JP2008223121A - Method for repairing furnace wall surface at upper part of blast furnace shaft - Google Patents

Method for repairing furnace wall surface at upper part of blast furnace shaft Download PDF

Info

Publication number
JP2008223121A
JP2008223121A JP2007067085A JP2007067085A JP2008223121A JP 2008223121 A JP2008223121 A JP 2008223121A JP 2007067085 A JP2007067085 A JP 2007067085A JP 2007067085 A JP2007067085 A JP 2007067085A JP 2008223121 A JP2008223121 A JP 2008223121A
Authority
JP
Japan
Prior art keywords
furnace
furnace wall
shaft
blast furnace
blast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007067085A
Other languages
Japanese (ja)
Inventor
Morimasa Ichida
守政 一田
Shinroku Matsuzaki
眞六 松崎
Takashi Orimoto
隆 折本
Tsunehisa Nishimura
恒久 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2007067085A priority Critical patent/JP2008223121A/en
Publication of JP2008223121A publication Critical patent/JP2008223121A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Blast Furnaces (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for repairing a furnace wall surface at the upper part of a blast furnace shaft, in which a portion to be repaired on the operation can simply be specified in a short time by detecting a sign of giving the large damage to the furnace wall before becoming the unstability in the blast furnace operation. <P>SOLUTION: Relative descending speed of charging materials in the furnace near the furnace wall at the upper part of the blast furnace shaft is measured at the plurality of points in the circular direction, and when the relative descending speed at any measuring point exceeds the prescribed value, it is determined that there is the sign of the macroscopic wearing state of the furnace wall at the upper part of the shaft bringing about the unstability to the operation in the blast furnace and also, it is specified that the damage portion of the furnace wall exists in the circumference of the measuring point exceeding the prescribed value, and at the stopping time of blowing, the level of the charging material in the furnace is lowered, and the repairing material is injected and repaired onto this specified damaging portion on the furnace wall. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、製鉄用高炉におけるシャフト上部炉壁レンガ、ステーブの損耗状態を操業中に検知し、予定休風時に計画的に補修を行う高炉シャフト上部炉壁面の補修方法に関する。   TECHNICAL FIELD The present invention relates to a method for repairing a blast furnace shaft upper furnace wall surface, which detects the worn state of a shaft upper furnace wall brick and stave in an iron blast furnace during operation and systematically repairs it during scheduled wind breaks.

高炉の炉体上部をなすシャフト部の内張りレンガ、ステーブなどの炉壁は侵食されるため、炉壁侵食面を補修し、シャフト部の拡がりの円周バランスを維持することは、炉内装入物の降下挙動、ガス流れの円周バランスを維持することにつながり、高炉の安定操業上極めて重要である。   Furnace walls such as lining bricks and staves on the shaft part that forms the upper part of the furnace body of the blast furnace are eroded, so repairing the eroded surface of the furnace wall and maintaining the circumferential balance of the expansion of the shaft part This is important for the stable operation of the blast furnace.

すなわち、下方に向けて末広がりとなる円錐台形状に形成されているシャフト部の炉壁面が侵食されていると、シャフト部の周方向における炉壁面に部分的に侵食部分である凹部が発生し、シャフト部炉壁面の円周方向におけるバランスが一様でなくなり、炉内装入物の降下挙動、および円周方向における炉内装入物内を通過するガス流れのバランスに影響を及ぼす。   That is, when the furnace wall surface of the shaft portion formed in a truncated cone shape that spreads downward toward the lower side is eroded, a recess that is a partially eroded portion occurs in the furnace wall surface in the circumferential direction of the shaft portion, The balance in the circumferential direction of the shaft furnace wall surface is not uniform, which affects the descending behavior of the furnace interior material and the balance of the gas flow passing through the furnace interior material in the circumferential direction.

そのため、高炉のシャフト上部を含む種々の炉壁面の補修方法が提案されている(特許文献1〜5)。   Therefore, various repair methods for the furnace wall surface including the upper part of the shaft of the blast furnace have been proposed (Patent Documents 1 to 5).

特許文献1に記載の補修方法は、補修材のリバウンドロスによる送風立ち上げ時の通気性悪化を抑制する方法に関し、特許文献2に記載の補修方法は、補修による炉壁貫通孔の閉塞を防止する方法に関するものである。   The repair method described in Patent Document 1 relates to a method for suppressing deterioration in air permeability at the time of air blow-up due to rebound loss of the repair material, and the repair method described in Patent Document 2 prevents blockage of the furnace wall through hole due to repair. It is about how to do.

また、特許文献3〜5に記載の補修方法は、いずれも炉壁補修を効率的に行うための施行技術に関するものである。   Moreover, all the repair methods of patent documents 3-5 are related with the enforcement technique for performing furnace wall repair efficiently.

一方、高炉の炉体をなすシャフト上部の内張りレンガ,ステーブ等の炉壁面の損耗状態をマクロに検知することは、早期のシャフト上部補修を計画的に準備できるため、高炉の高生産安定操業を維持する上で重要である。   On the other hand, the macro-detection of the state of wear on the furnace wall such as the lining bricks and staves above the shaft that make up the furnace body of the blast furnace enables systematic preparation for early shaft upper repairs, thus ensuring high-productivity and stable operation of the blast furnace. It is important to maintain.

そこで、シャフト上部における炉壁面の損耗状態をマクロに検知するために、耐火物の温度、侵食状況を監視する手法が提案されており、主として炉壁の残厚を計測する手法(特許文献6〜9)と、炉体冷却装置の損耗を超音波を用いて測定する手法(特許文献10)が提案されている。   Therefore, in order to detect macroscopically the state of wear of the furnace wall at the upper part of the shaft, a technique for monitoring the temperature and erosion status of the refractory has been proposed, and mainly a technique for measuring the remaining thickness of the furnace wall (Patent Documents 6 to 6). 9) and a technique (Patent Document 10) for measuring the wear of the furnace body cooling device using ultrasonic waves has been proposed.

