JP5561228B2 - Method for measuring fall trajectory of blast furnace charge and measuring rod - Google Patents

Method for measuring fall trajectory of blast furnace charge and measuring rod Download PDF

Info

Publication number
JP5561228B2
JP5561228B2 JP2011079653A JP2011079653A JP5561228B2 JP 5561228 B2 JP5561228 B2 JP 5561228B2 JP 2011079653 A JP2011079653 A JP 2011079653A JP 2011079653 A JP2011079653 A JP 2011079653A JP 5561228 B2 JP5561228 B2 JP 5561228B2
Authority
JP
Japan
Prior art keywords
charge
blast furnace
measuring
pressure
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011079653A
Other languages
Japanese (ja)
Other versions
JP2012214830A (en
Inventor
正具 門脇
浩 三尾
亮輔 鈴木
利樹 中内
稔之輔 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2011079653A priority Critical patent/JP5561228B2/en
Publication of JP2012214830A publication Critical patent/JP2012214830A/en
Application granted granted Critical
Publication of JP5561228B2 publication Critical patent/JP5561228B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Manufacture Of Iron (AREA)
  • Blast Furnaces (AREA)

Description

本発明は、高炉装入物の落下軌跡測定方法および測定棒に関する。   The present invention relates to a method for measuring a fall trajectory of a blast furnace charge and a measuring rod.

銑鉄を製造する高炉においては、炉頂から装入物として、粉鉄鉱石を焼き固めた焼結鉱や塊状鉄鉱石等(以下、鉄鉱石と記す。)及びコークスを交互に装入し、炉内に鉄鉱石層およびコークス層を形成する。高炉下方にある羽口から吹き込まれる熱風は、羽口前のコークスと反応してCOガスを形成し、COガスは、炉内を上昇しつつ、鉄鉱石を加熱、還元する。加熱、還元された鉄鉱石は、軟化融着帯を形成し、その後、溶銑となって滴下する。炉内の鉱石層およびコークス層は、羽口前でのコークスの燃焼と鉄鉱石の軟化融着帯における溶銑の溶け落ちにより、炉内を徐々に降下し、滴下した溶銑は、コークス層の間を通過して炉底部に溜まり銑鉄を形成する。   In a blast furnace that produces pig iron, as a charge from the top of the furnace, sinter or block iron ore or the like (hereinafter referred to as iron ore) and coke charged with powdered iron ore are charged alternately, An iron ore layer and a coke layer are formed inside. Hot air blown from the tuyere below the blast furnace reacts with coke before the tuyere to form CO gas, and the CO gas heats and reduces iron ore while rising in the furnace. The heated or reduced iron ore forms a softened cohesive zone and then drops as hot metal. The ore layer and coke layer in the furnace gradually descend in the furnace due to the burning of coke in front of the tuyere and the melting of molten iron in the softening and fusion zone of iron ore. Passes through and accumulates in the furnace bottom to form pig iron.

高炉装入物は、ベル式装入装置、または、ベルレス式装入装置により装入される。炉頂部の装入物プロフィルは、高炉の中心鉛直方向(軸心)を軸として中央部が低い略逆円錘形状をなしており、炉周辺部は粒度の比較的小さな装入物、炉中心部は粒度の大きい装入物が堆積するのが一般的である。粒度の大きい装入物は、粒度の小さい装入物に比べ炉内ガスの通気抵抗は小さく、又、コークスは鉄鉱石に比べ、炉内ガスの通気抵抗は小さい。高炉内の炉内ガス流れは、装入物による炉半径方向の通気抵抗により影響を受ける。したがって、高炉に装入された鉄鉱石及びコークスによって形成される炉頂部の装入物分布は、高炉内のガス流分布を決定づけ、適切な装入物分布の形成が、高炉操業にとって極めて重要である。   The blast furnace charge is charged by a bell type charging device or a bellless type charging device. The charge profile at the top of the furnace has a substantially inverted conical shape with the center at the center vertical direction (axial center) of the blast furnace, and the furnace periphery has a relatively small particle size. The part is generally deposited with a large particle size charge. The charge with a large particle size has a lower resistance to gas flow in the furnace than the charge with a small particle size, and the resistance to gas flow in the furnace is lower with coke than with iron ore. The gas flow in the blast furnace is affected by the ventilation resistance in the radial direction of the furnace due to the charge. Therefore, the charge distribution at the top of the furnace formed by iron ore and coke charged to the blast furnace determines the gas flow distribution in the blast furnace, and the formation of an appropriate charge distribution is extremely important for blast furnace operation. is there.

