JPH0230707A - Method for operating blast furnace - Google Patents
Method for operating blast furnaceInfo
- Publication number
- JPH0230707A JPH0230707A JP18022388A JP18022388A JPH0230707A JP H0230707 A JPH0230707 A JP H0230707A JP 18022388 A JP18022388 A JP 18022388A JP 18022388 A JP18022388 A JP 18022388A JP H0230707 A JPH0230707 A JP H0230707A
- Authority
- JP
- Japan
- Prior art keywords
- furnace
- furnace bottom
- blast
- blast furnace
- molten iron
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title abstract description 10
- 239000010936 titanium Substances 0.000 claims abstract description 10
- 239000000498 cooling water Substances 0.000 claims abstract description 7
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical group [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 6
- 238000005259 measurement Methods 0.000 claims description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 abstract 8
- 229910052742 iron Inorganic materials 0.000 abstract 4
- 239000002184 metal Substances 0.000 description 22
- 229910052751 metal Inorganic materials 0.000 description 22
- 239000011449 brick Substances 0.000 description 8
- 230000007423 decrease Effects 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000002285 radioactive effect Effects 0.000 description 2
- 239000000700 radioactive tracer Substances 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- 239000000571 coke Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Manufacture Of Iron (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、高炉湯溜内での溶銑の流動状況を炉底温度か
ら推定して、適切な溶銑流を確保出来るようにした高炉
の操業法に関する。Detailed Description of the Invention (Field of Industrial Application) The present invention is directed to the operation of a blast furnace in which the flow condition of hot metal in the blast furnace sump is estimated from the furnace bottom temperature to ensure an appropriate flow of hot metal. Regarding the law.
(従来の技術)
高炉湯溜内の溶銑の流動挙動は、高炉の炉況と密接に対
応しており、適切な溶銑流を確保する事は高炉操業にと
って不可欠である。一方、炉底で溶銑が局部的に流動し
た場合は、その位置での炉底レンガの損傷を助長する結
果となるため、高炉の長寿命化の面からも溶銑流の管理
は重要となる。(Prior Art) The flow behavior of hot metal in a blast furnace sump closely corresponds to the furnace conditions of the blast furnace, and ensuring an appropriate flow of hot metal is essential for blast furnace operation. On the other hand, if hot metal flows locally at the bottom of the furnace, this will promote damage to the bottom bricks at that location, so controlling the flow of hot metal is important from the perspective of extending the life of the blast furnace.
したがって、高炉を操業するにあたっては、常時湯溜内
での溶銑の流動挙動を把握し、溶銑流を適切なレベルに
管理できるようにする必要がある。Therefore, when operating a blast furnace, it is necessary to constantly understand the flow behavior of hot metal in the sump and to be able to manage the flow of hot metal at an appropriate level.
その手段として、従来、例えば、特開昭6214620
6、特公昭57−47730では、高炉の羽口から放射
性元素等のトレーサーを炉内に投入し、そのトレーサー
が溶銑に含まれて炉外に排出される際の排出挙動から、
湯溜内での溶銑の流動挙動を推定する方法を開示してい
る。同法は、高炉内でのコークスの充填状態によって溶
銑がいかになかれているかを推定できる点で優れている
ものの、その反面、間欠的な測定しかできず、しかも、
トレーサーとして放射性元素を使用する場合には、その
取り扱いや管理を慎重に行なう必要があるといった問題
点を有していた。Conventionally, for example, Japanese Patent Application Laid-Open No. 6214620
6. In Japanese Patent Publication No. 57-47730, a tracer such as a radioactive element is introduced into the blast furnace through the tuyere, and from the emission behavior when the tracer is contained in the hot metal and discharged from the furnace,
A method for estimating the flow behavior of hot metal in a hot water tank is disclosed. Although this method is excellent in that it can estimate how much hot metal is being consumed based on the coke filling state in the blast furnace, on the other hand, it can only be measured intermittently, and
When using radioactive elements as tracers, there is a problem in that they must be handled and managed carefully.