特許文献6〜9に記載の炉壁の残厚計測手法では、予め炉壁にセンサーを埋設しており、特許文献10に記載の測定手法ではステーブの取り付けボルト端部に超音波探触子を接触させている。   In the method for measuring the remaining thickness of the furnace wall described in Patent Documents 6 to 9, a sensor is embedded in the furnace wall in advance, and in the measurement method described in Patent Document 10, an ultrasonic probe is attached to the end of the mounting bolt of the stave. It is in contact.

また、レーザーレーダ技術を応用した3次元カメラシステム機能を有するセンサーを用いて炉壁プロフィールを測定することも提案されている(特許文献11)。
特開2005−023392号公報 特開2004−293951号公報 特開平09−041010号公報 特開平09−125115号公報 特開平08−218107号公報 特開昭57−151803号公報 特開昭59−041783号公報 特開昭59−096600号公報 特開昭58−088106号公報 特開昭61−264110号公報 特開平10−237517号公報
It has also been proposed to measure the furnace wall profile using a sensor having a three-dimensional camera system function to which laser radar technology is applied (Patent Document 11).
JP-A-2005-023392 JP 2004-293951 A JP 09-041010 A JP 09-125115 A Japanese Patent Laid-Open No. 08-218107 JP 57-151803 A JP 59-041783 A JP 59-096600 JP 58-088106 A JP 61-264110 A JP-A-10-237517

上述した特許文献1〜5に記載の高炉シャフト上部炉壁面の補修方法は、炉壁面が侵食し、大量の炉内ガスが急激に排出される吹き抜けが発生する場合、炉内装入物の降下が急激に進行するスリップが発生する場合、炉内装入物の降下が停止する棚吊りが発生する場合等に補修を行うようにしている。   In the repair method of the blast furnace shaft upper furnace wall described in Patent Documents 1 to 5 described above, when the furnace wall erodes and a blowout occurs in which a large amount of gas in the furnace is rapidly discharged, the fall of the furnace interior material is reduced. Repairs are performed in the case where a suddenly progressing slip occurs or a shelf hanging occurs where the descent of the furnace interior material stops.

したがって、実際に高炉操業が不安定となった後における予定休風時に炉壁面の補修作業が行われることになるが、この場合に発生している侵食部分は大きいため、大掛かりな補修が必要となり、休風時間が長くなるおそれがある。このため、補修のための休風時には大幅な熱補償が必要となり、送風立ち上げ後の一定期間に生産性の大幅な低下をもたらす。同時に順調な操業の立ち上げの保証がなく、時には長期的な生産低下の可能性がある。   Therefore, repair work on the furnace wall surface will be carried out during scheduled breaks after the actual blast furnace operation has become unstable. However, in this case, the erosion part is large and large repairs are required. There is a risk that the wind rest time will be longer. For this reason, significant heat compensation is required at the time of resting for repair, and the productivity is significantly reduced for a certain period after the air blow-up is started. At the same time, there is no guarantee of the start-up of a smooth operation, and there is a possibility of long-term production decline.

また、補修すべき部位の特定が難しく、事前の減尺休風での損傷部位の特定が必要となる。   In addition, it is difficult to specify a site to be repaired, and it is necessary to specify a site to be damaged by a pre-scaled wind break.

このように、従来の高炉シャフト上部炉壁面の補修は、炉壁補修による送風立ち上げ時のトラブル回避あるいは炉壁損傷部位の補修効果および補修効率向上のいずれか一方しか解決することができない。   Thus, the conventional repair of the upper furnace wall surface of the blast furnace shaft can only solve one of trouble avoidance at the time of air blow-up by repairing the furnace wall, repair effect of the damaged part of the furnace wall, and improvement of repair efficiency.

また、高炉の炉体をなすシャフト上部の内張りレンガ,ステーブ等の炉壁面の損耗状態をマクロに検知することは、早期のシャフト上部補修を計画的に準備できるため、高炉の高生産安定操業を維持する上で重要である。   In addition, macro-detection of the state of wear on the furnace wall such as lining bricks and staves above the shaft that forms the furnace body of the blast furnace makes it possible to systematically prepare for the early repair of the shaft upper part. It is important to maintain.

しかし、上述した特許文献6〜10に記載の技術は、センサー配置箇所における炉壁の残厚を計測するものであるため、シャフト上部における内張りレンガ,ステーブ等の炉壁の局部的損耗状態に関する情報を入手でき、この情報は設備管理の観点から重要である。しかし、得られた情報は炉壁の残厚であり、高炉操業状態と直接的な相関がないため、この残厚値を以って直ちに高炉の操業状態への影響を評価することはできず、また、安定操業を継続するためにシャフト上部の補修が必要かどうかの判断をするシャフト上部のマクロ的な損耗状況に関する情報としては十分な情報とは言えない。   However, since the techniques described in Patent Documents 6 to 10 described above measure the remaining thickness of the furnace wall at the sensor placement location, information on the local wear state of the furnace wall such as lining bricks and staves at the upper part of the shaft. This information is important from a facility management perspective. However, since the information obtained is the remaining thickness of the furnace wall and there is no direct correlation with the operating condition of the blast furnace, it is not possible to immediately evaluate the effect on the operating condition of the blast furnace using this remaining thickness value. Moreover, it cannot be said that it is sufficient information as information on the macro wear state of the upper part of the shaft for determining whether the upper part of the shaft needs to be repaired in order to continue stable operation.