そのため、装入物の装入装置からの落下軌跡を正確に把握することは重要な技術課題となる。ところが、高炉に装入される鉄鉱石及びコークスは、大量であるためベル式装入装置の場合は、ベルのライナーが磨耗し、ベルレス式装入装置の場合は、旋回シュートのライナーが磨耗して、装入装置からの装入物の落下軌跡が変化し、その結果、炉頂部の装入物分布は変化するという問題がある。従って、このライナー磨耗による装入物の落下軌跡の変化に対し、ベル式装入装置ではムーバブルアーマを、ベルレス式装入装置では旋回シュートの角度を調整することにより、炉頂部の装入物分布の適切な維持を図る必要があるが、このようなライナー磨耗による装入物の落下軌跡の経時変化に対応するには、装入物の落下軌跡を定期的に正確に把握することが必要となる。   Therefore, it is an important technical problem to accurately grasp the trajectory of the charge from the charging device. However, the iron ore and coke charged into the blast furnace are so large that the bell liner wears in the case of the bell type charging device, and the swirl chute liner wears in the case of the bellless type charging device. As a result, there is a problem that the fall trajectory of the charge from the charging device changes, and as a result, the charge distribution at the top of the furnace changes. Therefore, in response to the change in the fall trajectory of the charge due to the liner wear, the distribution of the charge at the top of the furnace is adjusted by adjusting the movable armor for the bell-type charging device and the angle of the swivel chute for the bell-less charging device. However, in order to cope with such changes in the load trajectory due to liner wear over time, it is necessary to accurately grasp the load trajectory regularly. Become.

高炉においては、一月乃至二月の連続操業の継続後に、予定休風を行う。予定休風とは、羽口からの熱風の吹き込みを一時停止することであり、熱風の吹き込み停止の時間内に高炉の設備補修を行う。予定休風の操業停止時に、高炉装入物の落下軌跡を測定すればよい。一月乃至二月の間に大量の鉄鉱石、コークスを高炉に装入したことで、装入物を装入する旋回シュートの磨耗により、高炉装入物の落下軌跡が変化し、その変化を正確に把握するためである。全ての設備の補修事項が完了し、炉頂装入装置の使用が可能となった段階で、高炉装入物の落下軌跡を測定する。この場合、高炉装入物の落下軌跡の測定に長時間かかるようでは、その分、休風時間が長くなり、高炉の生産性が悪化する。したがって、高炉装入物の落下軌跡の測定方法は、簡便に、かつ、短時間に測定できるものでなければならない。   In the blast furnace, scheduled wind breaks are performed after continuous operation from January to February. The scheduled rest wind is to temporarily stop hot air blowing from the tuyere, and repair the blast furnace equipment within the hot air blowing stop time. What is necessary is just to measure the fall locus | trajectory of a blast furnace charge at the time of operation stop of a scheduled rest wind. From January to February, a large amount of iron ore and coke was charged into the blast furnace, and the falling trajectory of the blast furnace charge changed due to the wear of the swivel chute charged with the charge. It is for grasping correctly. Measure the fall trajectory of the blast furnace charge when the repair items for all facilities are complete and the furnace top charging device is ready for use. In this case, if it takes a long time to measure the fall trajectory of the blast furnace charge, the rest time becomes longer and the productivity of the blast furnace deteriorates. Therefore, the method for measuring the trajectory of the blast furnace charge must be able to be measured easily and in a short time.

すでに開示されている具体的な測定方法として、装入物装入用の旋回シュートの下方位置において、高炉の横断方向にプローブを装入し、プローブに装入物が衝突した際に発生する音響信号を検知し、音響伝達棒を伝播する音響信号の到達時間を検出することで、装入物の落下位置を測定する高炉における装入物の落下位置推定装置がある(特許文献1)。   As a specific measurement method that has already been disclosed, a sound is generated when a probe is inserted in the transverse direction of the blast furnace at a position below the swivel chute for charging the charge and the load collides with the probe. There is an apparatus for estimating the fall position of a charge in a blast furnace that detects a signal and detects the arrival time of an acoustic signal propagating through an acoustic transmission rod (Patent Document 1).

この発明によれば、高炉半径方向における装入物の衝突位置の検知はできるが、温度により音響伝達速度が影響を受け、その補正が必要で複雑となり、装置の費用も高くなるという欠陥がある。   According to the present invention, it is possible to detect the impact position of the charge in the blast furnace radial direction, but the sound transmission speed is affected by the temperature, and the correction is necessary and complicated, and the cost of the apparatus is increased. .