(本発明の目的)
本発明の目的とするところは、前記従来技術の問題点を
解決して、連続的に湯溜内での溶銑の流動挙動を推定し
ながら、随時溶銑流を適切なレベルに管理する高炉の操
業方法を提供することにある。(Objective of the present invention) An object of the present invention is to solve the problems of the prior art described above, and while continuously estimating the flow behavior of hot metal in the sump, the flow of hot metal can be adjusted to an appropriate level at any time. The objective is to provide a method of operating a blast furnace that can be managed in a controlled manner.
(発明の構成)
本発明、高炉炉底部各位置に複数個(n個)埋設した炉
底温度計から連続して得られる炉底温度(Ti;iは測
定位置で1〜nである)と予め測定していた休風時の炉
底温度(TO4; iは測定位置)との差ΔTi (=
Ti−TO+)を常時計算し、ΔTiのそれぞれ所定の
値となるように、炉底の冷却水量やチタン源の装入量お
よび装入位置を制御する事を特徴とする。(Structure of the Invention) The present invention provides a furnace bottom temperature (Ti; i is 1 to n at the measurement position) that is continuously obtained from a plurality (n) of furnace bottom thermometers embedded in each position at the bottom of the blast furnace. The difference ΔTi (=
Ti-TO+) is constantly calculated, and the amount of cooling water at the bottom of the furnace and the charging amount and charging position of the titanium source are controlled so that each of ΔTi reaches a predetermined value.
すなわち、高炉の炉底温度は溶銑の流速(Vm)に対応
する溶銑−レンガ間の熱伝達係数(hp)の他に炉底レ
ンガの残存厚(1)等によっても支配されるため、高炉
操業時の炉底温度から直接Vn+を推定するのは困難で
ある。ところが、第1図に示した様に、高炉を休風した
場合には、溶銑の流速は0となり、その時の溶銑−レン
ガ間の熱伝達係数(hp)は炉底全域にわたってhpl
となる。それに伴ない、炉底温度は低下して、レンガの
残存量に応じた値(TO,、TO□〜TOn )となる
。一方、操業中の高炉内では、溶銑は炉内各位置である
速度をもって流動しており、その分hpは休風時の値(
hpl)よりも大きくなる。そのために、操業中の炉底
温度は休風時よりも高い値(T、 、 T2〜Tn)を
示す。したがって、炉底各位置について操業中と休風時
の炉底温度差ΔTiを算出すれば、その値は溶銑の流動
状況のみに依存したものとなり、レンガの残存厚の形容
は無視できる。ここで、炉底温度差ΔTiが大なるほど
、その位置でのVmは速いものと判断できる。In other words, the bottom temperature of a blast furnace is controlled not only by the hot metal-brick heat transfer coefficient (hp), which corresponds to the hot metal flow velocity (Vm), but also by the residual thickness of the bottom brick (1), etc. It is difficult to directly estimate Vn+ from the hearth bottom temperature. However, as shown in Figure 1, when the blast furnace is closed, the flow velocity of hot metal becomes 0, and the heat transfer coefficient (hp) between hot metal and bricks at that time is hpl over the entire bottom of the furnace.
becomes. Along with this, the hearth bottom temperature decreases to a value (TO, , TO□ to TOn) corresponding to the remaining amount of bricks. On the other hand, in an operating blast furnace, hot metal flows at a certain speed at each location in the furnace, and accordingly the HP is the value at rest (
hpl). Therefore, the hearth bottom temperature during operation shows a higher value (T, , T2 to Tn) than when the wind is not in operation. Therefore, if the hearth temperature difference ΔTi during operation and at rest is calculated for each hearth bottom position, the value depends only on the flow condition of the hot metal, and the appearance of the remaining thickness of the bricks can be ignored. Here, it can be determined that the larger the hearth bottom temperature difference ΔTi, the faster Vm at that position.
ここで、一般に高炉炉底部には熱電対を埋設しており、
その計測値(炉底温度)は連続的に得られるので、各位
置での休風時の炉底温度(To i)さえ記録しておけ
ば、ΔTiは随時算出でき、炉底各位置について溶銑の
流動状況を無視できる。そして、湯溜内での溶銑の流動
挙動が所定のレベルから逸脱した場合には、炉底の冷却
水量やチタン源の装入量および装入位置を変更する。す
なわち、炉底全域にわたって溶銑の流動が活発になった
場合(ΔTiが大となった場合)には、炉底の冷却水量
やチタン源の装入量を増加し、その逆の場合には逆の措
置を講ずればよい。また、溶銑が炉壁側を局部的に流通
する状況が検知できた時は、チタン源は選択的に炉壁側
に装入する。もちろん、このような対策を実施する際に
は、効果をΔTiの推移から確認し、その対策を継続す
るか否かを検討することが望ましい。なお、適切なΔT
は高炉によって異なるので、安定操業時データからΔT
の管理値を決定する必要がある。Here, a thermocouple is generally buried in the bottom of the blast furnace.