すなわち、炉壁の残厚情報は、現在の内張りレンガやステーブの厚さを示し、例えば現状の残厚でも高炉操業に支障があるか否かの判断指標とはなり得るが、発生している炉壁の損耗を放置しておくと、大きな補修が将来的に必要となるという損耗状態の前兆を示すものとはなり得ない。   That is, the remaining thickness information of the furnace wall indicates the thickness of the current lining brick and stave, and for example, the current remaining thickness can be an indicator for determining whether or not there is a problem in blast furnace operation, but it has occurred If the wear of the furnace wall is left unattended, it cannot be a sign of a worn state that large repairs will be required in the future.

また、特許文献11に記載の技術では、シャフト上部の炉壁プロフィールを測定できるが、この場合も炉壁プロフィールからは大きな補修が将来的に必要となるという損耗状態の前兆を示すものとはなり得ない。   Further, in the technique described in Patent Document 11, the furnace wall profile at the upper part of the shaft can be measured, but in this case as well, the furnace wall profile shows a sign of a worn state that a large repair is required in the future. I don't get it.

本発明はこのような従来の課題に鑑みなされたもので、高炉操業が不安定となる前に炉壁に大きな損傷が発生する前兆を検知することで、直後の予定休風時において簡単で短時間に操業上補修すべき部位の補修が行え、送風立ち上げ時のトラブルを回避でき、しかも高炉操業中に操業上補修すべき部位の特定を可能とすることで、炉壁面を効果的に補修できる高炉シャフト上部炉壁面の補修方法を提供することを目的とする。   The present invention has been made in view of such a conventional problem. By detecting a sign of significant damage to the furnace wall before the operation of the blast furnace becomes unstable, the present invention is simple and short in the scheduled rest wind immediately after. By repairing parts that should be repaired on time, troubles at the time of air blow-up can be avoided, and the parts to be repaired during operation can be identified during blast furnace operation, thereby effectively repairing the furnace wall surface. It aims at providing the repair method of the blast furnace shaft upper furnace wall which can be done.

発明者らの高炉の模型などを用いた実験結果によれば、
(a)シャフト上部では、炉内装入物粒子はまだ流動しやすい固体状態であり、かつその形状が所定のシャフト角度を有する末広がりであるため、炉中心に比べて炉壁近傍の炉内装入物粒子の降下速度は速くなり易く、シャフト上部の炉壁面の損耗状態は、シャフト下部や炉腹部よりも、炉壁近傍での炉内装入物粒子の降下速度により大きな影響を及ぼすこと、
According to the results of experiments using the blast furnace model of the inventors,
(A) At the upper part of the shaft, the furnace interior particles are in a solid state that is still easy to flow, and the shape of the particles is a divergent shape having a predetermined shaft angle. The particle descent rate tends to be fast, and the wear state of the furnace wall at the top of the shaft has a greater effect on the descent rate of the particles inside the furnace near the furnace wall than at the bottom of the shaft or the belly of the furnace,

(b)シャフト上部の内張りレンガやステーブ面等の炉壁面の損耗が進行すると、その近傍の装入物の空隙率が増加して高炉炉壁近傍のガス流が増大し、炉体熱負荷上昇、還元効率の低減、炉下部温度の低下等の高炉操業の不安定化が起きやすくなること、
を知見した。
(B) When the wear of the furnace wall such as the lining brick or stave surface on the shaft progresses, the porosity of the charge in the vicinity increases, the gas flow near the blast furnace wall increases, and the heat load of the furnace increases. , Instability of blast furnace operation such as reduction of reduction efficiency and lowering of furnace bottom temperature is likely to occur,
I found out.

本発明は、これらの知見を踏まえ、高炉の模型実験などにより予めシャフト上部の炉壁近傍の炉内装入物の相対降下速度と炉壁損耗部表面のシャフト角度との関係(炉壁面評価特性)を求めておき、これを基に、高炉操業時に測定される前記炉内装入物の相対降下速度から現時点さらには将来の炉壁の損耗状態および炉壁損耗に起因するガス流偏流による炉体熱負荷上昇などの影響を踏まえた高炉操業状態の評価を行う技術思想を利用してシャフト上部のマクロ的な炉壁損耗状態の前兆と炉壁損傷部位の特定を行い、予定休風時に炉壁損傷部位の補修を行うようにした。   In the present invention, based on these findings, the relationship between the relative descent speed of the furnace interior adjoining the furnace wall near the furnace wall and the shaft angle of the surface of the worn part of the furnace wall (furnace wall evaluation characteristics) Based on this, the furnace body heat due to the gas flow drift caused by the current state and future furnace wall wear state and furnace wall wear from the relative descending speed of the furnace interior input measured during blast furnace operation. Using the technical concept to evaluate the blast furnace operating state based on the impact of load increase, etc., the precursor of the macro-wall wear state at the top of the shaft and the location of the furnace wall damage are identified, and the furnace wall damage is caused during scheduled wind breaks. The part was repaired.

本発明の発明の要旨とするところは以下の通りである。   The gist of the present invention is as follows.

(1)高炉シャフト上部の炉壁近傍における炉内装入物の相対降下速度を円周方向の複数点で測定し、該いずれかの測定点での相対降下速度が所定値を超えると高炉の操業不安定化をもたらすシャフト上部のマクロ的な炉壁損耗状態の前兆にあると判断すると共に、該所定値を超えている測定点の周囲に炉壁損傷部位が存在すると特定し、予定休風時に炉内装入物のレベルを低下させて該特定した炉壁損傷部位に補修材を吹き込んで補修することを特徴とする高炉シャフト上部炉壁面の補修方法。   (1) Measure the relative descent speed of the furnace interior in the vicinity of the furnace wall above the blast furnace shaft at multiple points in the circumferential direction, and if the relative descent speed at any one of the measurement points exceeds a predetermined value, the blast furnace operation It is judged that it is a precursor to the macroscopic wall wear state of the upper part of the shaft that causes instability, and it is determined that there is a furnace wall damage site around the measurement point that exceeds the predetermined value, and at the time of planned rest A method of repairing an upper furnace wall surface of a blast furnace shaft, wherein a repair material is blown into the identified furnace wall damage site by reducing the level of furnace interior entry.

