から
吹込む微粉炭量を調整することを特徴とする。
[Means and effects for solving the problem] In order to achieve the object, the blast furnace operating method of the present invention detects the coke temperature in the blast furnace raceway part from the tuyere part, and also detects the coke temperature and the theoretical combustion temperature. The method is characterized in that the theoretical combustion temperature and/or the amount of pulverized coal injected from the tuyeres are adjusted so that the coke temperature and the ratio fall within a preset range.

高炉レースウェイ部のコークス温度(Tcと称する)は
、羽口覗孔部に放射温度計を設置して、コークス表面温
度を測定することで検出できる。また理論燃焼温度(T
fと称する)は(1)式によって求めることができる。
The coke temperature (referred to as Tc) in the blast furnace raceway can be detected by installing a radiation thermometer in the tuyere peephole and measuring the coke surface temperature. Also, the theoretical combustion temperature (T
(referred to as f) can be obtained by equation (1).

Tf−155!]i、839・Tb−8,033・Hb
◆4972・Ω、−3.01[1・PC・・・(1) ここでTbは送風温度(℃)、Hbは送風中に添加され
る蒸気量(g/Nm”−AIR) 、02は送風中に添
加される酸素量(Nm’/Nm’−AIR) PCは羽
口部より吹込む微粉炭量(g/Nm3−AIR)である
。(1)式は、高炉レースウェイ部の熱・物質収支を計
算することによって求められる理論燃焼温度を、Tb、
Hb、02.PCの1次式として統計的に整理したもの
である。
Tf-155! ]i, 839・Tb-8,033・Hb
◆4972・Ω, -3.01[1・PC...(1) Here, Tb is the blowing temperature (℃), Hb is the amount of steam added during blowing (g/Nm"-AIR), and 02 is Amount of oxygen added during blowing (Nm'/Nm'-AIR) PC is the amount of pulverized coal (g/Nm3-AIR) blown in from the tuyere.Equation (1) is・The theoretical combustion temperature obtained by calculating the mass balance is Tb,
Hb, 02. This is statistically arranged as a linear equation of PC.

発明者らは、Tcが高炉の炉熱を表わす精度よい指標で
あることを、操業試験によって見出した。第3図に、T
cと1〜2時間後出銑口から流出するに溶銑中シリコン
含有量(高炉の炉熱の代表的な指標)との関係を示す。
The inventors discovered through operational tests that Tc is a highly accurate index representing the furnace heat of a blast furnace. In Figure 3, T
The relationship between c and the silicon content in the hot metal flowing out from the taphole after 1 to 2 hours (a typical index of blast furnace heat) is shown.

この図によると、両者の間には明確な正の相関関係があ
る。
According to this figure, there is a clear positive correlation between the two.

高炉レースウェイ部におけるコークスの加熱状態が、コ
ークス充填層を滴下する溶銑滓の加熱状態すなわち高炉
の炉熱を決めていることがわかる。
It can be seen that the heating state of the coke in the blast furnace raceway section determines the heating state of the hot metal slag dripping into the coke packed bed, that is, the furnace heat of the blast furnace.

また発明者らは、TcがTfによって変化することを見
出した。第4図にTcとTfどの関係を示す。この図に
よると、両者の間には明確な正の相関関係があり、丁c
はTfのほぼ0.75倍になっている。高炉レースウェ
イ部に流入するガスの温度が、高炉レースウェイ部にお
けるコークスの加熱状態を決めていることがわかる。
The inventors also found that Tc changes depending on Tf. FIG. 4 shows the relationship between Tc and Tf. According to this figure, there is a clear positive correlation between the two, and
is approximately 0.75 times as large as Tf. It can be seen that the temperature of the gas flowing into the blast furnace raceway determines the heating state of coke in the blast furnace raceway.