Since the measured value (hearthstone temperature) can be obtained continuously, ΔTi can be calculated at any time by recording the hearth bottom temperature (To i) at each position when the wind is off. The flow situation can be ignored. If the flow behavior of hot metal in the sump deviates from a predetermined level, the amount of cooling water at the bottom of the furnace, the amount of titanium source charged, and the charging position are changed. In other words, when the flow of hot metal becomes active over the entire bottom of the furnace (when ΔTi becomes large), the amount of cooling water at the bottom of the furnace and the amount of titanium source charged are increased, and vice versa. All you have to do is take the following measures. Furthermore, when it is detected that hot metal is locally flowing on the furnace wall side, the titanium source is selectively charged to the furnace wall side. Of course, when implementing such measures, it is desirable to check the effects from the change in ΔTi and consider whether to continue the measures. In addition, an appropriate ΔT
differs depending on the blast furnace, so ΔT can be determined from data during stable operation.
It is necessary to determine the control value of
以下に、本発明法の実施例を述べる。Examples of the method of the present invention will be described below.
(実施例1)
第2図に示した位置に設けた熱電対によって、炉底温度
を連続的に測定して、各位置でのΔTiを算出した。そ
のΔTiの推移を第3図に示す。同図に見られるように
、時間A以降炉内全域にねたってΔTが低下する傾向を
しめした。そのため、酸化チタンの装入原単位を5kg
/TK少し、かつ、炉底の冷却水量を100 T/+1
下げた。その後、20時間経過した時点で八Tは上昇し
はじめ、更に40時間経過して元のレベルに回復した。(Example 1) The bottom temperature of the furnace was continuously measured using thermocouples provided at the positions shown in FIG. 2, and ΔTi at each position was calculated. The transition of ΔTi is shown in FIG. As seen in the figure, after time A, there was a tendency for ΔT to decrease over the entire area inside the furnace. Therefore, the charging unit of titanium oxide was reduced to 5 kg.
/TK a little, and the amount of cooling water at the bottom of the furnace is 100T/+1
Lowered. Thereafter, 8T began to rise after 20 hours had passed, and recovered to its original level after another 40 hours.
5(実施例2) 実施例1と同一方法でΔTを求め、その値を監視した。5 (Example 2) ΔT was determined using the same method as in Example 1, and the value was monitored.
この場合は、第4図に示すように、炉壁側のΔTのみが
時間Bから上昇し始め、炉底壁面のレンガの損傷が懸念
された。そのため、酸化チタンが0.15%含まれてい
る焼結鉱を装入原料の20%にあたる量だけ高炉の炉頂
から装入し、しかも、その焼結鉱はムーバブルアーマを
用いて選択的に炉壁側に装入した。この結果、35時間
後炉壁側のΔTは低下しはじめ、その後天のレベルに回
復した。In this case, as shown in FIG. 4, only the ΔT on the furnace wall side began to rise from time B, and there was concern that the bricks on the furnace bottom wall would be damaged. Therefore, sintered ore containing 0.15% titanium oxide was charged from the top of the blast furnace in an amount equivalent to 20% of the charged raw material, and the sintered ore was selectively transferred using a movable armor. It was charged to the furnace wall side. As a result, ΔT on the furnace wall side began to decrease after 35 hours, and then recovered to the heavenly level.
(発明の効果)
本発明法を用いることにより、高炉湯溜内での溶銑の流
動挙動が随時把握できるため、その挙動が炉況を悪化さ
せる方向か、あるいは炉底レンガに損傷を与えるような
方向に向かった時には、タイムリーに対策を講じる事が
できる。そのために、高炉の安定操業と長寿命に貢献で
きる。(Effects of the invention) By using the method of the present invention, the flow behavior of hot metal in the blast furnace sump can be grasped at any time, so whether the behavior is in the direction of worsening the furnace condition or causing damage to the bottom bricks. When you are heading in the right direction, you can take timely measures. Therefore, it can contribute to the stable operation and long life of blast furnaces.
