JPH0754026A - Method for measuring descending position of charged material in blast furnace - Google Patents

Method for measuring descending position of charged material in blast furnace

Info

Publication number
JPH0754026A
JPH0754026A JP19838093A JP19838093A JPH0754026A JP H0754026 A JPH0754026 A JP H0754026A JP 19838093 A JP19838093 A JP 19838093A JP 19838093 A JP19838093 A JP 19838093A JP H0754026 A JPH0754026 A JP H0754026A
Authority
JP
Japan
Prior art keywords
furnace
blast furnace
charge
rigid rod
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP19838093A
Other languages
Japanese (ja)
Inventor
Takeshi Sato
健 佐藤
Shoji Miyagawa
昌治 宮川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP19838093A priority Critical patent/JPH0754026A/en
Publication of JPH0754026A publication Critical patent/JPH0754026A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)
  • Blast Furnaces (AREA)

Abstract

PURPOSE:To accurately measure the descending distance of charged material by inserting a rigid rod from a furnace top to a fused zone into a filling layer of the charged material in the shaft part of a blast furnace and fiting a position director while using this rigid rod as a guide. CONSTITUTION:The rigid rod 6 is inserted downward from the furnace top into the charged layer 2 in the shaft part of the blast furnace. The position detector 5 connected with a wire 3 through the recessed part 7 provided on the cross section of this rigid rod 6 is dropped on the surface layer 2 of the charged material piled surface at an optional time, and the wire 3 is connected with a dropped distance measuring device 4 at the outside of the furnace along the recessed part 7. By this method, the position of the position detector 5 in the furnace is cleaned by detecting a feeding speed and a feeding quantity of the wire 3 with a descending distance measuring device 4, and the descending speed of the charged material can be found in the optional height in the furnace.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、高炉内の装入物の降
下速度や、降下時における高炉装入物層の膨張/収縮状
況の測定方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring a descending speed of a charge in a blast furnace and an expansion / contraction state of a blast furnace charge layer at the time of descending.

【0002】[0002]

【従来の技術】高炉操業において、装入物である鉱石や
コークスの降下状況は、高炉の操業状態(炉況)を示す
重要な指標である。例えば、装入物が急激に異常降下す
る場合(棚吊り、スリップ等)、またはそのような状態
が頻発しておこる場合は、出湯する溶銑品質が変化する
とともに、送風量低下のために生産性が下がり、時には
冷え込み等の重大事故を起こす。
2. Description of the Related Art In a blast furnace operation, the descending state of ore and coke as a charge is an important indicator of the operating state (furnace condition) of the blast furnace. For example, if the charged material suddenly drops abnormally (hanging on a shelf, slipping, etc.), or if such a condition occurs frequently, the quality of the hot metal discharged will change and productivity will decrease due to a reduction in the air flow rate. May fall and sometimes cause serious accidents such as cooling.

【0003】このような高炉での装入物の降下は、いわ
ゆる炉下部軟化溶融帯でおこる鉱石の溶融滴下、レース
ウエイ部でおこるコークスの燃焼によって駆動される。
そして、上記鉱石の溶融滴下やコークス燃焼の起きる位
置、及び程度により、高炉シャフト部での装入物の降下
速度が半径方向、深さ方向で大きく変わり、また、炉壁
プロフィルの変化に伴う炉壁侵食部での装入物の流れ込
み、炉壁付着物等の突出部での装入物の降下遅れ等によ
り、装入物層を膨張させたり、収縮させたりする。
The dropping of the charge in such a blast furnace is driven by the melting and dropping of ore that occurs in the so-called lower furnace softening and melting zone and the combustion of coke that occurs in the raceway section.
And, depending on the position and degree of melting and dropping of the ore or coke combustion, the descending speed of the charge in the shaft portion of the blast furnace changes greatly in the radial direction and the depth direction, and the furnace wall profile changes with the change. The charge layer is expanded or contracted due to the flow of the charge at the wall erosion portion, the delay of the fall of the charge at the protrusions such as the deposits on the furnace wall, and the like.