さらに発明者らは、Tfが一定のときでもTcが変化し
、高炉レースウェイ部のコークス温度と理論燃焼温度と
の比率(Tc/Tfと称する)が変わるため、微粉炭量
によって該比率を一定に維持できることを見出した。第
5図に、Tfがほぼ一定の範囲におけるTc/丁fと微
粉炭量の変化幅との関係を示す。この図によると、両者
の間には明確な正の相関関係があり、Tfが一定のとき
に、TC/Tfは微粉炭量によって変化することがわか
る。これは、微粉炭量を増加すると、高炉レースウェイ
部に降下するコークスの降下速度が遅くなり、羽口より
上部でコークスが十分に加熱され、逆に微粉炭量′を減
少すると、高炉し−スウエイ部に降下するコークスの降
下速度が速くなり、羽口より上部でコークスが十分に加
熱されないためである。
Furthermore, the inventors found that even when Tf is constant, Tc changes and the ratio between the coke temperature in the blast furnace raceway and the theoretical combustion temperature (referred to as Tc/Tf) changes, so the ratio can be kept constant depending on the amount of pulverized coal. We found that it is possible to maintain FIG. 5 shows the relationship between Tc/f and the variation width of the amount of pulverized coal in a range where Tf is approximately constant. According to this figure, there is a clear positive correlation between the two, and it can be seen that when Tf is constant, TC/Tf changes depending on the amount of pulverized coal. This is because when the amount of pulverized coal is increased, the rate of descent of the coke that descends into the blast furnace raceway section is slowed down, and the coke is sufficiently heated above the tuyeres.On the other hand, when the amount of pulverized coal is decreased, the blast furnace This is because the coke that descends into the sway portion becomes faster and the coke is not heated sufficiently above the tuyere.

第4図からTfが決まればTcが決まり、第3図からT
cが決まれば高炉の代表的な指標である溶銑中シリコン
含有量が決まることがわかる。また第4図て、同−Tf
のときにTcが変動する(すなわちTc/Tfが変動す
る)が、第5図から羽口部から吹込む微粉炭量を変更す
ることによってTc/丁fを一定にする(すなわちTc
を一定にする)ことができる、よって第3図からTcが
決まれば高炉の炉熱の代表的な指標である溶銑中シリコ
ン含有量が決まることがわかる。
If Tf is determined from Figure 4, Tc is determined, and from Figure 3 T
It can be seen that once c is determined, the silicon content in hot metal, which is a typical index for blast furnaces, is determined. Also, in Figure 4, the same -Tf
When Tc changes (that is, Tc/Tf changes), but as shown in Fig. 5, by changing the amount of pulverized coal injected from the tuyere, Tc/Tf becomes constant (that is, Tc/Tf changes).
Therefore, it can be seen from FIG. 3 that if Tc is determined, the silicon content in the hot metal, which is a typical index of the furnace heat of the blast furnace, is determined.

すなわち、Tfと羽口部から吹込む微粉炭量を調整して
Tcを一定に維持すれば、高炉の炉熱の代表的な指標で
ある溶銑中シリコン含有量を一定に維持でき、炉熱は安
定することになる。 Tcを一定に維持するだけで、T
c/Tfが一定でないときは、装入物降下速度が安定し
ていないため、Tcは次第に変動が大きくなって、Tc
を一定に維持できなくなり、溶銑中シリコン含有量は一
定とならない。よフてTcおよびTc/Tfの両方を調
整する必要がある。
In other words, if Tc is maintained constant by adjusting Tf and the amount of pulverized coal injected from the tuyere, the silicon content in hot metal, which is a typical indicator of blast furnace furnace heat, can be maintained constant, and the furnace heat can be maintained constant. It will become stable. By simply keeping Tc constant, T
When c/Tf is not constant, the charge descending speed is not stable, so Tc gradually fluctuates, and Tc
cannot be maintained constant, and the silicon content in the hot metal becomes unstable. Therefore, it is necessary to adjust both Tc and Tc/Tf.

高炉操業において炉熱が安定すれば、燃料比が低下でき
、生産性が向上し、望ましい操業状態となる。炉熱を安
定化するためには、高炉の炉熱の代表的な指標である溶
銑中シリコン含有量を一定に維持すればよい。
If the furnace heat is stabilized during blast furnace operation, the fuel ratio can be lowered, productivity will improve, and desirable operating conditions will be achieved. In order to stabilize the furnace heat, it is sufficient to maintain the silicon content in hot metal, which is a typical index of the furnace heat of a blast furnace, constant.

