JP4157951B2 - Charge distribution control method for blast furnace throat - Google Patents

Charge distribution control method for blast furnace throat Download PDF

Info

Publication number
JP4157951B2
JP4157951B2 JP05992399A JP5992399A JP4157951B2 JP 4157951 B2 JP4157951 B2 JP 4157951B2 JP 05992399 A JP05992399 A JP 05992399A JP 5992399 A JP5992399 A JP 5992399A JP 4157951 B2 JP4157951 B2 JP 4157951B2
Authority
JP
Japan
Prior art keywords
furnace
raw material
layer thickness
thickness ratio
charged
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05992399A
Other languages
Japanese (ja)
Other versions
JP2000256712A (en
Inventor
洋 大楠
和彦 松山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nippon Steel Nisshin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Nisshin Co Ltd filed Critical Nippon Steel Nisshin Co Ltd
Priority to JP05992399A priority Critical patent/JP4157951B2/en
Publication of JP2000256712A publication Critical patent/JP2000256712A/en
Application granted granted Critical
Publication of JP4157951B2 publication Critical patent/JP4157951B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Iron (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、炉頂装入物の装入パターンを確実且つ的確に調整して高炉を安定操業する装入物分布制御方法に関する。
【0002】
【従来の技術】
高炉の安定操業のためには、炉下部から一定量の熱風を送り込み、炉上部から鉱石,コークス等の装入原料を一定速度で降下させ、炉内の熱バランスを図ることが必要である。
鉱石,コークス等の装入原料は、炉頂部からベル式又はベルレス式の装入装置で炉内に装入される。ベルレス式装入装置では、旋回シュートを使用して鉱石原料及びコークス原料を交互に炉上部に装入する。鉱石原料及びコークス原料は、炉内上部で交互に積み重ねられ、炉内を降下する間に昇温して,還元され溶解される。定常状態の炉内は、装入物の昇温,還元,溶解に適した熱バランスに保たれている。ところが、スリップ,吹抜け等が炉内に発生すると、昇温,還元,溶解の過程を経ずに装入原料が落下して炉内の熱バランスが崩れ、操業上で大きなトラブルを発生させる。
【0003】
炉内における装入原料及び熱風の流れを図1(a)で模式的に示す。炉口部1に交互に装入され層状に積み付けられた鉱石,コークス等の装入原料は、下降流M1 となってシャフト部2,炉腹朝顔部3を下降する。下降流M1 は、シャフト部2を全体的に炉壁方向に広がりながら炉半径方向に関してほぼ同じ速度で炉内を下降する。炉腹朝顔部3より下方では、装入原料は、ホッパー内原料の流れと同様な縮流流れとなって炉壁内面と炉芯4との間を下降する。熱風は、炉腹朝顔部3の下方位置で炉壁の円周方向に設けられている羽口5から炉内に吹き込まれ、レースウェイ6を形成する。
何らかの原因で高炉炉内の特定部位で装入原料の下降が一時的に停滞すると、停滞部分M2 に昇温及び還元が遮断された不連続域が発生する。停滞部分M2 より下方にある装入原料はそのまま炉内を下降するが新たな装入原料の供給が断たれるため、空洞Vが停滞部分M2 の下方に発生する。空洞Vに上方から装入物の重量が加わるため、しばらくすると停滞部分M2 が自重によって落下し、図1(b)に示すように空洞Vが消滅する。
【0004】
停滞部分M2 の落下,すなわちスリップ現象は、炉内上部にある装入物が未昇温,未還元のままで炉内下部に急激に降下することを意味し、炉内の熱バランスを崩して炉況を不調にする。炉況が悪化すると、固液2相の流体が炉内上下方向に移動する連続向流反応プロセスである高炉の安定操業が望めず、反応効率が低下する。その結果、生産される溶銑の品質や溶銑温度のバラツキが大きくなり、最悪の場合には炉熱低下に起因して高炉の生産性が大幅に低下する。
炉況を不安定にするスリップを防止するため、特開平7−18311号公報では送風条件及び1チャージ当りの鉱石装入量を制御している。この方法では、炉下部から持ち込まれる送風顕熱量に対する1チャージ当り炉頂装入される炉腹朝顔部換算の鉱石層厚との比率を融着帯スリット内の鉱石層を溶解させる能力を表わす管理指標として用いている。そして、溶融還元の遅れ,融着帯根部の肥大化・垂下り,荷下がり悪化等が生じないように、管理指標を一定範囲に収めている。
【0005】
特開平2−34709号公報では、炉頂に設けた暗視カメラで炉内を撮影し、暗視カメラからの映像信号に基づいて炉半径方向の中心部,中間部及び周辺部の各領域ごとにコークス平均粒径を測定し、各領域ごとの粒径が所定範囲内の値になるように炉頂装入物の分布状態を制御している。
特開平3−13514号公報では、炉外待機位置から炉中心部に向けて複数のゾンデを使用して高炉シャフト部堆積原料内の半径方向及び高さ方向に沿った複数箇所でガス分析している。分析値から炉軸対称二次元断面上に表わされる堆積原料内部での等ηCO線図を作図し、熱保存帯上端(ηCO=100%)の平均高さレベル及び周辺部高さレベルを求め、各部の高さが適正値になるように燃料比,装入物分布,送風条件等を制御している。
【0006】
【発明が解決しようとする課題】