【0004】このうち、高炉での装入物の降下速度、ま
たはその空間分布を測定する方法については、以下に示
すように、現在までに多くの方法が開示されている。そ
して、同時に、それらの方法には固有の問題点があっ
た。たとえば、 (1)重錘を利用したサウンジングや、レーザーやマイ
クロ波を利用した装入物層頂プロフィル計を使用する方
法は、バッチ装入における終了時点から次の開始時点ま
での短時間での、しかも炉上部からの測定であったた
め、装入物堆積面表層の降下速度を測定するに止まると
ともに、その測定領域も限定された。さらに、装入物の
深さ方向での降下速度分布を知ることは全くできなかっ
た。 (2)コークス層と鉱石層の電気抵抗の差を利用して、
装入物の深さ方向に電気抵抗測定センサーを設置した測
定方法は、例えば特開昭52−151606や特開昭5
2−141257に開示されているように、測定結果が
炉内の温度や水分に影響され、正確な装入物の降下状況
を測定することが困難であった。 (3)炉内に磁力計を設置し、コークス層と鉱石層の間
で検出される磁束密度の変化を利用した測定方法は、特
開昭52−84112に開示されているが、この方法も
温度や水分の変化により測定に誤差を生じると共に、コ
ークス層と鉱石層との混合層ができた場合に層の判定が
できず、正確な測定とはならなかった。 (4)また、炉内に挿入したランスが、炉内装入物の荷
下がり状態の変化に応じて受ける荷重変化を、ランスに
付設した変形検出素子により、歪み測定値として検出す
る方法(例えば特開昭60−248805に開示)や、
炉内に挿入した重錘が装入物から受ける荷重をワイヤを
介して測定し、炉内装入物の降下速度を測定する方法
(例えば、特開昭61−91307に開示)もあるが、
これらの方法は炉壁等の炉内特定箇所における装入物の
降下速度の測定だけに止まったり、検出素子の信号処理
が複雑なものであるため、高価な機器を要したり、また
長期間の連続測定に対して、維持管理が煩雑なものにな
ったりする問題点があった。 (5)さらに、より簡便な方法、またより確実に測定で
きる方法としては、先端に錘をつけたワイヤを高炉内の
装入物とともに降下させ、炉内に繰り込むワイヤの長さ
を時間と共に連続的に測定するする方法が特開昭58−
37107に開示されている。
Among these, as the method for measuring the descent rate of the charge in the blast furnace or its spatial distribution, many methods have been disclosed to date, as shown below. And at the same time, those methods had their own problems. For example, (1) Sounding using a weight or a method using a charge bed top profile meter using a laser or microwave is used in a short time from the end time of batch charging to the next start time. Moreover, since it was measured from the upper part of the furnace, the descent rate of the surface layer of the deposit deposition surface was measured, and the measurement area was also limited. Furthermore, it was not possible to know the descent velocity distribution in the depth direction of the charge. (2) Utilizing the difference in electrical resistance between the coke layer and the ore layer,
A measuring method in which an electric resistance measuring sensor is installed in the depth direction of the charge is disclosed in, for example, Japanese Patent Laid-Open No. 52-151606 and Japanese Patent Laid-Open No.
As disclosed in JP-A-2-141257, the measurement result is affected by the temperature and moisture in the furnace, and it is difficult to accurately measure the falling state of the charge. (3) A measuring method in which a magnetometer is installed in the furnace and a change in magnetic flux density detected between the coke layer and the ore layer is used is disclosed in Japanese Patent Laid-Open No. 52-84112, but this method is also used. An error occurred in the measurement due to changes in temperature and moisture, and when a mixed layer of the coke layer and the ore layer was formed, the layer could not be determined and the measurement was not accurate. (4) Further, a method of detecting a load change, which is received by a lance inserted in the furnace according to a change in the unloading state of the furnace interior, as a strain measurement value by a deformation detecting element attached to the lance (for example, (Disclosed in Kaisho 60-248805),
There is also a method (for example, disclosed in Japanese Patent Laid-Open No. 61-91307) in which the load received by the weight inserted into the furnace from the charge is measured via a wire to measure the descending speed of the furnace internal charge.
These methods are limited to measuring the descent rate of the charge at a specific location inside the furnace such as the furnace wall, and require complicated equipment because of the complicated signal processing of the detection element. However, there was a problem that maintenance was complicated for continuous measurement. (5) Furthermore, as a simpler and more reliable method, a wire with a weight at the tip is lowered together with the charge in the blast furnace, and the length of the wire fed into the furnace is changed with time. A method for continuous measurement is disclosed in Japanese Patent Laid-Open No. 58-
37107.