(2)前記相対降下速度の変化と該高炉シャフト上部炉壁のシャフト角との関係を示す炉壁面評価特性に基づいて、高炉の操業不安定化をもたらすシャフト上部のマクロ的な炉壁損耗状態の前兆にあると判断することを特徴とする(2)の高炉シャフト上部炉壁面の補修方法。   (2) Based on the evaluation characteristics of the furnace wall surface showing the relationship between the change in the relative descent speed and the shaft angle of the upper furnace wall of the blast furnace shaft, the macroscopic condition of the furnace wall wear at the upper part of the shaft that causes instability of the blast furnace (2) The method for repairing the upper furnace wall surface of the blast furnace shaft, characterized in that it is determined that the harbinger is in a precursor.

(3)前記相対降下速度は、炉壁近傍に複数配置したサウンジング装置により得られた降下速度を所要酸素量に基づいた炉頂での炉内装入物の計算降下速度で除した値であることを特徴とする(1)または(2)の高炉シャフト上部炉壁面の補修方法。   (3) The relative descent rate is a value obtained by dividing the descent rate obtained by a plurality of sounding devices arranged in the vicinity of the furnace wall by the calculated descent rate of the furnace interior contents at the top of the furnace based on the required oxygen amount. (1) or (2) the method of repairing the upper furnace wall surface of the blast furnace shaft.

(4)前記所定値の相対降下速度は1.15であることを特徴とする(1)から(3)のいずれかの高炉シャフト上部炉壁面の補修方法。   (4) The method of repairing the upper furnace wall surface of the blast furnace shaft according to any one of (1) to (3), wherein the relative descent speed of the predetermined value is 1.15.

本発明によれば、高炉操業時のシャフト上部の炉壁近傍における炉内装入物の相対降下速度を測定するだけで、炉壁面評価特性に基づいて現時点さらには将来の高炉操業状態およびシャフト上部における内張りレンガ,ステーブ等の炉壁面状態を知ることができる。このため、従来技術では不可能であった高炉シャフト上部炉壁補修による送風立ち上げ時のトラブル回避、および炉壁損傷部の特定が同時に行えることにより炉壁損傷部の補修効果向上を果たすことができ、高炉の長期的な安定操業が可能となる。   According to the present invention, it is only necessary to measure the relative descent speed of the furnace interior material in the vicinity of the furnace wall at the top of the shaft at the time of blast furnace operation, and based on the evaluation characteristics of the furnace wall surface, It is possible to know the furnace wall surface condition such as lining brick and stave. For this reason, it is possible to avoid the trouble at the time of air blow-up by repairing the upper furnace wall of the blast furnace shaft, which was impossible with the prior art, and to improve the repair effect of the damaged part of the furnace wall by simultaneously identifying the damaged part of the furnace wall. This will enable long-term stable operation of the blast furnace.

以下本発明を図面に示す実施例に基づいて詳細に説明する。   Hereinafter, the present invention will be described in detail based on embodiments shown in the drawings.

図1は、シャフト上部炉壁のシャフト角と高炉シャフト上部の炉壁近傍における相対降下速度との関係を示す炉壁面評価特性図で、縦軸に相対降下速度、横軸にシャフト上部炉壁のシャフト角度を示す。図2は高炉シャフト上部の概略図で、高炉シャフト上部の炉壁近傍における炉内装入物の相対降下速度の測定方法、および高炉シャフト上部炉壁のシャフト角を示す図である。   FIG. 1 is a furnace wall evaluation characteristic diagram showing the relationship between the shaft angle of the shaft upper furnace wall and the relative descent speed near the furnace wall near the blast furnace shaft. The vertical axis represents the relative descent speed and the horizontal axis represents the shaft upper furnace wall. Indicates the shaft angle. FIG. 2 is a schematic diagram of the upper part of the blast furnace shaft, and is a diagram showing a method for measuring the relative descent rate of the furnace interior in the vicinity of the furnace wall above the blast furnace shaft, and the shaft angle of the upper furnace wall of the blast furnace shaft.

高炉シャフト上部の炉壁近傍における炉内装入物の相対降下速度は、以下のようにして測定することができる。   The relative descent speed of the furnace interior material in the vicinity of the furnace wall above the blast furnace shaft can be measured as follows.

通常の高炉の炉頂部には、鉄鉱石や焼結鉱などの鉄含有原料やコークスなどからなる炉内装入物の装入分布または降下速度を測定するために、マイクロ波式プロフィルメーターやサウンジング式計測装置が設けられている。本発明における炉内装入物の相対降下速度は、これらの装置が用いられるが、以下の説明では、サウンジング式計測装置を用いて測定する場合を説明する。   At the top of a normal blast furnace, a microwave type profilometer or sounding type is used to measure the charging distribution or descending speed of furnace interior materials consisting of iron-containing raw materials such as iron ore and sintered ore and coke. A measuring device is provided. Although these apparatuses are used for the relative descent speed of the furnace interior material in the present invention, a case where measurement is performed using a sounding type measuring apparatus will be described below.