しかし、特開平7−18311号公報の方法では、通常の高炉操業中にスリップが多発する際の発生原因として高いウエートを占める炉頂装入物の分布制御の不適切なアクションのように、固気2相間での局部的な熱交換の進行に起因する熱交換不良,荷下がり異常等に対しては効果的なアクションが取れない。
特開平2−34709号公報の方法では、著しく悪化した炉況のため炉口部堆積原料表面から多量のダストを随伴した高炉ガスが発生している場合,または炉頂から排出される高炉ガスを乾式除塵設備を介して炉頂発電設備に回収するプロセスを備えた高炉のように除塵設備の濾布耐熱温度以下に高炉ガスを炉頂撒水で冷却している場合等では、暗視カメラの視野が高炉ガスに随伴しているダスト,水蒸気の白煙等で遮られるため、暗視カメラが使用できなくなる。
【0007】
特開平3−13514号公報の方法では、高炉シャフト部に複数のゾンデを設ける必要がある。しかも、炉壁側から炉内堆積原料内部に向けてゾンデを抜き差しするシャフト上部ゾンデ及び中部水平ゾンデは、大出力の駆動装置を備えた高価な計測機器である。そのため、大量の溶銑を生産できる大型高炉と異なり、未設置の小型高炉には適していない。更には、ゾンデの抜き差しに起因した炉内原料の揺さ振り等で耐火物の損傷を促進させることにもなる。
【0008】
【課題を解決するための手段】
本発明は、このような問題を解消すべく案出されたものであり、原料装入パターンの管理に併せ装入原料の炉内堆積形状を安定に作りこむことにより、スリップ発生のない安定な高炉操業を可能にすることを目的とする。
本発明の装入物分布制御方法は、その目的を達成するため、炉頂装入装置の旋回シュートから鉱石原料及びコークス原料を交互に炉口部に装入し、装入原料の堆積物表面が炉壁近傍で水平になったテラス部と、テラス部から炉中心に向かって下方に傾斜した傾斜部とを有する装入原料の堆積形状分布を造り込む際、炉口部の内部水平断面の面積を同心円状に中心領域,中間領域及び周辺領域に3等分し、周辺領域における鉱石層/コークス層の実測層厚比を求め、装入原料全体の鉱石/コークスの平均層厚比に対する実測層厚比の比率(実測層厚比/平均層厚比)を相対層厚比として算出し、周辺領域における相対層厚比が0.50〜0.75の管理範囲に収まるように炉口部に装入される鉱石原料及びコークス原料の炉口半径方向に沿った分布量を調整することを特徴とする。
【0009】
【実施の形態】
ベルレス式炉頂装入装置は、図2(a)に示すように、炉口部1に配置した原料供給管7の下端に旋回シュート8を取り付けている。鉱石原料及びコークス原料は、交互にホッパ(図示せず)から原料供給管7を経て旋回シュート8に送り込まれ、炉口半径方向に装入分配される。旋回シュート8は、旋回しながら徐々に炉軸側に傾斜する。原料装入は、通常、機械式サウンジング装置に吊り下げられた重錘9が示す炉内装入原料層表面Sの高さが指定高さに達するまで降下した場合に行われる。
分配された鉱石原料及びコークス原料は、炉壁近傍で水平になったテラス部と、テラス部から炉中心に向かって下方に傾斜した傾斜部とを有する堆積形状分布に造り込まれ、交互に積み付けられた多層構造になる。炉口部1に堆積した装入原料層表面Sは、炉頂部に設けた測深装置10で測定される。測深装置10は、炉頂部に設けられ、炉内半径方向に沿った複数箇所で装入原料層表面Sの高さを検出できる。測深装置10で得られた測定値から装入原料層の堆積形状を求め、原料装入アクションの結果を監視評価する。
【0010】
測深装置10としては、たとえば炉口部1の半径方向に移動可能なように駆動機構を備えた接触式や、マイクロ波,レーザ等を利用した非接触式の測深装置が使用される。移動可能な測深装置10は、装入原料層表面S上のガス温度が比較的低く挿入推進の負荷が加わらない自由空間でセンサ内臓のプローブを抜き差しして計測できるため、小型化でき、使いやすく、コスト,保守等を考慮した総合評価の点でも優れていることから、現行高炉では設置率の高いセンサである。
サウンジング装置は、原料装入の機会を判断するセンサ機能の外に、スリップ検知用センサとしても使用される。炉上部の装入原料層表面Sの急降下として現れるスリップは、装入原料層の上に配置された重錘9の深度差として検知され、深度差の大小によってスリップの程度が評価される。
【0011】
サウンジング装置は、炉口部1の円周方向に関して等間隔で4個配置される。4個のサウンジング装置のうち、その時々で荷下がり状況が比較的異常な挙動を示した2個のサウンジング装置の動きを基にして、荷下がり安定性の評価結果を管理値として数値化する。具体的には、2個のサウンジング装置の何れかが瞬間的に0.5m以上の急降下を示した場合の荷下がり現象をスリップとして扱う。そして、図2(b)に示すように、深度差Lが、片方のサウンジング装置のみで0.5m≦L<1.0mのスリップを検知した場合をスリップ指数=0.2回,両方のサウンジング装置が0.5m≦Lのスリップを検知した場合をスリップ指数=0.5回,両方のサウンジング装置が1.0m≦Lのスリップを検知した場合をスリップ指数=1.0回と評価する。スリップ現象をこのように評価し、スリップのない安定した荷下がりを呈する装入物分布を解明するため、原料装入条件と装入堆積原料層の表面形状との関係を調査した。
【0012】
炉口部1の水平方向断面の面積を同心円状に3等分して、中心領域,中間領域及び周辺領域を設定する。測深装置10の測定値から、周辺領域における鉱石/コークスの実測層厚比を求め、装入原料全体の鉱石/コークスの平均層厚比に対する実測層厚比の比率を算出し、周辺領域の相対層厚比とする。また、鉱石の平均落下位置に対するコークスの平均落下位置の比率を算出し、ベルレス強度比とする。ベルレス式炉頂装入装置を備えた高炉では、ベルレスモードの変更,コークスベース量の変更,チャージライン(重錘9で判断される原料装入開始条件としての指定高さ)等により装入原料の層厚分布が制御される。最も定量的で自由度の大きな制御手段は、旋回シュート8の傾動角度及び旋回数の組合せにより設定されるベルレスモードである。そこで、旋回シュートの傾動角度及び旋回数の組合せによって装入原料の層厚分布を制御する方法を先ず説明する。
【0013】
OC2バッチ1チャージ装入の形態で1バッチ当りのシュート旋回数を12旋回とし鉱石原料及びコークス原料を交互に装入する場合、たとえばO7443 101 ,C7614 101 といった数値の組合せでベルレスモードが表現される。O7443 101 は、鉱石原料の1バッチ装入を7ノッチ4旋回,8ノッチ4旋回,9ノッチ3旋回,10ノッチ1旋回の合計12旋回で実施することを意味する。C7614 101 は、同様にしてコークス原料を装入するときのノッチ及び旋回数を意味する。なお、ノッチとは旋回シュートで予め設定した傾動角度を番号付けして表わした数値であり、数値が大きくなるほど装入原料が炉内中心側に、数値が小さくなるほど炉壁側に装入されることを意味する。