高炉装入旋回シュートと炉頂原料の間に衝突バーを固定し、発生する擬似AEを両端の検出センサーで検出する高炉原料装入物落下位置検出方法がある(特許文献2)。
この発明によれば、バーを固定することで、高炉休風とは無関係に常時の測定が可能であるが、バーの磨耗が激しくメンテナンスが困難であるという問題がある。
There is a blast furnace raw material fall position detection method in which a collision bar is fixed between a blast furnace charging swivel chute and a furnace top raw material, and the generated pseudo AE is detected by detection sensors at both ends (Patent Document 2).
According to the present invention, by fixing the bar, it is possible to always measure regardless of the blast furnace off-air, but there is a problem that the bar is heavily worn and maintenance is difficult.

装入物装入用の旋回シュートの下方位置に高炉の横断方向にプローブを装入し、プローブ中にある気体供給配管の圧力変化により、装入物の落下軌跡を測定する装置がある(特許文献3)。
この方法によれば、高炉半径方向における装入物の衝突位置の検知はできるが、高炉炉頂の粉塵が多い環境では、プローブの気体供給配管がつまりやすく、測定精度が悪いという問題がある。
There is a device that inserts the probe in the transverse direction of the blast furnace at the lower position of the swivel chute for charging the charge, and measures the fall trajectory of the charge by changing the pressure of the gas supply pipe in the probe (patent) Reference 3).
According to this method, the collision position of the charged material in the blast furnace radial direction can be detected, but in an environment where there is a lot of dust at the top of the blast furnace, there is a problem that the gas supply pipe of the probe is easily clogged and the measurement accuracy is poor.

高炉内に長尺体を挿入し、高炉内で落下する原料を長尺体に当て、原料の衝突によって生じる加速度の変化を長尺体の長手方向において検出することにより、長尺体の長手方向における原料の落下量の分布を把握する方法がある(特許文献4)。この発明によれば、落下物の衝突による加速度変化で高炉装入物の落下量の分布を把握することはできるが、装置が複雑で、簡便な測定に難がある。   By inserting the long body into the blast furnace, applying the raw material falling in the blast furnace to the long body, and detecting the change in acceleration caused by the collision of the raw material in the longitudinal direction of the long body, the longitudinal direction of the long body There is a method of grasping the distribution of the amount of falling material (Patent Document 4). According to the present invention, it is possible to grasp the distribution of the fall amount of the blast furnace charge by the acceleration change due to the collision of the fallen object, but the apparatus is complicated and there is a difficulty in simple measurement.

特開平9−235605号公報JP-A-9-235605 特開平3−207804号公報JP-A-3-207804 特開昭61−177304号公報JP-A-61-177304 特開平11−315309号公報JP 11-315309 A

高炉内に原燃料を装入するときの落下位置検知、及び落下軌跡の把握は、高炉の操業にとって重要な指標である。高炉装入物表面の上に挿入した測定棒の振動音響の変化、気体導管の圧力の変化、原料衝突による加速度の変化の検知方法等が提案されているが、高炉炉頂の粉塵が多い環境では、精度が悪く、又、メンテナンスの面で課題であった。   The detection of the drop position when charging the raw fuel into the blast furnace and the grasp of the drop trajectory are important indicators for the operation of the blast furnace. There have been proposed methods for detecting changes in the vibration and acoustics of the measuring rod inserted on the surface of the blast furnace charge, changes in pressure in the gas conduit, and changes in acceleration due to material collisions. Then, the accuracy was poor, and it was a problem in terms of maintenance.

本発明の目的は、高炉炉頂の粉塵が多い環境でも、高炉装入物の落下軌跡を精度よく測定できる方法を提供することである。又、メンテナンスに難が少なく、簡便で短時間に測定が可能な高炉装入物の落下軌跡測定方法および測定棒を提供することである。   An object of the present invention is to provide a method that can accurately measure the fall trajectory of a blast furnace charge even in an environment where there is a lot of dust at the top of the blast furnace. It is another object of the present invention to provide a method for measuring the fall trajectory of a blast furnace charge and a measuring rod that are less difficult to maintain and can be measured easily and in a short time.

本発明者等は、高炉の装入物装入装置と炉内の装入物表面の間に、圧力測定フィルムを巻きつけた測定棒を挿入し、落下装入物が圧力測定フィルムに接触することによる圧力を測定することにより精度よく、かつ、簡便に高炉装入物の落下軌跡が測定できることを見出した。   The inventors insert a measuring rod wrapped with a pressure measuring film between the charging device in the blast furnace and the charging surface in the furnace, and the dropped charging contacts the pressure measuring film. It was found that the trajectory of the blast furnace charge can be measured accurately and easily by measuring the pressure.

本発明は、この知見に基づき上記課題を解決するためになされたものであり、その要旨とするところは、以下のとおりである。   The present invention has been made to solve the above problems based on this finding, and the gist of the present invention is as follows.