図2において、シャフト部1の炉頂には、円周方向に4つのサウンジング式計測装置5、6、7、8を等間隔に設置し、各サウンジング式計測装置5〜8からは下端に錘が付いたワイヤーロープ5a、6a、7a、8aが巻き上げ可能に吊り下げられている。サウンジング式計測装置5〜8から吊り下げられたワイヤーロープ5a、6a、7a、8aは、下端の錘が炉内装入物堆積層の最上表面4に対し、炉壁近傍の測定点m1、m2、m3、m4に着床する。着床はワイヤーロープ5a、6a、7a、8aの張力の変化により検知し、このときのワイヤーロープ5a、6a、7a、8aの繰り出し長さに基づいて炉内装入物堆積層の最上表面4のレベルが得られる。そして、検知後にワイヤーロープ5a、6a、7a、8aを巻き上げる。そして、この動作を繰り返すことにより、各測定点m1、m2、m3、m4における炉内装入物の降下速度が求められる。   In FIG. 2, four sounding type measuring devices 5, 6, 7, 8 are installed at equal intervals in the circumferential direction at the furnace top of the shaft portion 1, and a weight is provided at the lower end from each sounding type measuring device 5-8. Wire ropes 5a, 6a, 7a, and 8a marked with are suspended so as to be wound up. The wire ropes 5a, 6a, 7a and 8a suspended from the sounding type measuring devices 5 to 8 have measuring points m1 and m2 near the furnace wall where the weight at the lower end is relative to the uppermost surface 4 of the furnace interior deposit layer. Land on m3 and m4. The landing is detected by a change in the tension of the wire ropes 5a, 6a, 7a, 8a. Based on the feeding length of the wire ropes 5a, 6a, 7a, 8a at this time, A level is obtained. And the wire rope 5a, 6a, 7a, 8a is wound up after a detection. And by repeating this operation | movement, the descent | fall speed of the furnace interior entrance in each measurement point m1, m2, m3, m4 is calculated | required.

本実施例では、炉壁近傍における4箇所の測定点m1、m2、m3、m4における炉内装入物の相対降下速度(炉内装入物の降下速度を炉内装入物の平均降下速度で除した値)を求めるために、炉内装入物の平均降下速度は、送風量の酸素量と還元比で決まる銑鉄トン当たりの所要酸素量から計算される銑鉄生成速度に基づいて推定した炉頂での計算降下速度としている。すなわち、炉内装入物の相対降下速度は、各測定点m1、m2、m3、m4での降下速度を所要酸素量に基づいた炉頂での計算降下速度で除した値としている。   In this example, the relative descending speed of the furnace interior entrance at the four measurement points m1, m2, m3, m4 in the vicinity of the furnace wall (the descending speed of the furnace interior entrance is divided by the average descending speed of the furnace interior entrance). Value), the average descent rate of the furnace interior was estimated at the top of the furnace estimated based on the pig iron production rate calculated from the required oxygen quantity per ton of pig iron determined by the oxygen quantity of the blast volume and the reduction ratio. Calculated descent speed. That is, the relative descent speed of the furnace interior material is a value obtained by dividing the descent speed at each measurement point m1, m2, m3, m4 by the calculated descent speed at the top of the furnace based on the required oxygen amount.

図1は、高炉三次元半裁模型実験により得られた高炉シャフト上部の炉壁表面のシャフト角度と炉壁近傍での相対降下速度との関係の一例を示す。   FIG. 1 shows an example of the relationship between the shaft angle of the furnace wall surface above the blast furnace shaft and the relative descent speed in the vicinity of the furnace wall obtained by a blast furnace three-dimensional half-cut model experiment.

なお、炉壁近傍の測定点m1〜m4の位置を相対半径0.95としている。   The positions of the measurement points m1 to m4 in the vicinity of the furnace wall are set to a relative radius of 0.95.

高炉の実操業において、シャフト上部の内張りレンガ表面,ステーブ面等の炉壁面の侵食が進行すると、炉壁近傍の空隙率が増加して周辺部(炉内装入物堆積層の周辺部)のガス流が増大し、炉体熱負荷上昇等の操業の不安定化が起こることが知られている。   In actual operation of the blast furnace, when the erosion of the furnace wall such as the lining brick surface and stave surface above the shaft progresses, the porosity in the vicinity of the furnace wall increases and the gas in the periphery (periphery of the furnace interior deposit layer) It is known that the flow increases and the operation becomes unstable such as an increase in the furnace heat load.

シャフト上部では、炉内装入物粒子はまだ流動しやすい固体状態であり、かつその形状が所定のシャフト角度を有する末広がりであるため、炉中心に比べて炉壁近傍の炉内装入物粒子の降下速度は速くなり易く、シャフト上部の炉壁面の損耗状態は、シャフト下部や炉腹部よりも、炉壁近傍での炉内装入物粒子の降下速度により大きな影響を受ける。   At the top of the shaft, the furnace interior particles are still in a solid state that is easy to flow, and the shape of the particles is a divergent shape having a predetermined shaft angle. The speed tends to increase, and the state of wear of the furnace wall on the upper part of the shaft is more greatly influenced by the descending speed of the particles inside the furnace wall near the furnace wall than the lower part of the shaft and the belly part.

一般に高炉の火入れ立ち上げ時のシャフト上部における炉壁表面のシャフト角度(初期シャフト角度P0)は80〜83度に設定されており、この時の炉壁近傍の炉内装入物粒子の相対降下速度は1となり、炉中心の炉内装入物の降下速度と同速度である。上記模型実験による、図1の結果から、炉壁近傍の炉内装入物粒子の相対降下速度は、炉壁面の損耗時のシャフト角度(Pn)が初期シャフト角度(P0)よりも小さくなると相対降下速度が増加し、特にシャフト角度が73度より小さくなる条件で急激に増大する。   Generally, the shaft angle (initial shaft angle P0) of the furnace wall surface at the top of the shaft when the blast furnace is started up is set to 80 to 83 degrees, and the relative descent speed of the particles inside the furnace wall near the furnace wall at this time Is 1, which is the same speed as the descent speed of the furnace interior. From the result of FIG. 1 by the above model experiment, the relative descending speed of the particles inside the furnace wall near the furnace wall is relatively decreased when the shaft angle (Pn) at the time of wear of the furnace wall becomes smaller than the initial shaft angle (P0). The speed increases, and particularly increases rapidly under the condition that the shaft angle is smaller than 73 degrees.