【0014】
前掲の表現方式で複数の装入パターンを順位付けして評価するとき、一見して見分けるには不便である。そこで、ベルレスモード条件を指数とし、次式(1),(2)によって平均落下位置指数及びベルレス強度比を与える。式(1),(2)の指数は、ベルレス式炉頂装入装置や炉口寸法が異なる2基以上の高炉データを比較する上でも有効である。
鉱石原料又はコークス原料の平均落下位置指数
=Σ[(t/R)×n]/N ・・・・(1)
ベルレス強度比=(コークス原料の平均落下位置指数)/(鉱石原料の
平均落下位置指数) ・・・・(2)
ただし、t:チャージライン基準の高さで各ノッチの原料落下軌跡が交差
した位置を炉壁から水平に測った距離
n:各ノッチでの設定旋回回数
N:合計の設定旋回回数
R:炉口部の半径
【0015】
具体的に実施した装入アクションを解析する場合、式(2)のベルレス強度比を解析用の指標に用いることが有利である。
炉内半径方向に関する装入原料の層厚分布は、炉頂部に設置した測深装置10で求められる。すなわち、鉱石原料及びコークス原料の装入前後において堆積層表面までの深さを炉口半径方向に沿って所定間隔ごとに細かく測定し、原料装入により形成される鉱石層とコークス層との層厚比に測定結果を加工する。これにより、層厚分布に関し定量化したデータが得られる。
本発明は、図3(a)に示すように、炉口部において炉壁近傍で堆積物表面が水平になったテラス部Tとテラス部Tから炉中心に向かって堆積物表面が下方に傾斜した傾斜部Cをもつ表面形態に造り込むことを基本としている。テラス型の装入原料分布では、鉱石層Sとコークス層Sの炉口半径方向に関する層厚比分布は、図3(b)に示すように周辺領域で小さく、中心領域で大きくなる。
【0016】
炉口部の半径をRとし、炉中心からの距離をXとするとき、X/R=0〜0.577の範囲を中心領域,X/R=0.577〜0.816の範囲を中間領域,X/R=0.816〜1.0の範囲を周辺領域と設定する。そして、順次繰り返される鉱石原料及びコークス原料の装入を1チャージとし、1チャージ当りに装入される原料全体の鉱石原料及びコークス原料の平均層厚比に対する実測層厚比の比率を求め、この比率を相対層厚比として中心領域,中間領域及び周辺領域の各領域における管理指標に使用する。たとえば、図3の例では、中心領域の相対層厚比が1.0以上,中間領域及び周辺領域の相対層厚比が1.0以下になっており、周辺領域の相対層厚比が最も小さい層厚比分布と評価される。
【0017】
スリップ指数は、本発明者等による調査・研究の結果を示す図4にみられるように、ベルレス強度比又は中間領域の相対層厚比と密接な相関関係をもっている。すなわち、コークス原料の平均落下位置と鉱石原料の平均落下位置の相互関係を示すベルレス強度比と周辺領域の相対層厚比との間に、正の相関関係が成立している。そこで、ベルレス強度比がニュートラルに近い状態にある0.90〜1.28の範囲に、或いは周辺領域の相対層厚比が同様のレベルに相当する0.50〜0.75の範囲に収まるようにベルレスモードを調整するとき、スリップはほとんど発生しないことが判る。
【0018】
逆に、ベルレス強度比又は周辺領域の相対層厚比が所定範囲を外れると、スリップ指数が大きくなる傾向が示される。この場合にスリップが多発する理由は、次のように考えられる。スリップは、レースウェイ6で燃焼したコークス量に対応する装入原料の下降が一時的に停滞することに発端がある。停滞現象は、コークス原料の最終到達点であるレースウェイ6の上方に当たる炉周辺部で、(1)鉱石層S1 及び/又はコークス層S2 が厚くなり過ぎて炉内ガスの上昇流に対する抵抗が高くなり、高温還元ガスによる昇温及び還元が遅延して鉱石が溶解不良に陥ること、(2)周辺領域の鉱石層S1 及び/又はコークス層S2 が薄くて装入原料の自重が軽くなり過ぎ、装入原料が降下する力が炉内ガスの上昇力に釣り合うことの何れか一方に原因があり、装入原料の下降流M1 が不安定化し、レースウェイ6に炉上部から供給されるコークス原料が絶たれた現象と考えられる。すなわち、不適切な装入パターンの選定により、炉の周辺領域における固気2相間の熱交換バランス又は力関係バランスが崩れたことに原因があるものと推定される。
【0019】
そこで、ベルレス強度比又は周辺領域の相対層厚比を管理指標として装入パターンを決定するとき、鉱石層S1 及びコークス層S2 の層厚が炉内各部で適正に維持され、装入原料の下降流M1 が安定化する。好ましくは、ベルレス強度比及び周辺領域の相対層厚比の双方を管理指標として使用するとき、管理精度が一層向上し、安定した高炉操業が可能になる。すなわち、ベルレス強度比による管理では、炉内に堆積した装入原料のテラス部Tの造り込みが不充分でテラス部Tが傾いた表面形態になった場合、その表面形態に対応して周辺領域における相対層厚比が変わるため、平坦で且つ水平なテラス型分布を前提とするデータ収集で得られたスリップ指数との関係からずれる虞れがある。また、周辺領域における相対層厚比で管理するとき、通常1個の測深装置10しか炉頂に設けられていないことから、炉口部1の円周方向に関するアンバランスが装入原料表面に発生した場合、測深装置10による測定値が高炉全体の状況からずれる虞れがある。これらのずれは、ベルレス強度比及び周辺領域の相対層厚比の双方を管理指標として使用することにより抑制できる。
【0020】
実際に炉口半径R=3.5m,炉内容積1650m3 の高炉における原料装入に本発明を適用した例で、装入物分布が適正に管理されることを説明する。
炉頂装入条件に管理指標を設けることなく高炉操業を2ヶ月間継続したところ、表1に示すように高炉羽口からの微粉炭吹込み量が150kg/トン前後に達していたが、非常に不安定な炉況であった。すなわち、2ヶ月の間、荷下がりが不安定でスリップ,吹き抜け,棚吊り等が頻繁に発生し、その影響として炉内の熱バランスが崩れた結果、炉下部から排出される溶銑の温度や成分が大きくばらついた。炉内のガス反応効率、特に水素ガス利用効率も低下する傾向を示した。そこで、ベルレス強度比及び周辺領域における相対層厚比を管理指標としてベルレスモードの変更により装入物分布を制御したところ、荷下がり状況が安定化し、炉下部の熱レベルが安定になり、炉内ガスの反応効率も改善された。その結果、燃料比が500〜510kg/トンから495〜500kh/トンに低下し、微粉炭吹込み量が150kg/トンから160〜165kg/トンに増加し、出銑比も2.05〜2.15トン/m3 /日から2.27トン/m3 /日に増加した。
【0021】