本発明の高炉操業法により、高炉レースウェイ部のコー
クス温度 (Tc)を1600±20℃に維持し、かつ
高炉レースウェイ部のコークス温度と理論燃焼温度との
比率(Tc/Tf )を0.75±0.02に維持する
ことにより、目標とする溶銑中シリコン含有量を±0.
05重量%に調整でき、高炉の炉熱を安定化させ、燃料
比低下、生産性向上達成できる。そのときの操作基準を
N1図、第2図を使用して説明する。第1図はあらかじ
め設定したTcの基準値(1600℃)に対する、羽口
部で測定したTcの値の差(変化幅)と、前記Tcの変
化幅をゼロにするためのTfの操作量(変化幅)の関係
である0例えば羽口部で測定したTcの値が1625℃
であれば、変化幅は+25℃となるので、N1図Cおい
てTfの操作を一35℃すればよい。N2図は、あらか
じめ設定したTc/丁fの基準値(0,75)に対する
、羽口部で測定したTcとTfの比率Tc/Tfの差(
変化幅)と、前記Tc/Tfの変化幅をゼロにするため
の羽口部から吹込む微粉炭量の操作量(変化i)の関係
である。例えば、羽口部で測定したTcとTfの比率子
e/丁fの値が0.775であれば、変化幅は+0.0
25となるので、第2図において羽口部から吹込む微粉
炭量の操作を一750kg/hすればよい。
By the blast furnace operating method of the present invention, the coke temperature (Tc) in the blast furnace raceway is maintained at 1600±20°C, and the ratio of the coke temperature in the blast furnace raceway to the theoretical combustion temperature (Tc/Tf) is 0. 75±0.02, the target silicon content in hot metal can be set to ±0.
It can be adjusted to 0.5% by weight, stabilizes the furnace heat of the blast furnace, lowers the fuel ratio, and improves productivity. The operating criteria at that time will be explained using Figure N1 and Figure 2. Figure 1 shows the difference (change width) in the Tc value measured at the tuyere with respect to the preset Tc reference value (1600°C), and the manipulated amount of Tf (change width) to make the Tc change width zero. For example, if the Tc value measured at the tuyere is 1625°C
If so, the range of change is +25°C, so it is sufficient to operate Tf by -35°C in N1 diagram C. The N2 diagram shows the difference in the ratio Tc/Tf of Tc and Tf measured at the tuyere with respect to the preset standard value of Tc/Tf (0,75).
(variation width) and the manipulated variable (change i) of the amount of pulverized coal injected from the tuyere portion to make the variation width of Tc/Tf zero. For example, if the value of the ratio e/f of Tc and Tf measured at the tuyere is 0.775, the range of change is +0.0
25, the amount of pulverized coal injected from the tuyeres in FIG. 2 can be adjusted to 1750 kg/h.

第1図、第2図の関係は、安定している高炉操業状態の
解析や、あるいは操業試験によって求めることができる
The relationships shown in FIGS. 1 and 2 can be determined by analysis of stable blast furnace operating conditions or by operational tests.

放射温度計を設置する羽口は、出銑口の上部を主体にし
て、設置する羽口数は、測定精度上出銑口数の2倍以上
が望ましい。
The radiation thermometer is installed mainly in the upper part of the taphole, and the number of tuyere installed is preferably at least twice the number of tapholes for measurement accuracy.

また理論燃焼温度(Tf)を調整するには、(1)式に
示すように送風温度、蒸気量、酸素量、微粉炭量の4a
の変更が可能なので、そのときの高炉操業状態に応じて
、4fiのいずれか1種あるいは2種以上を選択できる
In addition, in order to adjust the theoretical combustion temperature (Tf), as shown in equation (1), the 4a of blowing temperature, steam amount, oxygen amount, and pulverized coal amount
can be changed, so one type or two or more types of 4fi can be selected depending on the operating state of the blast furnace at that time.

[実 施 例] 以下実施例により本発明の特徴を具体的に説明する。[Example] The features of the present invention will be specifically explained below with reference to Examples.