【0005】上記特開昭58−37107に記載された
方法を検証した1例が図2である。錘1を装入物堆積面
表層2に置き、その後、装入物とともに錘1を連続的に
降下させ、錘につないだワイヤ3の送り込み量(長さ)
を炉外の降下距離測定装置4で測定した。その結果を図
3に示す。ワイヤ3の送り込み速度は時間に対してほぼ
一定となり、高炉シャフト部での炉断面積の深さ方向の
変化、すなわち、深さが深くなるほど断面積が大きくな
る変化に起因して生じる降下速度の徐々に低下する傾向
は、測定できなかった。
FIG. 2 shows an example of verification of the method described in JP-A-58-37107. The weight 1 is placed on the surface layer 2 of the charged material deposition surface, and then the weight 1 is continuously lowered together with the charged material, and the feeding amount (length) of the wire 3 connected to the weight.
Was measured by the descent distance measuring device 4 outside the furnace. The result is shown in FIG. The feeding speed of the wire 3 is almost constant with time, and the change in the furnace cross-sectional area in the depth direction in the blast furnace shaft portion in the depth direction, that is, the descending speed caused by the change in the cross-sectional area increases as the depth increases The tendency to gradually decrease could not be measured.

【0006】この事実は、装入物堆積面表層2付近のワ
イヤ3はその周囲の装入物とともに降下し、炉内の深さ
の深いところでは、ワイヤ3が図2に破線で示したよう
にたわみ、結局、上記線材の送り出し速度から計算され
る降下速度は、装入物堆積面表層2付近の降下速度を表
しているに過ぎないと考えられた。以上は、高炉シャフ
ト部での装入物の半径方向、深さ方向の降下速度分布の
従来法による測定法とその問題点であったが、装入物層
の膨張/収縮挙動の測定例は存在しないようである。
This fact means that the wire 3 near the surface layer 2 of the deposit deposition surface descends together with the charge around it, and at the deep inside of the furnace, the wire 3 is as shown by the broken line in FIG. After all, it was considered that the descending speed calculated from the feeding speed of the wire rod only represents the descending speed in the vicinity of the surface layer 2 of the deposit deposition surface. The above is the conventional method of measuring the falling velocity distribution in the radial direction and the depth direction of the charge in the shaft part of the blast furnace and its problems, but the measurement example of the expansion / contraction behavior of the charge layer is It doesn't seem to exist.

【0007】[0007]

【発明が解決しようとする課題】本発明は、炉内装入物
の降下速度を測定するうえでの上記問題点を鑑み、高炉
シャフト部半径方向での装入物の降下速度分布、装入物
深さ方向での降下速度分布、ならびに降下時における高
炉装入物層の膨張/収縮状況を、(a)高炉装入物の装
入シークエンスに影響されず、炉内任意位置で連続的
に、(b)かつ、炉内温度、水分等の条件変化に影響さ
れず、より正確に、測定でき、(c)さらに、その測定
設備が安価で、保守しやすい、測定方法の提供を目的と
するものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems in measuring the descent rate of the furnace interior charge, and the descent rate distribution of the charge in the radial direction of the blast furnace shaft and the charge. The descending velocity distribution in the depth direction and the expansion / contraction state of the blast furnace charge layer at the time of descending are (a) continuously influenced at any position in the furnace without being influenced by the charging sequence of the blast furnace charge, (B) In addition, it is intended to provide a measurement method that can be measured more accurately without being affected by changes in conditions such as furnace temperature and moisture, and (c) that the measurement equipment is inexpensive and easy to maintain. It is a thing.