Figure 0004157951
【0022】
【発明の効果】
以上に説明したように、本発明においては、相対層厚比が管理範囲に維持されるように装入パターン等で炉口半径方向の装入物分布を制御することにより、炉内に堆積した装入原料の表面形態を適正に維持している。その結果、炉況を不安定化する棚吊り,吹抜け等のトラブルが未然に防止され、安定した炉況が維持され、高出銑比の高炉操業が可能になる。
【図面の簡単な説明】
【図1】 高炉の内部に発生するスリップ現象の説明図
【図2】 ベルレス式炉頂装入装置を備えた高炉上部の概略図(a)及びスリップ発生時に炉頂装入原料のレベル変化を示す図(b)
【図3】 高炉炉頂での装入物堆積形状に関して本発明の定義を示した図
【図4】 ベルレス強度比がスリップ発生回数及び炉周辺領域における鉱石層/コークス層の相対層厚比に及ぼす影響を表わしたグラフ
【符号の説明】
1:炉口部 8:旋回シュート 10:測深装置
1 :鉱石層 S2 :コークス層 S:装入原料層の表面
1 :装入原料の下降流 M2 :装入原料の停滞部分 V:空洞[0001]
[Industrial application fields]
The present invention relates to a charge distribution control method for stably operating a blast furnace by reliably and accurately adjusting a charge pattern of a furnace top charge.
[0002]
[Prior art]
For stable operation of the blast furnace, it is necessary to feed a certain amount of hot air from the lower part of the furnace and to lower the charging materials such as ore and coke from the upper part of the furnace at a constant speed to achieve a heat balance in the furnace.
Charge materials such as ore and coke are charged into the furnace from the top of the furnace with a bell-type or bell-less type charging device. In the bell-less charging device, the ore raw material and the coke raw material are alternately charged into the upper part of the furnace using a turning chute. The ore raw material and the coke raw material are alternately stacked in the upper part of the furnace, and are heated and reduced and melted while descending the furnace. The steady-state furnace is kept in a heat balance suitable for heating, reducing and melting the charge. However, when slip, blow-through, etc. occur in the furnace, the charged raw material falls without going through the process of temperature rise, reduction, and melting, and the heat balance in the furnace is lost, causing a major trouble in operation.
[0003]
The flow of the charged raw material and hot air in the furnace is schematically shown in FIG. The charging materials such as ore and coke alternately charged in the furnace port 1 and stacked in layers form a descending flow M 1 and descend the shaft portion 2 and the furnace belly morning glory portion 3. Downflow M 1 is lowered substantially furnace at the same rate with respect to the furnace radial direction while spreading the shaft portion 2 to the overall furnace wall direction. Below the furnace belly morning glory part 3, the charged raw material flows in a contracted flow similar to the flow of the raw material in the hopper and descends between the furnace wall inner surface and the furnace core 4. The hot air is blown into the furnace from the tuyere 5 provided in the circumferential direction of the furnace wall at a position below the furnace belly morning glory part 3 to form a raceway 6.
When lowering of the charging raw material stagnates temporarily at a specific site in the blast furnace for some reason, the discontinuous region heated and reduced is interrupted stagnant portion M 2 is generated. The charged raw material below the stagnation part M 2 descends in the furnace as it is, but the supply of new raw material is cut off, so that a cavity V is generated below the stagnation part M 2 . Since the weight of the charge is added to the cavity V from above, the stagnation portion M 2 falls due to its own weight after a while, and the cavity V disappears as shown in FIG.
[0004]
The fall of the stagnation part M 2 , that is, the slip phenomenon, means that the charge in the upper part of the furnace suddenly falls to the lower part of the furnace without being heated and reduced, and the heat balance in the furnace is broken. Make the furnace condition worse. When the furnace condition deteriorates, stable operation of the blast furnace, which is a continuous countercurrent reaction process in which a solid-liquid two-phase fluid moves in the vertical direction in the furnace, cannot be expected, and the reaction efficiency decreases. As a result, the quality of the hot metal produced and the variation in the hot metal temperature increase, and in the worst case, the productivity of the blast furnace is greatly reduced due to the decrease in furnace heat.
In order to prevent slipping that makes the furnace condition unstable, Japanese Patent Application Laid-Open No. 7-18311 controls air blowing conditions and ore charge per charge. In this method, the ratio of the ore layer thickness equivalent to the furnace belly morning glory inserted in the top of the furnace to the amount of sensible heat blown from the bottom of the furnace represents the ability to dissolve the ore layer in the cohesive zone slit. It is used as an indicator. The management index is kept within a certain range so as not to cause delays in smelting reduction, enlargement / hanging of the root of the cohesive zone, deterioration of unloading, etc.
[0005]
In JP-A-2-34709, the inside of the furnace is photographed with a night vision camera provided at the top of the furnace, and each of the central, intermediate and peripheral areas in the furnace radial direction based on the video signal from the night vision camera. In addition, the average particle size of the coke is measured, and the distribution state of the furnace top charge is controlled so that the particle size of each region becomes a value within a predetermined range.
In JP-A-3-13514, gas analysis is performed at a plurality of locations along the radial direction and the height direction in the blast furnace shaft portion deposition raw material using a plurality of sondes from the standby position outside the furnace toward the center of the furnace. Yes. From the analysis value, plot an isoη CO diagram inside the deposition raw material represented on the two-dimensional cross section of the furnace axis symmetric, and calculate the average height level and the peripheral height level at the top of the thermal preservation zone (η CO = 100%). The fuel ratio, the charge distribution, the air blowing conditions, etc. are controlled so that the height of each part is obtained as appropriate.
[0006]
[Problems to be solved by the invention]
However, in the method disclosed in Japanese Patent Laid-Open No. 7-18311, as in the case of improper action of distribution control of the furnace top charge occupying a high weight as a cause of occurrence of frequent slip during normal blast furnace operation, No effective action can be taken against heat exchange failure, unloading abnormality, etc. due to the progress of local heat exchange between the two phases.
In the method disclosed in JP-A-2-34709, when the blast furnace gas accompanied by a large amount of dust is generated from the surface of the raw material deposited in the furnace port due to the significantly deteriorated furnace condition, or the blast furnace gas discharged from the top of the furnace is removed. When the blast furnace gas is cooled by furnace top drowning below the filter cloth heat resistance temperature of the dust removal equipment, such as a blast furnace equipped with a process for recovery to the furnace top power generation equipment via the dry dust removal equipment, the visual field of the night vision camera Is blocked by dust accompanying the blast furnace gas, white smoke of water vapor, etc., so the night vision camera cannot be used.
[0007]
In the method disclosed in JP-A-3-13514, it is necessary to provide a plurality of sondes on the blast furnace shaft portion. In addition, the shaft upper sonde and the middle horizontal sonde that insert and remove the sonde from the furnace wall side toward the inside of the in-furnace raw material are expensive measuring instruments equipped with a high-power drive device. Therefore, unlike a large blast furnace that can produce a large amount of hot metal, it is not suitable for a small blast furnace that is not installed. Furthermore, damage to the refractory is promoted by shaking the raw material in the furnace caused by inserting and removing the sonde.
[0008]
[Means for Solving the Problems]
The present invention has been devised to solve such a problem, and it is possible to stably create a deposition shape in the furnace of the charged raw material in combination with the management of the raw material charging pattern, thereby preventing the occurrence of slip. The purpose is to enable blast furnace operation.