(1)高炉内に装入物を装入するときの装入物落下軌跡を測定する高炉装入物の落下軌跡測定方法であって、
高炉の装入物装入装置と炉内の装入物表面の間に、圧力測定フィルムを巻きつけた測定棒を挿入する工程と、
前記測定棒に装入物を落下させて、前記圧力測定フィルムに圧痕を発色させる工程と、
測定した前記圧力測定フィルム上に記録された圧痕から、該圧痕の個数と個々の圧痕の圧力を求める工程、を有する高炉装入物の落下軌跡測定方法。
(2)前記圧力測定フィルムが感知する圧力により、装入物の粒度毎の落下軌跡を測定する工程を有する前記(1)に記載の高炉装入物の落下軌跡測定方法。
(3)芯棒と、該芯棒の上面の一部を覆う圧力測定フィルムと、該圧力測定フィルムの上面全体を覆う該圧力測定フィルムの測定時の破損を防止する機能を有する保護皮膜とからなる高炉装入物の落下軌跡の測定棒。
(1) A method for measuring the fall trajectory of a blast furnace charge for measuring a charge fall trajectory when charging the charge into a blast furnace,
Inserting a measuring rod wrapped with a pressure measuring film between the charging device in the blast furnace and the charging surface in the furnace;
Dropping the charge onto the measuring rod and coloring the pressure measuring film with indentations;
A method for measuring a fall trajectory of a blast furnace charge, including a step of obtaining the number of indentations and the pressure of each indentation from the measured indentations recorded on the pressure measurement film.
(2) The method for measuring a fall trajectory of a blast furnace charge according to (1), further including a step of measuring a fall trajectory for each particle size of the charge by a pressure sensed by the pressure measurement film.
(3) From a core rod, a pressure measurement film covering a part of the upper surface of the core rod, and a protective film having a function of preventing damage during measurement of the pressure measurement film covering the entire upper surface of the pressure measurement film Measuring rod for the trajectory of the blast furnace charge.

本発明によれば、高炉炉頂の粉塵が多い環境でも、高炉装入物の落下軌跡を精度よく測定することができる。又、メンテナンスに難が少なく、簡便に、短時間に高炉装入物の落下軌跡を測定することができる。   ADVANTAGE OF THE INVENTION According to this invention, the fall locus | trajectory of a blast furnace charge can be measured accurately also in an environment with much dust at the top of a blast furnace. In addition, there is little difficulty in maintenance, and the fall trajectory of the blast furnace charge can be measured easily and in a short time.

高炉装入物の落下軌跡の測定装置を示す図。The figure which shows the measuring apparatus of the fall locus | trajectory of a blast furnace charge. 測定棒の断面構造を示す図(図1中のA−A断面)。The figure which shows the cross-section of a measuring rod (AA cross section in FIG. 1). 鉄鉱石の落下軌跡を示す図。The figure which shows the fall locus | trajectory of an iron ore. 個々の圧痕の圧力を示す図。The figure which shows the pressure of each indentation.

本発明は、高炉内に装入物を装入するときの装入物落下軌跡を測定する高炉装入物の落下軌跡測定方法であって、高炉の装入物装入装置と炉内の装入物表面の間に、圧力測定フィルムを巻きつけた測定棒を挿入する工程と、装入物が落下し、前記圧力測定フィルムに接触することによる圧力を測定する工程と、測定した前記圧力測定フィルムの圧痕を解析する工程から成る高炉装入物の落下軌跡測定方法である。   The present invention relates to a blast furnace charge trajectory measurement method for measuring a charge fall trajectory when charging a charge into a blast furnace. A step of inserting a measuring rod wound with a pressure measuring film between the surfaces of the entrance, a step of measuring a pressure when the charge falls and contacts the pressure measuring film, and the pressure measurement This is a method for measuring the fall trajectory of a blast furnace charge comprising a step of analyzing the indentation of the film.

本発明は、高炉の装入物装入装置から炉内に落下する高炉装入物が圧力測定フィルムに与える衝撃を測定することにより、高炉装入物の落下軌跡を正確に測定するものである。   The present invention accurately measures the trajectory of the blast furnace charge by measuring the impact of the blast furnace charge falling into the furnace from the blast furnace charge charging device on the pressure measuring film. .

高炉装入物は、装入ベル又は旋回シュート等の装入物装入装置から、重力により、高炉内に落下する。図1に高炉装入物の落下軌跡の測定装置を示す。本発明に係る測定棒1は、装入物装入装置の下端と炉内装入物表面の間に炉外から装入される。   The blast furnace charge falls into the blast furnace by gravity from a charge charging device such as a charging bell or a swivel chute. FIG. 1 shows an apparatus for measuring the trajectory of a blast furnace charge. The measuring rod 1 according to the present invention is inserted from the outside of the furnace between the lower end of the charging apparatus and the surface of the furnace interior.