【0008】[0008]

【課題を解決するための手段】発明者は、上記目的を達
成するため多くの実験、研究を繰り返し、装入物充填層
内に装入物とともに降下してその位置を知らせる検出器
用のガイド棒を設けることに着眼した。すなわち、本発
明は、高炉シャフト部の装入物充填層内に、剛体棒を炉
頂より下方に向け溶融帯まで挿入し、該剛体棒をガイド
として吊下材の下端に取付けた板状の位置検出器を外嵌
させ、該位置検出器を前記剛体棒周囲の高炉装入物とと
もに降下させて、その炉頂からの降下距離を連続して測
定することを特徴とする高炉装入物の降下位置測定方法
である。さらに、複数の上記位置検出器を一定時間毎に
装入物堆積面表層上で上記剛体棒に取付け、高炉装入物
とともに降下させ、各位置検出器の降下速度の差を連続
的に測定することを特徴とする高炉装入物の降下位置測
定方法である。
Means for Solving the Problems The inventor has repeated many experiments and researches in order to achieve the above-mentioned object, and descends together with the charge in the charge packed bed to inform the position of the guide rod for the detector. I focused on setting up. That is, the present invention is a plate-like member in which a rigid rod is inserted into a molten zone toward the lower side of the furnace top in the charged material packed layer of the blast furnace shaft portion, and the rigid rod is attached to the lower end of the hanging member as a guide. A blast furnace charge characterized by externally fitting a position detector, lowering the position detector together with the blast furnace charge around the rigid rod, and continuously measuring the descending distance from the furnace top. This is a descent position measuring method. Furthermore, a plurality of the position detectors are attached to the rigid rod on the surface layer of the charge deposition surface at regular intervals, and are lowered together with the blast furnace charge, and the difference in the descending speed of each position detector is continuously measured. This is a method for measuring the descending position of the blast furnace charge characterized by the above.

【0009】この場合、位置検出器の材質は耐熱鋼材が
好ましいが、それに限るものではなく、セラミックのよ
うに耐熱性と強度のある材料であれば如何なるものでも
良い。また、吊下材とは、例えばワイヤ、線材、チェー
ン、棒材等のような部材をいう。
In this case, the position detector is preferably made of heat-resistant steel, but is not limited to this, and any material having heat resistance and strength such as ceramic may be used. In addition, the hanging material refers to a member such as a wire, a wire, a chain, or a bar.

【0010】[0010]

【作用】本発明では、高炉シャフト部の装入物充填層内
に炉頂より溶融帯まで下方に向けて剛体棒を挿入し、該
剛体棒をガイドとして位置検出器を取付けるようにした
ので、上記位置検出器はその降下に際して装入物層内で
たわむことがなく、正しい装入物の降下距離を測定でき
るようになり、また、電気抵抗や磁束密度を利用してい
ないので、炉内の温度、水分等外乱の影響なしに降下距
離を測定できるようになる。以下、図1及び図4〜5に
基づき、本発明の内容を説明する。
In the present invention, the rigid rod is inserted downward from the furnace top to the melting zone in the charged material packed bed of the blast furnace shaft, and the position detector is attached using the rigid rod as a guide. The position detector does not bend in the charge layer during its descent, and it becomes possible to measure the correct descent distance of the charge, and since the electric resistance and magnetic flux density are not used, It becomes possible to measure the descent distance without the influence of disturbance such as temperature and moisture. The contents of the present invention will be described below with reference to FIGS. 1 and 4 to 5.

【0011】図1は、高炉シャフト部に炉頂より下方に
向け装入物層2内に剛体棒6を挿入し、その剛体棒6を
ガイドとして位置検出器5を取付け、使用している状況
を示す。位置検出器5は、任意の時に装入物堆積面表層
2上に上から落し込まれ、その後、周囲の装入物の降下
とともに剛体棒6に沿って降下する。図4は剛体棒6の
断面図であり、断面には凹部7が設けてある。位置検出
器5につながれたワイヤ3は剛体棒6の凹部7に沿って
炉外に導かれる。位置検出器5の炉内位置は、ワイヤの
送り速度及び送り量を炉外において降下距離測定装置4
で検出することにより、位置検出器5の降下速度、炉内
での存在位置が明らかになり、炉内任意高さにおける装
入物の降下速度を知ることが可能となる。
FIG. 1 shows a situation in which a rigid rod 6 is inserted into the charge layer 2 on the shaft portion of the blast furnace downward from the furnace top, and the position detector 5 is attached using the rigid rod 6 as a guide. Indicates. The position detector 5 is dropped from above on the surface 2 of the deposit stacking surface at any time, and then descends along the rigid rod 6 along with the fall of the surrounding charges. FIG. 4 is a sectional view of the rigid rod 6, and a recess 7 is provided in the section. The wire 3 connected to the position detector 5 is guided outside the furnace along the recess 7 of the rigid rod 6. As for the position of the position detector 5 in the furnace, the wire feed speed and the feed amount are measured outside the furnace by the descent distance measuring device 4
By detecting by (1), the descending speed of the position detector 5 and the existing position in the furnace are clarified, and it becomes possible to know the descending speed of the charged material at an arbitrary height in the furnace.