4、図の簡単な説明 第1図は本発明法の懸念を示したものである。4. Brief explanation of the figure FIG. 1 shows the concerns of the method of the present invention.
第2図は本発明法を実施した場合の側温位置の概略図、
また、第3図、第4図はΔTの推移を示したものである
。Figure 2 is a schematic diagram of the side temperature position when the method of the present invention is implemented;
Furthermore, FIGS. 3 and 4 show changes in ΔT.
Claims (1)
ら連続して得られる各炉底温度(Ti;iは測定位置で
1〜nである)と予め測定していた休風時の炉底温度(
TOi;iは測定位置)との差ΔTi(=Ti−TOi
)を常時計算し、ΔTiの各値がそれぞれ所定の値とな
るように、炉底の冷却水量、チタン源の装入量および装
入位置を制御する事を特徴とする高炉操業法。Each hearth bottom temperature (Ti; i is 1 to n at the measurement position) continuously obtained from hearth bottom thermometers buried at multiple (n) positions at the bottom of the blast furnace, and during wind down periods measured in advance. hearth temperature (
TOi; i is the measurement position) and the difference ΔTi (=Ti−TOi
) is constantly calculated, and the amount of cooling water at the bottom of the furnace, the amount of titanium source charged, and the charging position are controlled so that each value of ΔTi becomes a predetermined value.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18022388A JPH0230707A (en) | 1988-07-21 | 1988-07-21 | Method for operating blast furnace |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18022388A JPH0230707A (en) | 1988-07-21 | 1988-07-21 | Method for operating blast furnace |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0230707A true JPH0230707A (en) | 1990-02-01 |
Family
ID=16079547
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18022388A Pending JPH0230707A (en) | 1988-07-21 | 1988-07-21 | Method for operating blast furnace |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0230707A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7896372B2 (en) | 2007-02-14 | 2011-03-01 | Honda Motor Co., Ltd. | Suspension device |
-
1988
- 1988-07-21 JP JP18022388A patent/JPH0230707A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7896372B2 (en) | 2007-02-14 | 2011-03-01 | Honda Motor Co., Ltd. | Suspension device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Torrkulla et al. | Model of the state of the blast furnace hearth | |
CN103439999B (en) | Method for controlling abnormal furnace temperature of blast furnace according to temperature changes of cooling wall | |
JPH0230707A (en) | Method for operating blast furnace | |
JP2727563B2 (en) | Blast furnace operation method | |
JP4081248B2 (en) | Control method of the lower part of the blast furnace | |
JPH11335710A (en) | Method for predicting furnace heat in blast furnace | |
JP2002266011A (en) | Method for estimating furnace condition in blast furnace | |
JP3385831B2 (en) | Estimation method of hearth erosion line and hearth structure | |
JP2011236474A (en) | Method for estimating erosion-line on furnace-bottom and structure of furnace-bottom | |
JPH10245604A (en) | Operation of blast furnace | |
JPH06136420A (en) | Operation method for blast furnace | |
JP4276565B2 (en) | Blast furnace lower cooling control method and system | |
JPH10298619A (en) | Operation of blast furnace | |
JPS6137327B2 (en) | ||
Steinberg | Development of a control strategy for the open slag bath furnaces at Highveld Steel and Vanadium Corporation Ltd | |
JP2002194406A (en) | Method for protecting furnace bottom part in blast furnace | |
JP2733564B2 (en) | Slip prediction method in blast furnace operation | |
JPH06212215A (en) | Method for controlling temperature of refractory brick at furnace bottom | |
JPH10140218A (en) | Method for controlling furnace bottom of blast furnace | |
JPH03104808A (en) | Method for operating blast furnace | |
JPS6137328B2 (en) | ||
JPS62238308A (en) | Temperature measuring method for bottom part of blast furnace | |
SU1640175A1 (en) | Method of control of metal melting process in induction crucible furnace | |
JPH0320402A (en) | Method for operating blast furnace | |
JPH0417607A (en) | Method for operating blast furnace |