図1において、装入装置が旋回シュートの場合、装入物3は、旋回シュート4から高炉炉頂の装入物表面5に向け装入される。旋回シュート4は、高炉の鉛直中心に対し一定角度θを保ちながら連続回転する。旋回シュート4が連続回転することで、装入物3を高炉円周方向に均一に装入することができる。又、旋回シュート4は、角度θを変更することにより、高炉半径方向における装入物3の落下位置を変更することができる。即ち、角度θが小さいと装入物3は、炉中心近傍に落下し、角度θが大きいと装入物3は、炉壁近傍に落下する。   In FIG. 1, when the charging device is a turning chute, the charge 3 is charged from the turning chute 4 toward the charge surface 5 at the top of the blast furnace. The turning chute 4 continuously rotates while maintaining a constant angle θ with respect to the vertical center of the blast furnace. Since the turning chute 4 continuously rotates, the charge 3 can be uniformly charged in the blast furnace circumferential direction. Moreover, the turning chute 4 can change the drop position of the charge 3 in the blast furnace radial direction by changing the angle θ. That is, when the angle θ is small, the charge 3 falls near the furnace center, and when the angle θ is large, the charge 3 falls near the furnace wall.

図2に、測定棒1の断面構造を示す。中心は芯棒1aであって、図2(A)は丸パイプ、図2(B)は角パイプの場合を例示しているが、その断面形状や材質は、測定時に十分な剛性を有すればよく、適宜定め得る。
芯棒の表面には、圧力測定フィルム2が置かれる。巻きつける範囲は、炉半径方向(芯棒長手方向)では装入物が落下する範囲をすべて含む必要があるが、炉円周方向(芯棒幅方向)では適宜定めてよい。測定精度の観点からは、図3に示すように、圧痕数が最も多く得られる上面全体とするのが最も好ましい。ここに、圧力測定フィルムとは、圧力を受けた部分がその圧力に応じて濃淡を発する機能を有するフィルムであって、市販品を測定対象に応じて選択する。一般的に、例えば、ロールの接触圧、各種機械の締結部の締め付け圧力、紙等の巻き取り圧等の圧力測定で利用されている。しかし、固体の粒体流れを、圧力測定フィルムに衝突させることにより、固体の流れを測定する事例はなく、高炉の装入物落下軌跡の特性を測定する事例もない。
圧力測定フィルムを取り囲むように保護皮膜1bを設ける。高炉においては、1回当たりの鉱石装入量は、50トン〜100トンにもなるので、測定棒1の表面の圧力測定フィルム2は、鉱石の落下衝撃で破損されてしまう。圧力測定フィルムの破損を防止するために、フィルムを保護する皮膜が必要である。しかし、保護皮膜が強固過ぎると鉱石落下の衝撃力を圧力測定フィルムが検出できない。本発明者は、圧力測定フィルムを保護する皮膜として、クラフト粘着テープ、布粘着テープ、各種フィルムテープを検討した結果、布粘着テープが、適正な強度があり、かつ、取り外しも簡易であり、測定後圧力の解析に最適であることを見出した。
FIG. 2 shows a cross-sectional structure of the measuring rod 1. Although the center is the core rod 1a, FIG. 2A illustrates the case of a round pipe, and FIG. 2B illustrates the case of a square pipe, the cross-sectional shape and material thereof have sufficient rigidity at the time of measurement. What is necessary is just to determine suitably.
A pressure measuring film 2 is placed on the surface of the core bar. The winding range needs to include the entire range in which the charged material falls in the furnace radial direction (core bar longitudinal direction), but may be appropriately determined in the furnace circumferential direction (core bar width direction). From the viewpoint of measurement accuracy, as shown in FIG. 3, it is most preferable to use the entire upper surface where the number of indentations is the largest. Here, the pressure measurement film is a film having a function in which a portion that receives pressure emits light and shade according to the pressure, and a commercially available product is selected according to the measurement target. Generally, for example, it is used for pressure measurement such as contact pressure of a roll, tightening pressure of fastening parts of various machines, winding pressure of paper or the like. However, there is no case of measuring the solid flow by colliding the solid particle flow with the pressure measurement film, and there is no case of measuring the characteristics of the charge dropping trajectory of the blast furnace.
A protective coating 1b is provided so as to surround the pressure measurement film. In the blast furnace, the amount of ore charged per time is as high as 50 to 100 tons, so that the pressure measuring film 2 on the surface of the measuring rod 1 is broken by the ore drop impact. In order to prevent the pressure measurement film from being damaged, a film for protecting the film is required. However, if the protective film is too strong, the pressure measurement film cannot detect the impact force of ore dropping. As a result of examining kraft adhesive tape, cloth adhesive tape, and various film tapes as a film for protecting the pressure measurement film, the present inventor has determined that the cloth adhesive tape has appropriate strength and is easy to remove. It was found that it is optimal for the analysis of post pressure.