【0012】また、同じ位置検出器5の複数個を一定時
間間隔、例えば鉱石層+コークス層の組合せからなる数
層群に時間間隔をおいて装入物とともに降下させる。そ
して、それら各々の位置検出器5の降下位置の差を連続
的に測定する。これより、それら位置検出器間に存在す
る高炉装入物層の膨張/収縮状況が時系列的に測定でき
る。例えば、高炉縮小模型を縦方向に1/2とした半割
形状のもので、その分割面を透明の板で覆い、高炉装入
物の降下状況を目視で観察できるようにしたモデル実験
装置を用いて、位置検出器2個を鉱石層+コークス層の
組合せからなる3層群に時間間隔をおいて、装入物とと
もに降下させ、各々の位置検出器降下位置の差を連続的
に測定した。その結果、2つの検出端の降下速度は、棚
つり等の装入物層の膨張/収縮状況を時系列的に測定で
きることが確認できた。また同時に装入したトレーサ粒
子の降下速度とも対応することを確認した。
Further, a plurality of the same position detectors 5 are lowered together with the charge at a constant time interval, for example, at a time interval of several layers consisting of a combination of an ore layer and a coke layer. Then, the difference between the lowered positions of the respective position detectors 5 is continuously measured. From this, the expansion / contraction state of the blast furnace charge layer existing between the position detectors can be measured in time series. For example, there is a model experimental device that has a half-divided blast furnace reduced model in the vertical direction and covers the divided surface with a transparent plate so that the falling state of the blast furnace charge can be visually observed. By using the two position detectors, the position detectors were lowered along with the charge in a three-layer group consisting of a combination of an ore layer and a coke layer, and the difference between the position detector descending positions was continuously measured. . As a result, it was confirmed that the descending speeds of the two detection ends can measure the expansion / contraction state of the charging material layer such as shelving in time series. At the same time, it was confirmed that it also corresponds to the falling speed of the tracer particles charged.

【0013】また、この発明に要する設備は、位置検出
器5、剛体棒6、ワイヤー3、ワイヤー送り出し装置1
0とその送り量、速度を測定・記録する降下距離測定装
置4だけでよく、非常に安価である。図5は、剛体棒に
対して滑らかに動くように取り付けられた位置検出器5
の説明図である。図5(b)に示すように、位置検出器
5は剛体棒6の凹部7を通るワイヤ3で吊られている。
なお、位置検出器5の形状は、平面は円形、側面は逆吊
り鐘状が好ましいが、円滑に装入物層内を降下するもの
であれば良い。また、位置検出器5の大きさは、その周
囲の装入物降下に影響を与えない程度、例えば円径50
mm以下が好ましい。
The equipment required for the present invention is the position detector 5, the rigid rod 6, the wire 3, and the wire feeding device 1.
Only 0 and the descent distance measuring device 4 for measuring / recording the feed amount and speed thereof are required, which is very inexpensive. FIG. 5 shows a position detector 5 mounted so as to move smoothly with respect to a rigid rod.
FIG. As shown in FIG. 5B, the position detector 5 is suspended by the wire 3 passing through the recess 7 of the rigid rod 6.
The shape of the position detector 5 is preferably circular on the plane and inverted bell-shaped on the side, but may be any as long as it smoothly descends in the charging layer. Further, the size of the position detector 5 is such that it does not affect the fall of the charge around it, for example, a circle diameter of 50.
mm or less is preferable.

【0014】[0014]

【実施例】【Example】

(実施例1)高炉縮小模型を用いて、高炉の装入物の降
下状況を調査した。 (イ)位置検出器とワイヤのみの方法(比較例1)、 (ロ)本発明に係る剛体棒6と、ワイヤ3を、該剛体棒
6のガイド構造7内に収容しなかった場合(比較例2) (ハ)本発明方法 を用いて、装入物堆積面表層にある装入物が、任意時間
後に本高炉縮小模型内のどの位置にあるかを測定した。
(Example 1) Using a reduced model of a blast furnace, the descending state of the charge of the blast furnace was investigated. (A) Method using only position detector and wire (Comparative example 1), (b) Case where the rigid rod 6 according to the present invention and the wire 3 are not housed in the guide structure 7 of the rigid rod 6 (comparison) Example 2) (c) Using the method of the present invention, it was measured at which position in the reduced scale model of the blast furnace the charge on the surface layer of the charge deposition surface was located after an arbitrary time.