第1表に示すように、実施例1は出銑口4本を備える高
炉において、出銑口上部の羽口覗孔部2本(合計8本)
に放射温度計を設置し、高炉レースウェイ部のコークス
温度(Tc)を測定したら、8木の平均値が1540℃
から1650℃の間を変動し、高炉レースウェイ部のコ
ークス温度と理論燃焼温度との比率 (Tc/Tf)は
0.716から0.767の間を変動した(理論燃焼温
度は2150t:であった)。第1図、第2図を用いて
、Tcが1600±20℃の間に入るように、Tc/T
fが0.75±0.02の間に入るように、理論燃焼温
度 (Tf)および羽口部より吹込む微粉炭量を調整し
た操業例である。目標とする溶銑中シリコン含有量は0
30%であった。Tfの調整には、送J!I温度、送風
中に添加される蒸気量、送風中に添加される酸素量、羽
口部より吹込む微粉炭量を単独に変更し、また送風温度
と送風中に添加される蒸気量、送J!l温度と羽口部よ
り吹込む微粉炭量、送風中に添加される酸素量の2f!
同時に変更する操作を実施した。
As shown in Table 1, in Example 1, in a blast furnace equipped with four tapholes, there are two tuyere peep holes at the top of the taphole (eight in total).
A radiation thermometer was installed at
The ratio of the coke temperature in the blast furnace raceway to the theoretical combustion temperature (Tc/Tf) varied between 0.716 and 0.767 (the theoretical combustion temperature was 2150 t). Ta). Using Figures 1 and 2, set Tc/T so that Tc is between 1600±20°C.
This is an example of operation in which the theoretical combustion temperature (Tf) and the amount of pulverized coal injected from the tuyere were adjusted so that f was between 0.75±0.02. The target silicon content in hot metal is 0.
It was 30%. To adjust Tf, send J! The I temperature, the amount of steam added during ventilation, the amount of oxygen added during ventilation, and the amount of pulverized coal blown in from the tuyere were individually changed. J! l Temperature, amount of pulverized coal blown in from the tuyere, and amount of oxygen added during blowing: 2f!
At the same time, I performed a change operation.

実施例2は出銑口4木を備える高炉において、出銑口上
部の羽口覗孔部3本(合計12本)に放射温度計を設置
し、高炉レースウェイ部のコークス温度 (Tc)を測
定したら、12本の平均値が1570℃から1655℃
の間を変動し、高炉レースウェイ部のコークス温度と理
論燃焼温度との比率(Tc/Tf)は0.730から0
.770の間を変動した(理論燃焼温度は2150℃で
あった)。
Example 2 is a blast furnace equipped with four tapholes. Radiation thermometers are installed in the three tuyere peepholes (12 in total) at the top of the taphole, and the coke temperature (Tc) in the blast furnace raceway is measured. When measured, the average value of 12 samples was 1570℃ to 1655℃
The ratio of the coke temperature in the blast furnace raceway section to the theoretical combustion temperature (Tc/Tf) varies between 0.730 and 0.
.. (the theoretical combustion temperature was 2150°C).

Tc/Tfは0.75:t: 0.02+7)間に入ッ
テイルノテ、第1図を用いて、Tcが1600±20℃
の間に入るように、理論燃焼温度(Tf)を調整した操
業例である。目標とする溶銑中シリコン含有量が0.3
5%であった。 Tfの調整には、送風中に添加される
酸素量と羽口部より吹込む微粉炭量、送風中に添加され
る蒸気量と羽口部より吹込む微粉炭量の2種同時に変更
し、また送風温度と送風中に添加される蒸気量と羽口部
より吹込む微粉炭量、送風中に添加される蒸気量と送風
中に添加される酸素量と羽口部より吹込む微粉炭量の3
種同時に変更する操作を実施した。
Tc/Tf is 0.75: t: 0.02+7) Using the notes in Figure 1, Tc is 1600±20°C.
This is an example of operation in which the theoretical combustion temperature (Tf) is adjusted so that it falls between Target silicon content in hot metal is 0.3
It was 5%. To adjust Tf, simultaneously change the amount of oxygen added during blowing and the amount of pulverized coal blown in from the tuyere, and the amount of steam added during blowing and the amount of pulverized coal blown in from the tuyere. In addition, the air blowing temperature, the amount of steam added during air blowing, the amount of pulverized coal blown in from the tuyeres, the amount of steam added during air blowing, the amount of oxygen added during air blowing, and the amount of pulverized coal blown in from the tuyeres. No. 3
We performed an operation to change the species at the same time.