次に、測定棒1を高炉内に挿入した状態で、装入物装入装置から高炉装入物3を落下させ、測定棒1の圧力測定フィルム2に高炉装入物3を衝突させる。測定棒1の圧力測定フィルム2のうち高炉装入物が衝突した箇所は、衝撃力により、普通、赤色に着色する。たとえば、装入物である1粒の鉄鉱石は、フィルムに1箇所の痕跡をつける。その際、作用力の大きさは赤色の濃度により表現される。接触点の数により、高炉装入物の粒子数がわかり、接触点の位置により、高炉装入物の流れの幅が把握できる。そして、粒子による衝撃力の大きさにより、赤色の濃度が変化するので、装入物粒度が把握できる。即ち、赤色の濃度が濃い箇所に大粒子が衝突し、濃度の薄い箇所には細粒が衝突したことがわかる。   Next, with the measuring rod 1 inserted into the blast furnace, the blast furnace charge 3 is dropped from the charging device, and the blast furnace charge 3 is caused to collide with the pressure measuring film 2 of the measuring rod 1. The portion of the pressure measuring film 2 of the measuring rod 1 where the blast furnace charge collides is usually colored red due to the impact force. For example, one grain of iron ore that is a charge leaves a trace on the film. At this time, the magnitude of the acting force is expressed by a red density. The number of particles in the blast furnace charge can be determined from the number of contact points, and the flow width of the blast furnace charge can be grasped from the position of the contact point. And since the density | concentration of red changes with the magnitude | size of the impact force by particle | grains, the charge particle size can be grasped | ascertained. That is, it can be seen that large particles collide with a portion where the concentration of red is dark and fine particles collide with a portion where the concentration is low.

本発明においては、装入物流れの主流と、装入物流れの幅が測定できる。装入物が衝突した圧力測定フィルムを炉外に取り出し、圧力画像解析システムにより解析し、高炉装入物の落下軌跡の主流位置、幅、装入物粒度分布を把握することができる。   In the present invention, the main flow of the charge flow and the width of the charge flow can be measured. The pressure measurement film with which the charge collided is taken out of the furnace and analyzed by the pressure image analysis system, so that the main stream position, width and charge particle size distribution of the blast furnace charge can be grasped.

次に、本発明の実施例について説明するが、これに限られるものではない。
装入物装入装置が、旋回シュートである高炉の休風時において、本発明を実施した。旋回シュート4の下端と炉内装入物表面5の間に炉外から直径90mmの測定棒1を挿入した(図1)。測定棒1の表面に、圧力測定フィルム2(富士フイルム製、品番MW)を置き、さらにその上を布粘着テープで被覆した。
Next, examples of the present invention will be described, but the present invention is not limited thereto.
The present invention was carried out when the charge charging device was a blast furnace with a swirl chute. A measuring rod 1 having a diameter of 90 mm was inserted from the outside of the furnace between the lower end of the turning chute 4 and the furnace interior entrance surface 5 (FIG. 1). A pressure measuring film 2 (manufactured by Fuji Film, product number MW) was placed on the surface of the measuring rod 1, and further coated with a cloth adhesive tape.

鉄鉱石の衝突による加圧で発色したフィルムは、発色情報をスキャナーで読み取り、デジタル変換した後、圧力画像解析システムで解析した。   The color developed by pressurization due to the collision of iron ore was analyzed by a pressure image analysis system after the color development information was read with a scanner and digitally converted.