【0015】図6は、その測定結果と、トレーサを用い
て装入物降下位置を測定した結果との比較である。
(イ)の位置検出器5とワイヤ3のみ(比較例1)、ま
たは、(ロ)の本発明に係る剛体棒6とワイヤ3を該剛
体棒6のガイド構造7内に収容しなかった場合(比較例
2)では、上記模型内でワイヤにたるみを生じ、位置検
出器5の正確な位置は測定できないことがわかる。一
方、本発明方法(ハ)による測定値は、トレーサでの測
定値と一致している。 (実施例2)本発明方法を、内容積4500m3 の高炉
に適用した。
FIG. 6 shows a comparison between the measurement result and the measurement result of the charging material descending position using the tracer.
In the case where only the position detector 5 and the wire 3 of (a) (Comparative example 1) or the rigid rod 6 and the wire 3 according to the present invention of (b) are not housed in the guide structure 7 of the rigid rod 6. In (Comparative Example 2), it is found that the wire sags in the model and the accurate position of the position detector 5 cannot be measured. On the other hand, the measured value by the method (c) of the present invention matches the measured value by the tracer. (Example 2) The method of the present invention was applied to a blast furnace having an internal volume of 4500 m 3 .

【0016】上記高炉で出銑滓状況(炉況)が円周方向
で大きく異なった操業時期に、本発明法に係る装入物位
置測定装置を、図7に示すように、炉壁近傍部で、且つ
円周方向に2ヶ所(南側と北側)設置して、炉内装入物
の降下速度を測定した。その測定結果を、図8に示す。
本発明に係る位置測定装置を設置した南側と北側では、
装入物の深さ方向の降下速度分布が異なっており、円周
方向で降下速度の偏差が生じていることがわかった。
At the operation time when the state of tapping slag (furnace condition) greatly differs in the circumferential direction in the above blast furnace, the charging position measuring device according to the method of the present invention is used, as shown in FIG. In addition, at two locations in the circumferential direction (south side and north side), the descent rate of the furnace interior contents was measured. The measurement result is shown in FIG.
On the south side and the north side where the position measuring device according to the present invention is installed,
It was found that the distribution of the descending velocity in the depth direction of the charge was different, and the deviation of the descending velocity occurred in the circumferential direction.

【0017】この場合、図9に示した南側の特異な降下
挙動は、南側の炉壁温度の長期的トレンドから、また休
風時に測定した炉内付着物厚の測定値より推定された、
図7に示したような炉壁付着物9の生成の影響と考えら
れ、それが出銑滓の円周方向偏差の要因となっているこ
とが推定された。この測定結果をふまえ、付着物除去を
目的とした休風を行い、付着物を除去したとき、図8の
後半に示すように炉况は回復した。 (実施例3)本発明を、内容積4500m3 の高炉に適
用した。図10に示すようにORE(鉱石)層の上下に
位置検出器を設置し、装入物降下時の前記2つの位置検
出器の位置の差Δhを測定した。図11に測定結果を示
す。図11中の破線は、炉体形状(炉内各高さにおける
炉径)を考慮して、装入物の体積バランスより求めたΔ
hの推定値である。実測値ではシャフト部中程から、上
記体積バランスより想定される値からはずれており、装
入物層の層厚が膨張していることがわかる。これは、炉
壁侵食による炉径の拡大に起因する現象と考えられる。
In this case, the peculiar descent behavior on the south side shown in FIG. 9 was estimated from the long-term trend of the furnace wall temperature on the south side, and from the measured value of the in-furnace deposit thickness measured during a quiescent period.
It is considered that this is the influence of the formation of the deposit 9 on the furnace wall as shown in FIG. Based on this measurement result, the furnace was recovered as shown in the latter half of FIG. 8 when the air was blown off for the purpose of removing the deposit and the deposit was removed. (Example 3) The present invention was applied to a blast furnace having an internal volume of 4500 m 3 . As shown in FIG. 10, position detectors were installed above and below the ORE (ore) layer, and the difference Δh between the positions of the two position detectors when the charge dropped was measured. FIG. 11 shows the measurement result. The broken line in FIG. 11 is Δ calculated from the volume balance of the charged material in consideration of the furnace body shape (furnace diameter at each height in the furnace).
It is an estimated value of h. The measured value deviates from the value assumed from the above-mentioned volume balance from the middle of the shaft portion, and it can be seen that the layer thickness of the charging layer expands. This is considered to be a phenomenon caused by the expansion of the furnace diameter due to the erosion of the furnace wall.