In order to achieve the object of the charge distribution control method of the present invention, the ore raw material and the coke raw material are alternately charged into the furnace port portion from the turning chute of the furnace top charging device, and the deposit surface of the charge raw material is obtained. There a terrace portion leveled near the furnace wall, when build in deposition shape distribution of loading material having an inclined portion inclined downwardly toward the furnace center terrace portion, of the internal horizontal cross-section of the furnace opening portion The area is concentrically divided into a central region, an intermediate region, and a peripheral region, and the measured layer thickness ratio of the ore layer / coke layer in the peripheral region is obtained. The ratio of the layer thickness ratio (actually measured layer thickness ratio / average layer thickness ratio) is calculated as the relative layer thickness ratio, and the furnace port portion so that the relative layer thickness ratio in the peripheral region falls within the management range of 0.50 to 0.75. Along the radial direction of the furnace mouth of the ore raw material and coke raw material charged in And adjusting the amount of the laundry.
[0009]
Embodiment
As shown in FIG. 2A, the bell-less type furnace top charging device has a turning chute 8 attached to the lower end of the raw material supply pipe 7 arranged in the furnace port 1. The ore raw material and the coke raw material are alternately fed from a hopper (not shown) through the raw material supply pipe 7 to the turning chute 8 and charged and distributed in the furnace port radial direction. The turning chute 8 is gradually inclined toward the furnace axis while turning. The raw material charging is usually performed when the height of the surface S of the raw material layer contained in the furnace indicated by the weight 9 suspended on the mechanical sounding device is lowered until it reaches a specified height.
The distributed ore raw material and coke raw material are built in a pile shape distribution having a terrace portion that is horizontal in the vicinity of the furnace wall and an inclined portion that is inclined downward from the terrace portion toward the furnace center, and is alternately stacked. It becomes an attached multilayer structure. The charged material layer surface S deposited on the furnace port 1 is measured by a depth measuring device 10 provided at the top of the furnace. The depth measuring device 10 is provided at the top of the furnace, and can detect the height of the charged raw material layer surface S at a plurality of locations along the radial direction in the furnace. The deposition shape of the charged raw material layer is obtained from the measurement value obtained by the depth measuring device 10, and the result of the raw material charging action is monitored and evaluated.
[0010]
As the depth measuring device 10, for example, a contact type equipped with a drive mechanism so as to be movable in the radial direction of the furnace port 1, or a non-contact type depth measuring device using a microwave, a laser, or the like is used. The movable depth measurement device 10 can be downsized and easy to use because the gas temperature on the surface S of the charged raw material layer is relatively low and can be measured by inserting and removing the probe in the sensor in a free space where the load of insertion propulsion is not applied. It is also excellent in terms of overall evaluation considering cost, maintenance, etc., so it is a sensor with a high installation rate in the current blast furnace.
The sounding device is also used as a slip detection sensor in addition to the sensor function for determining the raw material charging opportunity. The slip that appears as a sudden drop of the charged raw material layer surface S in the upper part of the furnace is detected as a depth difference of the weight 9 arranged on the charged raw material layer, and the degree of slip is evaluated by the magnitude of the depth difference.
[0011]
Four sounding devices are arranged at equal intervals in the circumferential direction of the furnace port 1. Of the four sounding devices, the evaluation result of the unloading stability is digitized as a management value on the basis of the movements of the two sounding devices that showed a relatively abnormal behavior of the unloading situation from time to time. Specifically, the unloading phenomenon when one of the two sounding devices instantaneously shows a sudden drop of 0.5 m or more is treated as a slip. As shown in FIG. 2 (b), when the depth difference L detects a slip of 0.5 m ≦ L <1.0 m using only one sounding device, the slip index = 0.2 times, and both soundings. The case where the device detects a slip of 0.5 m ≦ L is evaluated as slip index = 0.5 times, and the case where both the sounding devices detect a slip of 1.0 m ≦ L is evaluated as slip index = 1.0 times. In order to evaluate the slip phenomenon in this way and elucidate the distribution of charges exhibiting stable unloading without slip, the relationship between the raw material charging conditions and the surface shape of the raw material layer was investigated.
[0012]
The area of the cross section in the horizontal direction of the furnace port portion 1 is divided into three concentric circles to set a central region, an intermediate region, and a peripheral region. The measured layer thickness ratio of the ore / coke in the surrounding area is obtained from the measured value of the sounding device 10, and the ratio of the measured layer thickness ratio to the average layer thickness ratio of the ore / coke in the entire charging raw material is calculated. Layer thickness ratio. Moreover, the ratio of the average fall position of the coke with respect to the average fall position of the ore is calculated and set as the bellless strength ratio. In a blast furnace equipped with a bell-less type furnace top charging device, the charging material is changed by changing the bell-less mode, changing the coke base amount, the charge line (specified height as the starting material charging condition determined by the weight 9), etc. The layer thickness distribution is controlled. The most quantitative and flexible control means is a bellless mode set by a combination of the tilt angle of the turning chute 8 and the number of turns. Therefore, a method for controlling the layer thickness distribution of the charged raw material according to the combination of the tilt angle of the turning chute and the number of turns will be described first.
[0013]
OC2 case of charged chute pivoting per 1 batch in the form of batch 1 charge charged alternately ore material and coke feed is 12 turns, for example O7 4 8 4 9 3 10 1 , C7 6 8 1 9 4 10 The bellless mode is expressed by a combination of numbers such as 1 . O7 4 8 4 9 3 10 1 means that one batch charging of the ore raw material is performed with a total of 12 turns including 7 notches 4 turns, 8 notches 4 turns, 9 notches 3 turns, and 10 notches 1 turns. C7 6 8 1 9 4 10 1 means the notch and the number of turns when the coke raw material is charged in the same manner. Note that the notch is a numerical value expressed by numbering the tilt angle set in advance by the turning chute. The larger the numerical value, the more charged material is placed in the furnace center side, and the smaller the numerical value is charged on the furnace wall side. Means that.
[0014]
It is inconvenient to distinguish at a glance when a plurality of charging patterns are ranked and evaluated by the above-described expression method. Therefore, the bellless mode condition is an index, and the average drop position index and the bellless strength ratio are given by the following equations (1) and (2). The indexes of the formulas (1) and (2) are also effective in comparing data of two or more blast furnaces having different bell-less type furnace top charging devices and furnace port dimensions.
Average drop position index of ore raw material or coke raw material = Σ [(t / R) × n] / N (1)
Bellless strength ratio = (Average drop position index of coke raw material) / (Average drop position index of ore raw material) (2)
Where, t: distance measured when the material drop trajectory of each notch intersects horizontally from the furnace wall at the height of the charge line reference n: set number of turns N for each notch N: total set number of turns R: furnace port Radius of the part [0015]
When analyzing a concretely implemented charging action, it is advantageous to use the bellless intensity ratio of equation (2) as an index for analysis.
The layer thickness distribution of the charged raw material in the furnace radial direction is obtained by the sounding device 10 installed at the top of the furnace. That is, before and after charging the ore raw material and the coke raw material, the depth to the surface of the deposition layer is measured finely at predetermined intervals along the furnace port radial direction, and the ore layer and the coke layer formed by the raw material charging Process measurement results into thickness ratio. Thereby, quantified data regarding the layer thickness distribution is obtained.