これは、高炉シャフト上部の内張りレンガ表面、ステーブ面等の炉壁面の損耗の進行によるシャフト角度の低下に伴い、炉壁近傍への炉内装入物の降下速度が増大することを示唆している。つまり、高炉シャフト上部の炉壁表面のシャフト角度とその近傍での相対降下速度との関係を基に、高炉操業時のシャフト上部の炉壁近傍における炉内装入物の相対降下速度から、現時点での炉壁の損耗程度を検知するだけでなく、将来の炉壁の損耗状態を予測することができる。   This suggests that the descent speed of the furnace interior entry to the vicinity of the furnace wall increases as the shaft angle decreases due to the progress of wear of the furnace wall surface such as the lining brick surface and stave surface above the blast furnace shaft. . In other words, based on the relationship between the shaft angle of the furnace wall surface at the top of the blast furnace shaft and the relative descent speed in the vicinity, the relative descent speed of the furnace interior material near the furnace wall at the top of the shaft during blast furnace operation In addition to detecting the degree of wear of the furnace wall, it is possible to predict the future state of wear of the furnace wall.

また、高炉シャフト上部の内張りレンガ表面、ステーブ面等の炉壁面の損耗により、炉壁損耗部近傍の炉内装入物の空隙率が増加するため、この領域(炉内装入物堆積層の周辺部)のガス流が相対的に増大する。ガス流の炉壁近傍での偏流は、炉体熱負荷上昇、還元効率の低減、炉下部温度の低下等の高炉操業の不安定化を引き起こす原因となる。   In addition, since the porosity of the furnace interior inclusions near the furnace wall wear-out part increases due to the wear of the furnace wall surface such as the lining brick surface and the stave surface above the blast furnace shaft, this region (the peripheral part of the furnace interior deposit accumulation layer) ) Gas flow increases relatively. The drift of the gas flow in the vicinity of the furnace wall causes instability of the blast furnace operation such as an increase in the furnace heat load, a reduction in reduction efficiency, and a decrease in the temperature at the bottom of the furnace.

したがって、高炉シャフト上部の炉壁表面のシャフト角度とその近傍での相対降下速度との関係を基に、高炉操業時のシャフト上部の炉壁近傍における炉内装入物の相対降下速度から、将来起こり得る炉壁の損耗部でのガス流の偏流による、炉体熱負荷上昇、還元効率の低減、炉下部温度の低下等の高炉操業の状態を予測することが可能となる。   Therefore, based on the relationship between the shaft angle of the furnace wall surface at the top of the blast furnace shaft and the relative descent speed in the vicinity, it will occur in the future from the relative descent speed of the furnace interior material near the furnace wall at the top of the shaft during blast furnace operation. It is possible to predict the state of blast furnace operation such as an increase in the furnace thermal load, a reduction in reduction efficiency, and a decrease in the temperature at the bottom of the furnace due to the drift of the gas flow at the worn part of the obtained furnace wall.

図1に示されるように、高炉操業時のシャフト部の炉壁面の近傍の炉内装入物の相対降下速度が1.15を超える場合には、炉壁の損耗によりシャフト角度が73度より小さくなり、炉壁損耗部近傍でのガス流の偏流が顕著になり、将来的に炉体熱負荷上昇、還元効率の低減、炉下部温度の低下等の高炉操業の不安定化を起こすことが予想される。   As shown in FIG. 1, when the relative descending speed of the furnace interior near the furnace wall surface of the shaft portion during blast furnace operation exceeds 1.15, the shaft angle is smaller than 73 degrees due to the wear of the furnace wall. As a result, the drift of the gas flow near the worn part of the furnace wall becomes prominent, and it is expected that the blast furnace operation will become unstable in the future, such as an increase in the furnace thermal load, reduction in reduction efficiency, and a decrease in the furnace bottom temperature. Is done.

したがって、炉壁近傍における炉内装入物の相対降下速度の変化から、シャフト上部の内張りレンガあるいはステーブの侵食の程度を予測することができる。   Therefore, the degree of erosion of the lining brick or stave on the shaft upper part can be predicted from the change in the relative descending speed of the furnace interior material near the furnace wall.

シャフト角度が73程度では炉壁面の損耗が大きいとはいえないが、このシャフト角度に対応する相対降下速度1.15を超える場合には、シャフト上部のレンガ表面あるいはステーブ面等の炉壁面の侵食状態が炉壁近傍の周辺流が上昇する前兆を示すものと判断することができる。   When the shaft angle is about 73, it cannot be said that the wear of the furnace wall surface is large. However, when the relative descent speed exceeds 1.15 corresponding to this shaft angle, the erosion of the furnace wall surface such as the brick surface on the shaft or the stave surface. It can be determined that the state indicates a sign that the peripheral flow in the vicinity of the furnace wall rises.

すなわち、炉壁近傍における相対降下速度が1.15超の場合に、操業不安定化をもたらすシャフト上部のマクロ的な炉壁損耗状態の前兆にあると判断する。   That is, when the relative descent speed in the vicinity of the furnace wall is more than 1.15, it is determined that it is a precursor of a macro-type furnace wall wear state at the upper part of the shaft that causes unstable operation.