【0018】[0018]

【発明の効果】本発明により炉内の半径方向、深さ方向
の任意の位置における装入物の降下速度、また炉壁プロ
フィルの変化に伴う局所的な装入物の降下異常による装
入物層の膨張/収縮を、1)高炉装入物の装入シークエ
ンスに影響されず、炉内任意位置で連続的に、 2)かつ、炉内温度、水分等の条件変化に影響されず、
より正確に、測定できた。
EFFECTS OF THE INVENTION According to the present invention, the rate at which the charge descends at any position in the furnace in the radial direction and the depth direction, and the charge anomaly due to a local anomaly in the descending of the charge due to changes in the furnace wall profile. The expansion / contraction of the bed is 1) not affected by the charging sequence of the blast furnace charge, continuously at any position in the furnace, and 2) unaffected by changes in conditions such as the temperature and moisture in the furnace,
It was possible to measure more accurately.

【0019】また、 3)その設備もシンプルで保守しやすく、安価なものと
なった。さらに、この発明を円周方向に複数個設置する
ことにより、高炉荷下がり状況の円周方向偏差等も正確
に把握でき、炉况管理技術が向上した。
3) The equipment is also simple, easy to maintain, and inexpensive. Furthermore, by installing a plurality of the present invention in the circumferential direction, the deviation in the circumferential direction of the blast furnace unloading condition can be accurately grasped, and the reactor management technology is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係わる装入物の降下位置測定装置を高
炉に設置した図である。
FIG. 1 is a view in which a device for measuring a lowered position of a charge according to the present invention is installed in a blast furnace.

【図2】錘とワイヤを用いた従来法による装入物降下速
度の測定方法の説明である。
FIG. 2 is an explanation of a method of measuring a load descending speed by a conventional method using a weight and a wire.

【図3】図2の方法による測定結果である。FIG. 3 is a measurement result by the method of FIG.

【図4】本発明に係わる剛体棒の断面である。FIG. 4 is a cross section of a rigid rod according to the present invention.

【図5】本発明に係わる剛体棒に位置検出器、ワイヤを
取りつけた状態の概略図である。
FIG. 5 is a schematic view showing a state in which a position detector and a wire are attached to a rigid rod according to the present invention.

【図6】実施例1の結果である。FIG. 6 shows the results of Example 1.

【図7】本発明に係わる装入物降下距離測定装置を円周
方向の2ヶ所に設置した概略図である(実施例2)。
FIG. 7 is a schematic view in which the charging descent distance measuring device according to the present invention is installed at two locations in the circumferential direction (Example 2).

【図8】 本発明により装入物降下速度を測定した期間
の出銑滓状況である(実施例2)。
FIG. 8 is a situation of pig iron during a period in which a dropping rate of a charged material is measured according to the present invention (Example 2).

【図9】実施例2の装入物降下速度の測定例である。FIG. 9 is a measurement example of the charging material descent rate of the second embodiment.

【図10】実施例3の測定条件を示す図である。10 is a diagram showing measurement conditions of Example 3. FIG.

【図11】実施例3の測定結果を示す図である。11 is a diagram showing the measurement results of Example 3. FIG.