In the present invention, as shown in FIG. 3A, the deposit surface is inclined downward from the terrace portion T toward the furnace center from the terrace portion T in which the deposit surface is horizontal in the vicinity of the furnace wall at the furnace port portion. Basically, it is built into the surface form having the inclined portion C. The charging material distribution terrace type, thickness ratio distribution over the furnace opening radially ore layer S 1 and the coke layer S 2 is smaller in the peripheral region as shown in FIG. 3 (b), increases in the central region.
[0016]
When the radius of the furnace opening is R and the distance from the furnace center is X, the range of X / R = 0 to 0.577 is the center region, and the range of X / R = 0.777 to 0.816 is the middle. Region, X / R = 0.816 to 1.0 is set as the peripheral region. Then, the charging of the ore raw material and the coke raw material, which are repeated sequentially, is set as one charge, and the ratio of the actually measured layer thickness ratio to the average layer thickness ratio of the ore raw material and the coke raw material is charged per charge. The ratio is used as a relative layer thickness ratio as a management index in each of the central region, the intermediate region, and the peripheral region. For example, in the example of FIG. 3, the relative layer thickness ratio of the central region is 1.0 or more, the relative layer thickness ratio of the intermediate region and the peripheral region is 1.0 or less, and the relative layer thickness ratio of the peripheral region is the highest. It is evaluated as a small layer thickness ratio distribution.
[0017]
The slip index has a close correlation with the bellless intensity ratio or the relative layer thickness ratio in the intermediate region, as shown in FIG. 4 showing the results of the investigation and research by the present inventors. That is, a positive correlation is established between the bellless strength ratio indicating the correlation between the average drop position of the coke raw material and the average drop position of the ore raw material and the relative layer thickness ratio of the peripheral region. Therefore, the bellless intensity ratio is in the range of 0.90 to 1.28, which is close to neutral, or the relative layer thickness ratio of the peripheral region is in the range of 0.50 to 0.75 corresponding to the same level. It can be seen that almost no slip occurs when adjusting the bell-less mode.
[0018]
Conversely, when the bell-less strength ratio or the relative layer thickness ratio in the peripheral region is out of the predetermined range, the slip index tends to increase. The reason why the slip frequently occurs in this case is considered as follows. The slip originates in the descent of the charging material corresponding to the amount of coke burned in the raceway 6 temporarily stagnating. The stagnation phenomenon is caused by (1) the ore layer S 1 and / or the coke layer S 2 becoming too thick in the periphery of the furnace that hits the raceway 6 that is the final arrival point of the coke raw material, and the resistance to the upward flow of the furnace gas. , The temperature rise and reduction by the high temperature reducing gas is delayed, and ore falls into poor melting, (2) the ore layer S 1 and / or coke layer S 2 in the peripheral region is thin and the weight of the charged raw material is It is caused by either one of the fact that the force of lowering the charged raw material is balanced with the rising force of the gas in the furnace, and the downward flow M 1 of the charged raw material becomes unstable, causing the raceway 6 to enter the raceway 6 from the upper part of the furnace. It is thought that the supplied coke raw material was cut off. That is, it is presumed that the cause is that the heat exchange balance or the force relationship balance between the solid-gas two phases in the peripheral region of the furnace is broken by the selection of an inappropriate charging pattern.
[0019]
Therefore, when determining the charging pattern using the bellless strength ratio or the relative layer thickness ratio of the surrounding area as a management index, the layer thicknesses of the ore layer S 1 and the coke layer S 2 are properly maintained in each part of the furnace, downflow M 1 of is stabilized. Preferably, when both the bell-less strength ratio and the relative layer thickness ratio of the surrounding area are used as management indices, the management accuracy is further improved and stable blast furnace operation is possible. That is, in the management by the bell-less strength ratio, when the terrace portion T of the charging raw material deposited in the furnace is insufficiently formed and the terrace portion T has a tilted surface form, the peripheral region corresponds to the surface form. Since the relative layer thickness ratio in the region changes, there is a risk that the relationship with the slip index obtained by data collection on the premise of a flat and horizontal terrace type distribution will deviate. Further, when managing by the relative layer thickness ratio in the peripheral region, since normally only one depth measuring device 10 is provided at the top of the furnace, an imbalance in the circumferential direction of the furnace port portion 1 occurs on the charged raw material surface. In this case, there is a possibility that the measured value by the sounding device 10 may deviate from the situation of the entire blast furnace. These deviations can be suppressed by using both the bell-less intensity ratio and the relative layer thickness ratio of the peripheral region as management indices.
[0020]
The fact that the charge distribution is properly managed will be described in an example in which the present invention is applied to raw material charging in a blast furnace having a furnace port radius R = 3.5 m and a furnace internal volume of 1650 m 3 .
When blast furnace operation was continued for 2 months without setting a management index in the furnace top charging condition, the amount of pulverized coal injection from the blast furnace tuyere reached around 150 kg / ton as shown in Table 1, The furnace condition was unstable. In other words, during the two months, unloading is unstable and slips, blow-throughs, shelves, etc. frequently occur. As a result of this, the heat balance in the furnace is disrupted, resulting in the temperature and components of the hot metal discharged from the lower part of the furnace. Greatly varied. The gas reaction efficiency in the furnace, especially the utilization efficiency of hydrogen gas, tended to decrease. Therefore, when the load distribution was controlled by changing the bellless mode using the bellless strength ratio and the relative layer thickness ratio in the surrounding area as a management index, the unloading situation became stable, the heat level at the bottom of the furnace became stable, and the inside of the furnace The gas reaction efficiency was also improved. As a result, the fuel ratio is reduced from 500-510 kg / ton to 495-500 kh / ton, the pulverized coal injection amount is increased from 150 kg / ton to 160-165 kg / ton, and the output ratio is also 2.05-2. It increased from 15 tons / m 3 / day to 2.27 tons / m 3 / day.
[0021]
Figure 0004157951
[0022]
【The invention's effect】
As described above, in the present invention, by the relative layer thickness ratio for controlling the burden distribution of furnace opening radially charged pattern or the like so as to maintain management range, deposition in the furnace The surface morphology of the charged raw materials is properly maintained. As a result, troubles such as shelf hanging and blowout that destabilize the furnace condition are prevented, a stable furnace condition is maintained, and blast furnace operation with a high output ratio becomes possible.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a slip phenomenon occurring inside a blast furnace. FIG. 2 is a schematic diagram of an upper part of a blast furnace equipped with a bell-less type furnace top charging device and a level change of a raw material charged in the furnace top when a slip occurs. Figure (b)
[Fig. 3] Fig. 4 shows the definition of the present invention with respect to the charge accumulation shape at the top of the blast furnace. [Fig. 4] The bell-less strength ratio is the number of slip occurrences and the relative layer thickness ratio of the ore layer / coke layer in the region around the furnace. Graph showing the effect of the change [Explanation of symbols]
1: furnace opening portion 8: turning chute 10: sounder S 1: Ore layer S 2: Coke layer S: surface M 1 of the charging material layer: The feedstock downflow M 2: stagnation portion of charging material V :cavity