本実施例において、サウンジング式計測装置5、6、7、8によりシャフト上部において炉内装入物堆積層の最上面4のレベルを周方向の4点でそれぞれ計測しており、この4箇所の測定点の中で1箇所でも相対降下速度1.15を超える場合には、その測定点の周辺に炉壁損傷部位が存在するものと判断することができる。勿論、複数の測定点における相対降下速度が1.15を超えれば、これらの測定点の周囲に炉壁損傷部位が存在するものと判断することができる。したがって、本実施例では測定点を4点としているがこれよりも多くすれば炉壁損傷部位の位置判定精度を高めることができる。また、炉壁損傷部位がシャフト1の周方向の半分のいずれかにあるかが判断できれば良いとする場合には直径線上の両端2点で測定しても良い。   In this embodiment, the sounding measuring devices 5, 6, 7, and 8 measure the level of the uppermost surface 4 of the furnace interior deposit layer at four points in the circumferential direction at the upper part of the shaft. If even one of the points exceeds the relative descent speed of 1.15, it can be determined that a furnace wall damage site exists around the measurement point. Of course, if the relative descent speed at a plurality of measurement points exceeds 1.15, it can be determined that a furnace wall damage site exists around these measurement points. Therefore, in this embodiment, four measurement points are used, but if the number of measurement points is larger than this, the position determination accuracy of the furnace wall damaged part can be improved. In addition, when it is sufficient to determine whether the furnace wall damage site is located in any one of the halves in the circumferential direction of the shaft 1, the measurement may be performed at two points on both ends of the diameter line.

シャフト上部の炉壁面がマクロ的な炉壁損耗状態の前兆にあると判断でき、シャフト1の周方向において炉壁損傷部位の範囲が特定できると、直後の予定休風時にシャフト中部レベル(例えばストックラインレベルから10m前後)まで装入物レベルを低下させて休風を行う。そして、特定している炉壁損傷部位に不定形耐火物からなる補修材を吹き込んで補修を行う。   If the furnace wall at the top of the shaft can be determined to be a precursor to a macro-type furnace wall wear state and the range of the damaged part of the furnace wall in the circumferential direction of the shaft 1 can be identified, Reducing the charge level from the line level to around 10m) and resting. Then, repair is performed by blowing a repair material made of an irregular refractory into the specified furnace wall damage site.

この場合、炉壁損傷部位は小さいので小規模な補修で済、予定された休風時間内で効率的に短時間に補修が完了するため、その間従来法に比べて小幅な熱補償で済ますことができる。そのため、送風立ち上げ後の生産性の低下は小さく、操業の立ち上げも順調となる。そして、高炉の長期的な安定操業に寄与でき、また高生産安定操業を維持することが可能となり、さらには、還元材比も低下することができる。   In this case, since the damaged part of the furnace wall is small, small-scale repairs are required, and repairs are completed in a short time efficiently within the scheduled wind-off time. Can do. For this reason, the decrease in productivity after the start-up of the air blow is small, and the start-up of the operation is also smooth. And it can contribute to the long-term stable operation of a blast furnace, can maintain a high production stable operation, and can also reduce a reducing material ratio.

本発明の実施例を示すシャフト角度と炉壁近傍における相対降下速度との関係を示す炉壁面評価特性図。The furnace wall evaluation characteristic view which shows the relationship between the shaft angle which shows the Example of this invention, and the relative descent speed in the furnace wall vicinity. 高炉シャフト上部の概略図。Schematic of the upper part of a blast furnace shaft.

符号の説明Explanation of symbols

1 シャフト部
2 立ち上げ時の内壁面
3 損耗した内壁面
4 炉内装入物堆積層の最上表面
5〜8 サウンジング式計測装置
5a、6a、7a、8a 錘付きワイヤーロープ
m1、m2、m3、m4 測定点





DESCRIPTION OF SYMBOLS 1 Shaft part 2 Inner wall surface 3 at the time of start-up Worn inner wall surface 4 Uppermost surface 5-8 of a furnace interior deposit layer 5a, 6a, 7a, 8a Wire rope m1, m2, m3, m4 with a weight Measurement point





Claims (4)

高炉シャフト上部の炉壁近傍における炉内装入物の相対降下速度を円周方向の複数点で測定し、該いずれかの測定点での相対降下速度が所定値を超えると高炉の操業不安定化をもたらすシャフト上部のマクロ的な炉壁損耗状態の前兆にあると判断すると共に、該所定値を超えている測定点の周囲に炉壁損傷部位が存在すると特定し、予定休風時に炉内装入物のレベルを低下させて該特定した炉壁損傷部位に補修材を吹き込んで補修することを特徴とする高炉シャフト上部炉壁面の補修方法。   The relative descent speed of the furnace interior material near the furnace wall at the top of the blast furnace shaft is measured at multiple points in the circumferential direction, and the operation of the blast furnace becomes unstable when the relative descent speed at any one of the measurement points exceeds a predetermined value. It is determined that there is a precursor to the macroscopic wall wear state of the upper part of the shaft that causes damage, and it is determined that a furnace wall damage site exists around the measurement point exceeding the predetermined value. A method of repairing the upper furnace wall surface of a blast furnace shaft, wherein a repair material is blown into the identified furnace wall damage site by reducing the level of the object. 前記相対降下速度の変化と該高炉シャフト上部炉壁のシャフト角との関係を示す炉壁面評価特性に基づいて、高炉の操業不安定化をもたらすシャフト上部のマクロ的な炉壁損耗状態の前兆にあると判断することを特徴とする請求項1に記載の高炉シャフト上部炉壁面の補修方法。   Based on the furnace wall evaluation characteristics indicating the relationship between the change in the relative descent speed and the shaft angle of the upper furnace wall of the blast furnace shaft, it is a precursor to the macro-type furnace wall wear state at the upper part of the shaft that causes unstable operation of the blast furnace. It is judged that there exists, The repair method of the blast furnace shaft upper furnace wall surface of Claim 1 characterized by the above-mentioned. 前記相対降下速度は、炉壁近傍に複数配置したサウンジング装置により得られた降下速度を所要酸素量に基づいた炉頂での炉内装入物の計算降下速度で除した値であることを特徴とする請求項1または2に記載の高炉シャフト上部炉壁面の補修方法。   The relative descent speed is a value obtained by dividing the descent speed obtained by a plurality of sounding devices arranged near the furnace wall by the calculated descent speed of the furnace interior material at the top of the furnace based on the required oxygen amount. The repair method of the blast furnace shaft upper furnace wall surface of Claim 1 or 2 to do. 前記所定値の相対降下速度は1.15であることを特徴とする請求項1から3のいずれかに記載の高炉シャフト上部炉壁面の補修方法。