図3に、本発明により測定した鉄鉱石の落下軌跡を示す。θは、旋回シュートが鉛直に対してなす角度である(図1参照)。左側が炉中心であり、角度θが30°の場合、鉄鉱石の落下の主流は、炉中心に近い側にあることを示している。角度θが50°の場合、鉄鉱石の落下の主流は、炉壁に近い側にあることを示している。図4は、図3の角度θが50°の場合と30°の場合の個々の圧力値をプロットしたものである。測定棒1に衝突する際の鉄鉱石の速度は粒度の大小に依らず一定であるため、重量の違い、つまり粒度の違いで検出される圧力値の大小が決定される。図4のθが50°の場合は、圧力が検出された範囲内で炉中心側の圧力値が大きく、炉壁側の圧力が小さい。これは大粒子の鉄鉱石が炉中心側に多く衝突し、炉壁側には小粒子の鉄鉱石が多く衝突したことを意味する。図4のθが30°の場合は、大粒子の鉄鉱石が炉壁側に多く衝突し、小粒子の鉄鉱石が炉中心側に多く衝突したことを意味する。このことにより、圧力測定フィルムが感知する圧力により、装入物の粒度毎の落下軌跡を測定することができる。   In FIG. 3, the fall locus | trajectory of the iron ore measured by this invention is shown. θ is an angle formed by the turning chute with respect to the vertical (see FIG. 1). When the left side is the furnace center and the angle θ is 30 °, it indicates that the main flow of the iron ore fall is on the side close to the furnace center. When the angle θ is 50 °, it indicates that the main flow of iron ore fall is on the side closer to the furnace wall. FIG. 4 is a plot of individual pressure values when the angle θ of FIG. 3 is 50 ° and 30 °. Since the speed of the iron ore when colliding with the measuring rod 1 is constant regardless of the size of the particle size, the difference in weight, that is, the size of the pressure value detected by the difference in particle size is determined. When θ in FIG. 4 is 50 °, the pressure value on the furnace center side is large and the pressure on the furnace wall side is small within the range in which the pressure is detected. This means that many large iron ores collided with the furnace center, and many small iron ores collided with the furnace wall. When θ in FIG. 4 is 30 °, it means that many large iron ores collided with the furnace wall and many small iron ores collided with the furnace center. Thereby, the fall locus | trajectory for every particle size of a charge can be measured with the pressure which a pressure measurement film senses.

本発明により、装入物装入装置の磨耗等により、装入物軌跡が変化しても、装入物軌跡の主流、装入物流れの幅および、装入物粒度毎の落下軌跡を測定し、その測定結果に応じて、ベル式装入装置ではムーバブルアーマを、ベルレス式装入装置では旋回シュートの角度を調整することにより、装入物の落下軌跡の変化に対応することができ、高炉の安定操業が可能となる。   According to the present invention, even if the charge trajectory changes due to wear of the charge charging device, etc., the main flow of the charge trajectory, the width of the charge flow, and the fall trajectory for each charge particle size are measured. Depending on the measurement result, the bell-type charging device can be adjusted to move armor, and the bell-less type charging device can adjust the swivel chute angle to respond to changes in the fall trajectory of the charge. Stable operation of the blast furnace becomes possible.

本発明は、高炉炉頂の粉塵が多い環境でも、高炉装入物の落下軌跡を精度よく測定することができ、又、メンテナンスに難が少なく、簡便に、短時間に高炉装入物の落下軌跡を測定することができる方法を提供する。   The present invention is capable of accurately measuring the trajectory of the blast furnace charge even in an environment where there is a lot of dust at the top of the blast furnace. A method by which a trajectory can be measured is provided.

1…測定棒、1a… 芯棒(パイプ)、1b…保護皮膜
2…圧力測定フィルム、3…装入物、4…旋回シュート、5…装入物表面
DESCRIPTION OF SYMBOLS 1 ... Measuring rod, 1a ... Core rod (pipe), 1b ... Protective film 2 ... Pressure measuring film, 3 ... Charge, 4 ... Turning chute, 5 ... Charge surface

Claims (3)

高炉内に装入物を装入するときの装入物落下軌跡を測定する高炉装入物の落下軌跡測定方法であって、
高炉の装入物装入装置と炉内の装入物表面の間に、圧力測定フィルムを巻きつけた測定棒を挿入する工程と、
前記測定棒に装入物を落下させて、前記圧力測定フィルムに圧痕を発色させる工程と、
測定した前記圧力測定フィルム上に記録された圧痕から、該圧痕の個数と個々の圧痕の圧力を求める工程、を有する高炉装入物の落下軌跡測定方法。
A method for measuring a fall trajectory of a blast furnace charge for measuring a charge fall trajectory when charging a charge into a blast furnace,
Inserting a measuring rod wrapped with a pressure measuring film between the charging device in the blast furnace and the charging surface in the furnace;
Dropping the charge onto the measuring rod and coloring the pressure measuring film with indentations;
A method for measuring a fall trajectory of a blast furnace charge, including a step of obtaining the number of indentations and the pressure of each indentation from the measured indentations recorded on the pressure measurement film.
前記圧力測定フィルムが感知する圧力により、装入物の粒度毎の落下軌跡を測定する工程を有する請求項1に記載の高炉装入物の落下軌跡測定方法。   The method for measuring a fall trajectory of a blast furnace charge according to claim 1, further comprising a step of measuring a fall trajectory for each particle size of the charge by a pressure sensed by the pressure measuring film. 芯棒と、該芯棒の上面の一部を覆う圧力測定フィルムと、該圧力測定フィルムの上面全体を覆う該圧力測定フィルムの測定時の破損を防止する機能を有する保護皮膜とからなる高炉装入物の落下軌跡の測定棒。   Blast furnace equipment comprising a core rod, a pressure measuring film covering a part of the upper surface of the core rod, and a protective film having a function of preventing damage during measurement of the pressure measuring film covering the entire upper surface of the pressure measuring film Measuring rod for the trajectory of falling objects.
JP2011079653A 2011-03-31 2011-03-31 Method for measuring fall trajectory of blast furnace charge and measuring rod Active JP5561228B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011079653A JP5561228B2 (en) 2011-03-31 2011-03-31 Method for measuring fall trajectory of blast furnace charge and measuring rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011079653A JP5561228B2 (en) 2011-03-31 2011-03-31 Method for measuring fall trajectory of blast furnace charge and measuring rod