実施例3は出銑口4木を備える高炉において、出銑口上
部の羽口覗孔部2本(合計8木)に放射温度針を設置し
、高炉レースウェイ部のコークス温度 (Tc)を測定
したら、8木の平均値が1595℃から1620tの間
を変動し、高炉レースウェイ部のコークス温度と理論燃
焼温度との比率(Tc/Tf )は0.725から0.
736 (7)間を変動しk(理論燃焼温度は2200
tであった)、Tcは1800℃±20℃の間に入って
いるので、第2図を用いて、Tc/Tfを0.75±0
.02(7)間に入るように、羽口部より吹込む微粉炭
量を調整した8I業例である。目標とする溶銑中シリコ
ン含有量は0.40%であった。
In Example 3, in a blast furnace equipped with four tapholes, radiant temperature needles were installed in two tuyere peepholes (total of 8 pieces) at the top of the taphole, and the coke temperature (Tc) in the blast furnace raceway was measured. When measured, the average value of the 8 wood fluctuates between 1595°C and 1620t, and the ratio of coke temperature to theoretical combustion temperature (Tc/Tf) in the blast furnace raceway section ranges from 0.725 to 0.
736 (7) k (theoretical combustion temperature is 2200
t), and Tc is within 1800°C ± 20°C, so using Figure 2, Tc/Tf is set to 0.75 ± 0.
.. This is an example of an 8I operation in which the amount of pulverized coal injected from the tuyere was adjusted so that it fell between 02 and 7. The target silicon content in hot metal was 0.40%.

いずれの場合も、比較例に対比すると、目標とする溶銑
中シリコン含有量が±O,OS%の範囲におさまってお
り、出銑量が多く燃料費が低くなっている。
In either case, when compared to the comparative example, the target silicon content in the hot metal falls within the range of ±O, OS%, and the amount of pig iron tapped is large and the fuel cost is low.

比較例は従来のように羽口覗孔部より肉眼でレースウェ
イ内を観察し、高炉の炉熱を判断し、出銑口から流出す
る溶銑の温度、溶銑中シリコン含有量を測定してから、
炉熱調整の操作を行った操業例である。目標とする溶銑
中シリコン含有量は0.40%であった。実施例1〜3
に比べると、目標とする溶銑中シリコン含有量が±0.
05の範囲におさまっておらず、出銑量が少なく燃料費
が高い。
In the comparative example, the inside of the raceway was observed with the naked eye through the tuyere peephole, the furnace heat of the blast furnace was determined, and the temperature of the hot metal flowing out from the tap hole and the silicon content in the hot metal were measured. ,
This is an example of operation in which furnace heat adjustment was performed. The target silicon content in hot metal was 0.40%. Examples 1-3
Compared to , the target silicon content in hot metal is ±0.
05, the amount of iron output is low and fuel costs are high.

[発明の効果] 以上説明したように、本発明においては、レースウェイ
内における炉熱の情報として、精度の高い高炉レースウ
ェイ部のコークス温度を用い、理論燃焼温度と組合せて
、炉熱調整のために送風条件の操作を迅速に行うことに
より、高炉の炉熱が安定し、生産性向上、燃料比低下を
はかることができ、安定した溶銑供給が可能である。
[Effects of the Invention] As explained above, in the present invention, the highly accurate coke temperature in the blast furnace raceway is used as information on the furnace heat in the raceway, and in combination with the theoretical combustion temperature, the furnace heat adjustment is performed. Therefore, by quickly controlling the air blowing conditions, the furnace heat of the blast furnace can be stabilized, productivity can be improved, the fuel ratio can be lowered, and a stable supply of hot metal can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は高炉レースウェイ部のコークス温度の基準値に
対する変化幅と、操作に必要な理論燃焼温度の変化幅と
の関係を示す図、第2図は高炉レースウェイ部のコーク
ス温度と理論燃焼温度の比率の基準値社対する変化幅と
、操作に必要な微粉炭量の変化幅の関係を示す図である
。第3図は高炉レースウェイ部のコークス温度と1〜2
時間後に出銑口から流出する溶銑中シリコン含有量との
関係を示す図、第4図は高炉レースウェイ部のコークス
温度と理論燃焼温度との関係を示す図、第5図は高炉レ
ースウェイ部のコークス温度と理論燃焼温度の比率と微
粉炭量の変化幅との関係を示す図である。 化4名 微粉炭量の変化幅(△PC) (kg/hl理論燃焼温
度の変化幅(△Tf) (”C)高炉レースウェイ部の
コークス温度(Tc)(’C) 溶銑中シリコン含有ii(%)
Figure 1 shows the relationship between the range of change in coke temperature in the blast furnace raceway section relative to the standard value and the range of change in the theoretical combustion temperature required for operation. Figure 2 shows the relationship between the coke temperature in the blast furnace raceway section and the theoretical combustion temperature. FIG. 2 is a diagram showing the relationship between the range of change in temperature ratio with respect to a reference value and the range of change in the amount of pulverized coal required for operation. Figure 3 shows the coke temperature in the blast furnace raceway and 1 to 2.
Figure 4 shows the relationship between the silicon content in the hot metal flowing out from the taphole after hours, Figure 4 shows the relationship between the coke temperature in the blast furnace raceway and the theoretical combustion temperature, and Figure 5 shows the relationship between the coke temperature in the blast furnace raceway and the theoretical combustion temperature. FIG. 2 is a diagram showing the relationship between the ratio of the coke temperature and the theoretical combustion temperature and the range of change in the amount of pulverized coal. Change width of pulverized coal amount (△PC) (kg/hl Change width of theoretical combustion temperature (△Tf) (''C) Coke temperature in blast furnace raceway (Tc) ('C) Silicon content in hot metal II (%)