The method for repairing an upper furnace wall surface of a blast furnace shaft according to any one of claims 1 to 3, wherein a relative descending speed of the predetermined value is 1.15.


JP2007067085A 2007-03-15 2007-03-15 Method for repairing furnace wall surface at upper part of blast furnace shaft Pending JP2008223121A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007067085A JP2008223121A (en) 2007-03-15 2007-03-15 Method for repairing furnace wall surface at upper part of blast furnace shaft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007067085A JP2008223121A (en) 2007-03-15 2007-03-15 Method for repairing furnace wall surface at upper part of blast furnace shaft

Publications (1)

Publication Number Publication Date
JP2008223121A true JP2008223121A (en) 2008-09-25

Family

ID=39842075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007067085A Pending JP2008223121A (en) 2007-03-15 2007-03-15 Method for repairing furnace wall surface at upper part of blast furnace shaft

Country Status (1)

Country Link
JP (1) JP2008223121A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102559970A (en) * 2012-02-13 2012-07-11 首钢水城钢铁(集团)有限责任公司 Method for preventing gunning rebound material from agglomeration and rapidly restoring furnace conditions
JP2017020078A (en) * 2015-07-10 2017-01-26 新日鐵住金株式会社 Blast furnace

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6129674A (en) * 1984-07-19 1986-02-10 株式会社神戸製鋼所 Method of detecting extraneous matter on inner wall of vertical type furnace
JPS63317608A (en) * 1987-02-28 1988-12-26 Kobe Steel Ltd Method for repairing furnace wall in blast furnace
JPH06228617A (en) * 1993-01-29 1994-08-16 Nippon Steel Corp Two step shaft blast furnace

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6129674A (en) * 1984-07-19 1986-02-10 株式会社神戸製鋼所 Method of detecting extraneous matter on inner wall of vertical type furnace
JPS63317608A (en) * 1987-02-28 1988-12-26 Kobe Steel Ltd Method for repairing furnace wall in blast furnace
JPH06228617A (en) * 1993-01-29 1994-08-16 Nippon Steel Corp Two step shaft blast furnace

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102559970A (en) * 2012-02-13 2012-07-11 首钢水城钢铁(集团)有限责任公司 Method for preventing gunning rebound material from agglomeration and rapidly restoring furnace conditions
JP2017020078A (en) * 2015-07-10 2017-01-26 新日鐵住金株式会社 Blast furnace

Similar Documents

Publication Publication Date Title
JP6756074B2 (en) How to repair refractories installed on the bottom blown tuyere of a converter type reaction vessel
JP2008223121A (en) Method for repairing furnace wall surface at upper part of blast furnace shaft
JP4731451B2 (en) Judgment method of refractory repair necessity of hot metal pan
JP2016182612A (en) Continuous casting method blowing inert gas from upper porous refractory and lower porous refractory
JP2008223120A (en) Method for evaluating furnace wall surface state at upper part of blast furnace shaft
CN110453023B (en) Blast furnace hearth elephant foot erosion prevention and analysis method
JP5277636B2 (en) How to operate a vertical furnace
JP2021131222A (en) Method for detecting material charge pipe clogging, method for dissolving material charge pipe clogging, and melting facility
JP2009079872A (en) Refractory lining layer structure of torpedo car furnace body and method for determining thickness of refractory lining layer of torpedo car furnace body
JP4157951B2 (en) Charge distribution control method for blast furnace throat
JP2669279B2 (en) Blast furnace operation method
KR101258767B1 (en) Monitoring apparatus for refractories abrasion of electric furnace
TWI468521B (en) Method for determinig state of a blast furnace bed
TWI612303B (en) Status monitoring system for fire-resistant material in furnace and monitoring method thereof
JP6547474B2 (en) Blast furnace and measurement method for measuring the level of blast furnace charge
JP4336262B2 (en) In-furnace pressure fluctuation prediction method and apparatus
TWI648406B (en) Method and computer program product for detecting melting state of solid salamander in blast furnaces
Chang et al. Real-Time Hearth Liquid Level Monitoring Systems to Optimize Tapping Strategies in Blast Furnaces
WO2024161700A1 (en) Method for measuring level of molten material in furnace of blast furnace, device for measuring level of molten material in furnace of blast furnace, and method for operating blast furnace
JP6904202B2 (en) Kilnbeco occurrence detection system and kilnbeco occurrence detection method
JP2009235437A (en) Method for controlling blast furnace operation at blowing-stop time in large reduction of charged material level
JP2002249807A (en) Furnace body of blast furnace, its repairing method and operating method
JP2024029910A (en) Blast furnace gas flow determination method, blast furnace facility, and blast furnace operation method
JPH0967607A (en) Method for monitoring furnace bottom of blast furnace
JP4871023B2 (en) Detection method of falling metal in injection pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20090216

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Written amendment

Effective date: 20110915

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111206