Publications (2)

Publication Number Publication Date
JP2012214830A JP2012214830A (en) 2012-11-08
JP5561228B2 true JP5561228B2 (en) 2014-07-30

Family

ID=47267871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011079653A Active JP5561228B2 (en) 2011-03-31 2011-03-31 Method for measuring fall trajectory of blast furnace charge and measuring rod

Country Status (1)

Country Link
JP (1) JP5561228B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7127404B2 (en) * 2018-07-24 2022-08-30 日本製鉄株式会社 Blast furnace charge drop position measuring method, blast furnace charge charging method, and blast furnace charge charging system
CN110684874A (en) * 2019-09-25 2020-01-14 包头钢铁(集团)有限责任公司 Blast furnace material distribution method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6040484B2 (en) * 1979-06-21 1985-09-11 株式会社神戸製鋼所 Method for understanding charging and falling status of blast furnace raw materials
JPH0339477Y2 (en) * 1985-11-29 1991-08-20
JPH0421549U (en) * 1990-06-08 1992-02-24
LU90013B1 (en) * 1997-01-29 1998-07-30 Wurth Paul Sa Device for direct observation of the loading process inside a shaft furnace
JP3557118B2 (en) * 1998-03-05 2004-08-25 株式会社神戸製鋼所 Method for grasping falling state of granular powder, falling object measuring device and falling object measuring device for blast furnace

Also Published As

Publication number Publication date
JP2012214830A (en) 2012-11-08

Similar Documents

Publication Publication Date Title
JP5561228B2 (en) Method for measuring fall trajectory of blast furnace charge and measuring rod
JP6311482B2 (en) Estimation method of gas flow rate and reduction load of blast furnace block.
KR101031079B1 (en) Apparatus for measuring level of blast furnace bucket material
JP7307341B2 (en) Furnace gas pressure fluctuation detection method
JP6409490B2 (en) Method for estimating fall trajectory, method for correcting fall trajectory estimation method, and method for estimating charge distribution
CN104537177A (en) Method and device for determining position of softening face of softening and melting band in blast furnace
JP6575467B2 (en) Blast furnace operation method
JP6870693B2 (en) Blast furnace condition condition determination device, blast furnace operation method, and blast furnace condition condition determination method
Matsui et al. Stabilizing burden trajectory into blast furnace top under high ore to coke ratio operation
JP7127404B2 (en) Blast furnace charge drop position measuring method, blast furnace charge charging method, and blast furnace charge charging system
JPH0586446B2 (en)
JP2015120964A (en) Method of measuring falling trajectory of charged material in blast furnace
JP6547474B2 (en) Blast furnace and measurement method for measuring the level of blast furnace charge
JP2521838Y2 (en) Sonde for measuring the drop position of the blast furnace charge
CA2383538A1 (en) Method for determining the trajectory of materials when charging a shaft kiln
JP6870694B2 (en) Blast furnace condition condition determination device, blast furnace operation method, and blast furnace condition condition determination method
CN103924020A (en) Blast-furnace burden distribution detection apparatus and method
KR101134620B1 (en) Apparatus for inspecting molten iron in blast furnace
CN112934985B (en) Method and device for purifying surface of strip steel
JP2931502B2 (en) Blast furnace operation method
JP2006342382A (en) Method for evaluating gas permeability of lower part in blast furnace, and blast furnace operating method
JPS62192511A (en) Method for estimating falling position of raw material charged into rotary chute type blast furnace
JPH0754026A (en) Method for measuring descending position of charged material in blast furnace
JPS63195205A (en) Method for charging raw material in bell type blast furnace
JP2003306708A (en) Method for stably operating blast furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140513

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140526

R151 Written notification of patent or utility model registration

Ref document number: 5561228

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350