【符号の説明】[Explanation of symbols]

1 錘 2 装入物堆積面表層 3 ワイヤ 4 降下距離測定装置 5 位置検出器 6 剛体棒 7 剛体棒凹部 9 炉壁付着物 10 ワイヤ送り出し装置 11 ベルレス装入装置のシュート 12 高炉シャフト部 DESCRIPTION OF SYMBOLS 1 Weight 2 Charge deposit surface layer 3 Wire 4 Falling distance measuring device 5 Position detector 6 Rigid rod 7 Rigid rod recess 9 Furnace wall deposits 10 Wire feed device 11 Bellless charging device chute 12 Blast furnace shaft

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 高炉シャフト部の装入物充填層内に、剛
体棒を炉頂より下方に向けて挿入し、該剛体棒をガイド
として吊下材の下端に取付けた板状の位置検出器を外嵌
させ、該位置検出器を前記剛体棒周囲の高炉装入物とと
もに降下させて、その炉頂からの降下距離を連続して測
定することを特徴とする高炉装入物の降下位置測定方
法。
1. A plate-shaped position detector in which a rigid rod is inserted downward from the furnace top into a charge-packed bed of a shaft portion of a blast furnace, and the rigid rod is attached as a guide to the lower end of a suspension member. And the position detector is lowered together with the blast furnace charge around the rigid rod, and the descent position measurement of the blast furnace charge is characterized by continuously measuring the descent distance from the furnace top. Method.
【請求項2】 複数の上記位置検出器を一定時間毎に装
入物体積面表層上で上記剛体棒に取付け、高炉装入物と
ともに降下させ、各位置検出器の降下速度の差を連続的
に測定することを特徴とする請求項1記載の高炉装入物
の降下位置測定方法。
2. A plurality of the position detectors are attached to the rigid rod on the surface layer of the volume surface of the charged material at regular intervals, and are lowered together with the blast furnace charged material, and the difference in the descending speed of each position sensor is continuously measured. The method for measuring the descending position of the blast furnace charge according to claim 1, wherein
JP19838093A 1993-08-10 1993-08-10 Method for measuring descending position of charged material in blast furnace Withdrawn JPH0754026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19838093A JPH0754026A (en) 1993-08-10 1993-08-10 Method for measuring descending position of charged material in blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19838093A JPH0754026A (en) 1993-08-10 1993-08-10 Method for measuring descending position of charged material in blast furnace

Publications (1)

Publication Number Publication Date
JPH0754026A true JPH0754026A (en) 1995-02-28

Family

ID=16390164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19838093A Withdrawn JPH0754026A (en) 1993-08-10 1993-08-10 Method for measuring descending position of charged material in blast furnace

Country Status (1)

Country Link
JP (1) JPH0754026A (en)

Similar Documents

Publication Publication Date Title
JPH0754026A (en) Method for measuring descending position of charged material in blast furnace
US4197495A (en) System for controlling the charge distribution and flow in blast furnace operations using magnetic sensors positioned within the charge
JP4157951B2 (en) Charge distribution control method for blast furnace throat
GB1574834A (en) Monitoring a blast furnace during operation and controlling operation of the furnace accordingly
JPS62235404A (en) Detection of behavior of charge in vertical type furnace
JP2678767B2 (en) Blast furnace operation method
JPS6240402B2 (en)
JPH0210204B2 (en)
JPS59221583A (en) Method of monitoring internal state of vertical type furnace
JP7111277B1 (en) METHOD AND DEVICE FOR DETECTING LIQUID LEVEL HEIGHT OF MELTS, AND METHOD OF OPERATING VERTICAL FURNACE
JPH05271726A (en) Detection of hanging of charged raw material in blast furnace
JP6904202B2 (en) Kilnbeco occurrence detection system and kilnbeco occurrence detection method
JPH03100110A (en) Instrument for measuring distribution of charged material in furnace
KR101134620B1 (en) Apparatus for inspecting molten iron in blast furnace
JPS62192511A (en) Method for estimating falling position of raw material charged into rotary chute type blast furnace
JP2830347B2 (en) Measurement method for layer height of smelting furnace interior
JPS63243215A (en) Method for operating blast furnace
JPS6191307A (en) Detection of descending of charge in blast furnace
JPS59157208A (en) Method for measuring boundary of burden layer in blast furnace and probe for measurement
JPS5831007A (en) Detection of abnormality in descending of charging material in blast furnace
JPS63195205A (en) Method for charging raw material in bell type blast furnace
JPS5862570A (en) Detection of falling speed distribution for charge in blast furnace
JPS61201711A (en) Operating method for blast furnace
JPH04301013A (en) Method for operating blast furnace
JPS6028678Y2 (en) Blast furnace furnace condition measuring device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20001031