Claims (1)

炉頂装入装置の旋回シュートから鉱石原料及びコークス原料を交互に炉口部に装入し、装入原料の堆積物表面が炉壁近傍で水平になったテラス部と、テラス部から炉中心に向かって下方に傾斜した傾斜部とを有する装入原料の堆積形状分布を造り込む際、炉口部の内部水平断面の面積を同心円状に中心領域,中間領域及び周辺領域に3等分し、周辺領域における鉱石層/コークス層の実測層厚比を求め、装入原料全体の鉱石/コークスの平均層厚比に対する実測層厚比の比率(実測層厚比/平均層厚比)を相対層厚比として算出し、周辺領域における相対層厚比が0.50〜0.70の管理範囲に収まるように炉口部に装入される鉱石原料及びコークス原料の炉口半径方向に沿った分布量を調整することを特徴とする高炉炉口部の装入物分布制御方法。Ore raw material and coke raw material are alternately charged into the furnace mouth from the swivel chute of the furnace top charging equipment, and the terrace where the deposit surface of the charged raw material is horizontal near the furnace wall, and from the terrace to the center of the furnace When building up the distribution of the charged shape of the charging material having an inclined portion that is inclined downward, the inner horizontal cross-sectional area of the furnace port is concentrically divided into a central region, an intermediate region, and a peripheral region. Calculate the measured layer thickness ratio of the ore layer / coke layer in the surrounding area, and calculate the relative ratio of the measured layer thickness ratio to the average layer thickness ratio of the ore / coke of the entire charged raw material (measured layer thickness ratio / average layer thickness ratio). Calculated as the layer thickness ratio, along the radial direction of the furnace mouth of the ore raw material and the coke raw material charged in the furnace mouth so that the relative layer thickness ratio in the peripheral region falls within the management range of 0.50 to 0.70 Distribution of charge in the blast furnace mouth, characterized by adjusting the distribution amount Your way.
JP05992399A 1999-03-08 1999-03-08 Charge distribution control method for blast furnace throat Expired - Fee Related JP4157951B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05992399A JP4157951B2 (en) 1999-03-08 1999-03-08 Charge distribution control method for blast furnace throat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05992399A JP4157951B2 (en) 1999-03-08 1999-03-08 Charge distribution control method for blast furnace throat