Claims (1)

【特許請求の範囲】[Claims] 1 羽口部から高炉レースウェイ部のコークス温度を検
出するとともに、前記コークス温度と理論燃焼温度との
比率を計算し、前記コークス温度および前記比率があら
かじめ設定した範囲に入るように、理論燃焼温度および
/または羽口部から吹込む微粉炭量を調整することを特
徴とする高炉操業法。
1. Detect the coke temperature from the tuyere section to the blast furnace raceway section, calculate the ratio between the coke temperature and the theoretical combustion temperature, and set the theoretical combustion temperature so that the coke temperature and the ratio fall within a preset range. and/or a blast furnace operating method characterized by adjusting the amount of pulverized coal injected from the tuyere.
JP9343990A 1990-04-09 1990-04-09 Method for operating blast furnace Pending JPH03291315A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9343990A JPH03291315A (en) 1990-04-09 1990-04-09 Method for operating blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9343990A JPH03291315A (en) 1990-04-09 1990-04-09 Method for operating blast furnace

Publications (1)

Publication Number Publication Date
JPH03291315A true JPH03291315A (en) 1991-12-20

Family

ID=14082355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9343990A Pending JPH03291315A (en) 1990-04-09 1990-04-09 Method for operating blast furnace

Country Status (1)

Country Link
JP (1) JPH03291315A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100381094B1 (en) * 1996-12-09 2003-07-22 주식회사 포스코 Method for theoretic combustion temperature of race way during blast furnace pulverized coal injection operation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100381094B1 (en) * 1996-12-09 2003-07-22 주식회사 포스코 Method for theoretic combustion temperature of race way during blast furnace pulverized coal injection operation

Similar Documents

Publication Publication Date Title
JP6503055B2 (en) Method of detecting distribution of blast furnace gas flow
US4077763A (en) Method for regulating combustion processes, particularly for the production of cement in a rotary kiln
US2448199A (en) Control system for blast furnace air
US2778018A (en) Method of and apparatus for operating metallurgical furnaces
JPH03291315A (en) Method for operating blast furnace
US3690632A (en) Blast furnace control based on measurement of pressures at spaced points along the height of the furnace
JPH10310808A (en) Operation of blast furnace
US3838999A (en) Method and apparatus for melting glass
JPH1046215A (en) Method for controlling furnace heat in blast furnace
US3560197A (en) Method of blast furnace control
JPH10237513A (en) Operation of blast furnace
SU883181A1 (en) Method of control of blast furnace thermal conditions
JP2837284B2 (en) Method and apparatus for producing hot metal containing chromium
JPS60113156A (en) Method for measuring deviation in circumferential direction of dropping speed of material loaded into shaft furnace
JPS61119610A (en) Method for controlling balance of blast furnace by water blowing
JPH05186811A (en) Method for operating blast furnace
KR100383277B1 (en) Measurement method of change in blast furnace gas distribution
SU1668402A1 (en) Method of control of blast furnace heat conditions
SU998513A2 (en) Method for measuring level of liquid phases in hearth of shaft furnace
JP2897363B2 (en) Hot metal production method
SU1553809A1 (en) Method of controlling iron-melting in cupola furnace
USRE24944E (en) strassburger r
JPH0442445B2 (en)
JPS6163550A (en) Stabilizing control for cement burning facilities
JP3722059B2 (en) Operation method of smelting reduction furnace