Publications (2)

Publication Number Publication Date
JP2000256712A JP2000256712A (en) 2000-09-19
JP4157951B2 true JP4157951B2 (en) 2008-10-01

Family

ID=13127148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05992399A Expired - Fee Related JP4157951B2 (en) 1999-03-08 1999-03-08 Charge distribution control method for blast furnace throat

Country Status (1)

Country Link
JP (1) JP4157951B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5056563B2 (en) * 2008-04-21 2012-10-24 Jfeスチール株式会社 Blast furnace operation method
KR100972199B1 (en) 2008-05-28 2010-07-23 주식회사 포스코 Raw material charging method for bell-less blast furnace
KR101368504B1 (en) * 2012-07-30 2014-02-28 현대제철 주식회사 Method for assuming burden distribution of blast furnace
JP7393637B2 (en) * 2020-01-17 2023-12-07 日本製鉄株式会社 How to operate a blast furnace
JP7502610B2 (en) 2020-04-13 2024-06-19 日本製鉄株式会社 Blast furnace operation method, charging method control device, charging method control program

Also Published As

Publication number Publication date
JP2000256712A (en) 2000-09-19

Similar Documents

Publication Publication Date Title
JP4157951B2 (en) Charge distribution control method for blast furnace throat
KR101412403B1 (en) Dropping judgment method of charging material into blast furnace
JP2008116066A (en) Operating method of electric furnace
JP2000204405A (en) Operation of blast furnace
US6375346B1 (en) Method for detecting the spalling of a layer of buildup of a refractory lining in a metallurgical furnace
JP2021091936A (en) Gas channeling prevention method in blast furnace operation
JPH10245604A (en) Operation of blast furnace
KR960006322B1 (en) Method for removing stuck material on furnace wall in blast-furnace
JPH0673415A (en) Method for protecting furnace bottom in blast furnace by controlling molten iron flow
JP6904202B2 (en) Kilnbeco occurrence detection system and kilnbeco occurrence detection method
JP4328001B2 (en) Blast furnace operation method
JP2008223121A (en) Method for repairing furnace wall surface at upper part of blast furnace shaft
JPH10280020A (en) Operation of smelting reduction
JPS6331523B2 (en)
Roy et al. Studies on influence of liquid level on blast furnace performance and monitoring of hearth drainage
JPH057443B2 (en)
JPH0442444B2 (en)
JPH10265813A (en) Operation of blast furnace
JPH058244B2 (en)
KR20010059375A (en) furnace wall deposition and hearth temperature control system of furnace hearth bottom in a blast furnace
JP2000212612A (en) Control of distribution of charged material in blast furnace
SE445137B (en) VERTICAL CHAKT OVEN FOR MELTING AND REFINING THE METAL PIECE
JPH04247816A (en) Method for operating blast furnace
JPH021899B2 (en)
JPH09157714A (en) Furnace bottom structure in blast furnace and operation of blast furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060308

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070409

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080610

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080620

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130725

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140725

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees