JPS62192511A - Method for estimating falling position of raw material charged into rotary chute type blast furnace - Google Patents

Method for estimating falling position of raw material charged into rotary chute type blast furnace

Info

Publication number
JPS62192511A
JPS62192511A JP3213986A JP3213986A JPS62192511A JP S62192511 A JPS62192511 A JP S62192511A JP 3213986 A JP3213986 A JP 3213986A JP 3213986 A JP3213986 A JP 3213986A JP S62192511 A JPS62192511 A JP S62192511A
Authority
JP
Japan
Prior art keywords
raw material
blast furnace
long
furnace
sized member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3213986A
Other languages
Japanese (ja)
Inventor
Junpei Kiguchi
淳平 木口
Tomotaka Manabe
知多佳 真鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP3213986A priority Critical patent/JPS62192511A/en
Publication of JPS62192511A publication Critical patent/JPS62192511A/en
Pending legal-status Critical Current

Links

Landscapes

  • Blast Furnaces (AREA)

Abstract

PURPOSE:To detect the falling position of a raw material with simple constitution and high accuracy by inserting and disposing a long-sized member into a raw material falling space in the cross direction of a blast furnace and respectively providing oscillation detecting sensors to both ends, on the outside of the furnace, of such long-sized member. CONSTITUTION:The long-sized member 8 is inserted and disposed into the blast furnace so as to penetrate the wall 1 thereof and cross the inside of the furnace. The oscillation detecting sensors 9, 10 are respectively provided to both ends, on the outside of the furnace, of the long-sized member 8. The raw material 4 is charged by a chute 3 into the furnace in the above-mentioned constitution and the acoustic oscillations generated upon collision of the raw material 4 against the point P of the long-sized member 8 are transmitted to the oscillation detecting sensors 9, 10. The difference DELTAT(Ta-Tb) between the time Ta and Tb until the acoustic oscillations are transmitted to the sensors 9, 10 is measured and the distance from the sensor (or 10) up to the collision point P is measured. Plural thermometers A1-A9 are installed in the longitudinal direction of the long-sized member 8 to measure the temps. in the respective parts so that the change of the velocity of sound in the long-sized member 8 at various parts, etc., is subjected to temp. compensation.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は高炉原料の装入落下位置推定方法に関し、詳細
にはベルレス式高炉の原料落下空間に該高炉の半径方向
へ横断する様に配設した長尺部材及びその両端に設けた
振動検出センサーによりて、原料装入シュートからの原
料の落下位置を推定する様にした方法に関するものであ
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for estimating the charging and falling position of blast furnace raw material, and more specifically, the present invention relates to a method for estimating the charging and falling position of blast furnace raw material. This invention relates to a method for estimating the falling position of raw material from a raw material charging chute using a long member provided and vibration detection sensors provided at both ends of the elongated member.

〔従来の技術〕[Conventional technology]

高炉用原料例えばコークス及び鉄鉱石は、夫々パケット
等で秤量されつつ高炉々頂部に搬送され、装入装置を介
して高炉に装入される。
Raw materials for blast furnaces, such as coke and iron ore, are each weighed in packets or the like and transported to the top of each blast furnace, and charged into the blast furnace via a charging device.

高炉原料の装入方式としては従来ベル方式が主流を占め
ていたが、高炉内既装入原料上への新規装入原料着床位
置を制御することが困難であった。しかるにこの着床位
置制御は、後述する様に高炉操業のコントロールにおい
て極めて重要な位置を占めており、着床位置制御が不完
全であると高炉の安定操業を確保できる保証が無い場合
すらある。この様なところからベル方式に代り得る新し
い方式(所謂ベルレス方式)が検討され、回転シュート
式装入方法が開発された。この方式は筒状又は樋状のシ
ュートを高炉頂部から下方に向けて配設し、しかも該シ
ュートの上側を枢支点としてシュートの下側を同心円状
或はらせん状に揺動回転自在である様に構成したもので
ある。従ってシュート下端の原料放出口は高炉内部の任
意の位置に向けることが可能であり、上述の原料着床位
置はかなり高度に制御される様になってきた。
Conventionally, the bell method was the mainstream charging method for blast furnace raw materials, but it was difficult to control the position of the newly charged material on top of the previously charged material in the blast furnace. However, as will be described later, this control of the landing position plays an extremely important role in controlling the operation of the blast furnace, and if the control of the landing position is incomplete, there may even be no guarantee that the stable operation of the blast furnace can be ensured. For this reason, a new method (so-called bellless method) that could replace the bell method was investigated, and a rotating chute charging method was developed. In this method, a cylindrical or gutter-shaped chute is arranged downward from the top of the blast furnace, and the lower side of the chute can swing freely in a concentric or spiral manner with the upper side of the chute as a pivot point. It is composed of Therefore, the raw material discharge port at the lower end of the chute can be directed to any desired position inside the blast furnace, and the above-mentioned raw material landing position has come to be controlled to a fairly high degree.

さて高炉操業においては、円滑で且つ良好な操業を継続
して行なう必要があり、炉内シャフト部におけるガス分
布(上昇ガス通路の分布)を適正な状態に維持して、ガ
スのもつ顕然と還元能力を効率よく利用するということ
がm要な課題になっている。これらのために前記原料は
それぞれ整粒されたものを装入しているが、前記回転シ
ュートから落下装入された原料を高炉内においてどの様
に堆積させるかによって前記ガス分布が大きく左右され
るということも分かっている。そして最近の操炉条件の
1つとしては中心ガス流の形成が重要なポイントである
とされており、そのためにはシャフト部における中心側
のガス抵抗を相当に少なくして、ガスを中心側へ導くこ
とが必要である。特にこれらのガス流は原料の粒度並び
に堆積層厚(鉄鉱石及びコークスガス抵抗が相違する)
によって大きく左右される。従って高炉操業を円滑に行
なうには、原料の装入落下位置を適確に把、握し、且つ
制御する必要があり、原料の落下位置を検出する技術が
各種開発されている。
Now, in blast furnace operation, it is necessary to continue smooth and good operation, and to maintain the gas distribution in the furnace shaft (distribution in the rising gas passage) in an appropriate state, the obvious effects of the gas should be maintained. Efficient use of reducing capacity has become an important issue. For these reasons, each of the raw materials is charged after being sized, but the gas distribution is greatly influenced by how the raw materials dropped from the rotating chute are deposited in the blast furnace. I also know that. The formation of a central gas flow is considered to be an important point in recent furnace operation conditions, and to achieve this, the gas resistance on the center side of the shaft must be considerably reduced to direct the gas toward the center. It is necessary to guide. In particular, these gas flows are affected by the particle size of the raw material and the thickness of the deposited layer (iron ore and coke gas resistance are different).
greatly influenced by. Therefore, in order to operate the blast furnace smoothly, it is necessary to accurately grasp, grasp, and control the position where the raw material is charged and dropped, and various techniques for detecting the position where the raw material falls have been developed.

例えば第2図に示す技術では、高炉炉壁1を貫通して高
炉の中心方向に延びる荷重検知センサー2を設置し、原
料装入シュート3から落下する原料4が前記荷重検知セ
ンサー2の長手方向に分けて配設された複数個の感応部
2aのいずれかに衝突するときの衝撃を荷重検知センサ
ー2に接続された検出器5によって検出し、原料が感応
部2aのいずれに衝突したかを検出して落下位置を把握
するものである。一方第3図に示す技術では、検出用塗
料を塗布した長尺部材6を高炉内に進退自在に挿入し、
原料装入シュート3からの落下原料4が長尺部材6に衝
突する際に生じる塗料の剥離状況を、該長尺部材6と炉
外へ引抜くによって検知し原料4の落下位置状況を推定
するものである。
For example, in the technology shown in FIG. 2, a load detection sensor 2 is installed that penetrates the blast furnace wall 1 and extends toward the center of the blast furnace, and the raw material 4 falling from the raw material charging chute 3 is detected in the longitudinal direction of the load detection sensor 2. A detector 5 connected to the load detection sensor 2 detects the impact when the raw material collides with one of the plurality of sensing parts 2a arranged separately, and determines which of the sensing parts 2a the raw material has collided with. This is to detect and determine the position of the fall. On the other hand, in the technique shown in FIG. 3, a long member 6 coated with a detection paint is inserted into the blast furnace so as to be able to move forward and backward.
The peeling of paint that occurs when the raw material 4 falling from the raw material charging chute 3 collides with the elongated member 6 is detected by pulling the elongated member 6 out of the furnace, and the falling position of the raw material 4 is estimated. It is something.

[発明が解決しようとする問題点] 第2図及び第3図に示した技術においては、夫々それな
りの効果が得られているものの、色々な問題を残してい
る。即ち第2図に示した技術では、(1)原料を感応部
2aに直接衝突させる構成であるので感応部2aが損傷
し易い、(2)炉内雰囲気が高温、多塵であるので使用
できる感応部2aは限られ、又その様な状況の炉内で使
用できる感応部2aは必然的に高価となり、且つメンテ
ナンス性も悪い等の問題がある。又第3図に示した技術
では、(1)塗料の剥離状態から原料の装入位置を推定
する方法であるので精度的に問題がある、(2)各チャ
ージの装入作業が終った後で長尺部材を引抜いて検知す
る方法であるから、落下位置を経時的に追跡検知するこ
とができない、(3)一度使った長尺部材は塗料の塗り
直しをする必要があるので各チャージに対する連続測定
が困難であり、連続測定を行なう為には設備が大がかり
となり費用も増大する等の問題点が指摘される。
[Problems to be Solved by the Invention] Although the techniques shown in FIGS. 2 and 3 have achieved certain effects, various problems remain. That is, the technique shown in FIG. 2 (1) has a structure in which the raw material is directly collided with the sensitive part 2a, so the sensitive part 2a is easily damaged; (2) the furnace atmosphere is high temperature and dusty, so it cannot be used. The number of sensitive parts 2a is limited, and the sensitive parts 2a that can be used in such a furnace are necessarily expensive and have poor maintainability. Furthermore, the technique shown in Figure 3 has problems with accuracy because (1) the method estimates the charging position of the raw material from the peeled state of the paint; (2) (3) Long parts that have been used once need to be repainted, so it is impossible to track and detect the falling position over time. It has been pointed out that continuous measurement is difficult, and that continuous measurement requires large-scale equipment and increases costs.

本発明は上述の様な問題点のない検知手法を開発すべく
なされたものであって、その目的とするところは簡易な
構成でありながら高精度に検出でき、更にメンテナンス
性も良好な装置を用いて装入原料の落下位置を検出する
方法を提供しようとするものである。
The present invention was made to develop a detection method that does not have the above-mentioned problems, and its purpose is to develop a device that has a simple configuration, can detect with high accuracy, and is also easy to maintain. The present invention aims to provide a method for detecting the falling position of charged raw materials using the method.

[問題点を解決する為の手段] 上記問題点を解決し得た本発明の構成とは、回転シュー
ト式高炉に装入される原料の装入落下位置を推定する方
法であって、長尺部材を原料の落下空間に亘って高炉横
断方向に挿入配置すると共に、該長尺部材の炉外両端部
に該長尺部材の振動検出センサーを設け、回転シュート
からの落乍原料が前記長尺部材に衝突したときに発生す
る音響振動が該長尺部材を伝わって各振動検出センサー
へ伝達される迄の時間差を読み取ることによって原料が
長尺部材に衝突する位置を推定する点に要旨を有するも
のである。
[Means for Solving the Problems] The structure of the present invention that can solve the above problems is a method for estimating the charging and falling position of raw materials charged into a rotary chute blast furnace, and The member is inserted in the transverse direction of the blast furnace across the material falling space, and vibration detection sensors of the elongated member are provided at both ends of the elongated member outside the furnace, so that the material falling from the rotating chute is The gist is that the position at which the raw material collides with the elongated member is estimated by reading the time difference until the acoustic vibration generated when the material collides with the elongated member is transmitted through the elongated member and transmitted to each vibration detection sensor. It is something.

[作用] 本発明は上述の様に構成されるが、要は長尺部材の炉外
両端部に振動検出センサーを設け、装入原料が感応部に
直接衝突しない構成としたので、センサーが損傷したり
使用されるセンサーの種類が限定されるといった様な従
来の問題点を回避することができる。又原料が長尺部材
に衝突したときに発生する音響振動が各振動検出センサ
ーへ伝達される迄の時間差を読み取る構成を採用したの
で、装入状況を連続的に追跡して検出することが可能と
なると共に、各チャージ毎に装置の入れ換え等を行なう
必要もなく、結果的に原料落下位置を常に適確に推定す
ることができる様になった。
[Function] The present invention is constructed as described above, but the key point is that vibration detection sensors are provided at both ends of the elongated member outside the furnace, and the structure is such that the charging material does not directly collide with the sensitive part, so the sensor is not damaged. It is possible to avoid conventional problems such as limitations on the types of sensors used and the types of sensors used. In addition, we have adopted a configuration that reads the time difference until the acoustic vibration generated when the raw material collides with a long member is transmitted to each vibration detection sensor, making it possible to continuously track and detect the charging status. In addition, there is no need to replace the device for each charge, and as a result, it is now possible to always accurately estimate the raw material falling position.

[実施例] 第1図は、本発明方法を実施する為に構成される高炉の
要部を示す概略説明図である。高炉炉壁1を貫通して炉
内を横断する様に、長尺部材8が挿入配設される。そし
て該長尺部材8の両端部は炉外に位置しており、各炉外
両端部には振動検出センサー9.10が夫々設けられる
。振動検出素子としては、圧電素子、動電形ピックアッ
プ等が非限定的に例示される。この様な構成において、
原料が長尺部材8に衝突したときに発生する音響振動が
該長尺部材8を伝わって各振動検出センサー9.10へ
伝達される迄の時間差Δtを読み取ることによって、原
料が長尺部材8に衝突する位置を推定するものである。
[Example] FIG. 1 is a schematic explanatory diagram showing the main parts of a blast furnace configured to carry out the method of the present invention. A long member 8 is inserted and arranged so as to penetrate the blast furnace wall 1 and cross the inside of the furnace. Both ends of the elongated member 8 are located outside the furnace, and vibration detection sensors 9 and 10 are respectively provided at both ends outside the furnace. Non-limiting examples of the vibration detection element include piezoelectric elements, electrodynamic pickups, and the like. In such a configuration,
By reading the time difference Δt until the acoustic vibration generated when the raw material collides with the elongated member 8 is transmitted through the elongated member 8 and transmitted to each vibration detection sensor 9.10, the elongated member 8 is detected. This is to estimate the collision position.

以下第1図を参照しつつ、本発明方法の測定原理を説明
する。
The measurement principle of the method of the present invention will be explained below with reference to FIG.

いま原料装入シュート3から炉内に原料4が落下され、
該原料4が長尺部材8のP点(衝突点)で衝突となと想
定する。尚第1図中、L、La。
Now, the raw material 4 is dropped into the furnace from the raw material charging chute 3,
It is assumed that the raw material 4 collides with the elongated member 8 at point P (collision point). In FIG. 1, L and La.

Lbは下記の如くである。Lb is as follows.

L −長尺部材8の長さく振動検出センサー9.10間
の距離) La:衝突点Pから振動検出センサーPまでの距離 Lb:衝突点Pから振動検出センサー10までの距離 ここで各振動検出センサー9.10で衝突点Pからの音
響振動が観測されるまでの時間を夫々Ta、Tbとし、
長尺部材8中の音速をVとすると、下記(4) 、 (
2)式が成り立つ。
L - length of long member 8 and distance between vibration detection sensors 9 and 10) La: Distance from collision point P to vibration detection sensor P Lb: Distance from collision point P to vibration detection sensor 10 Here, each vibration detection Let Ta and Tb be the times until acoustic vibrations from the collision point P are observed by sensors 9 and 10, respectively.
If the sound velocity in the elongated member 8 is V, then the following (4), (
2) The formula holds true.

(1) 、 (2)式より下記(3)式が成り立つ■ ここで L−La+Lbであるから L b = L −L a   ・・・(4)である。From equations (1) and (2), the following equation (3) holds true■ Here, since L-La+Lb L b = L - L a (4).

上記(3) 、 (4)式より下記(5)式が導かれる
The following equation (5) is derived from the above equations (3) and (4).

■ (5)式を変形すると下記の(6)式が得られる。■ By transforming the equation (5), the following equation (6) is obtained.

上記(6)から下記の様に考察することができる。From (6) above, it can be considered as follows.

即ち、各振動検出センサー9.10へ伝達される迄の時
間Ta、Tbの差ΔT (Ta−Tb)を測定すれば、
振動検出センサー9(又は10)から衝突点Pまでの距
離を測定することができる。又2個の振動検出センサー
9,10で同一物体の衝突による時間差ΔTを測定する
際に、観測データの相互相関を演算することによって時
間差ΔTを算出することができ、時間Ta、Tbを直接
測定しなくとも衝突点Pの位置を推定することができる
。尚時間Ta、Tbは、原料4が長尺部材8に衝突した
時刻をToとした場合に当該時刻”roから各振動検出
センサー9.10によって検出される音圧レベル(d 
B)が極値を取る時刻T1 、T2までの時間をとれば
よい。それらの関係を第4図及び第5図に示す。更に又
、振動検出センサー9゜10の測定結果の相互相関の演
算処理によって各センサー9.10で得られた信号が、
同一物体(原料)の衝突に起因するものであるかどうか
も判断できる。
That is, by measuring the difference ΔT (Ta-Tb) between the times Ta and Tb until the vibration is transmitted to each vibration detection sensor 9.10,
The distance from the vibration detection sensor 9 (or 10) to the collision point P can be measured. Furthermore, when measuring the time difference ΔT due to the collision of the same object with the two vibration detection sensors 9 and 10, the time difference ΔT can be calculated by calculating the cross-correlation of the observation data, and the times Ta and Tb can be directly measured. The position of the collision point P can be estimated even if the collision point P is not used. Note that the times Ta and Tb are the sound pressure levels (d
It is sufficient to take the time up to times T1 and T2 when B) takes an extreme value. Their relationships are shown in FIGS. 4 and 5. Furthermore, the signals obtained by each sensor 9.10 by calculating the cross-correlation of the measurement results of the vibration detection sensors 9.10 are
It can also be determined whether the collisions were caused by collisions between the same objects (raw materials).

尚炉内温度は領域によって相違し、長尺部材8内の音速
が各部分等に変化するという懸念もあるが、それは第1
図に示す様に長尺部材8の長手方向に複数(第1図では
9)の温度計A1〜A9を設定し、各部分における温度
を測定して温度補償を行なうことによって容易に解決す
ることができる。又このことによってより原料の落下位
置を高精度に推定することができる。
It should be noted that the temperature inside the furnace differs depending on the area, and there is a concern that the sound velocity inside the elongated member 8 changes in each part, but this is the first problem.
This can be easily solved by setting a plurality of (9 in FIG. 1) thermometers A1 to A9 in the longitudinal direction of the elongated member 8 as shown in the figure, measuring the temperature at each part, and performing temperature compensation. I can do it. Moreover, by this, the falling position of the raw material can be estimated with high accuracy.

上述の実施例では1つの長尺部材8を高炉々壁に挿入配
置した状態を示したけれども、長尺部材8を配置する位
置は1箇所に限らず、炉長方向(第1図の上下方向)に
間隔をあけて周方向に違った位置となる様に複数の長尺
部材を挿入配置する様な構成を採用してもよい。また該
長尺部材8は必ずしも炉心を通さなければならないとい
う訳でもない。この様な構成を採用することによって装
入原料の落下位置における周方向の変動を更に高精度に
推定することができる。
In the above embodiment, one elongated member 8 is inserted into the wall of each blast furnace. ), a configuration may be adopted in which a plurality of elongated members are inserted and arranged at intervals at different positions in the circumferential direction. Further, the elongated member 8 does not necessarily have to pass through the reactor core. By employing such a configuration, it is possible to estimate the circumferential variation in the falling position of the charged raw material with even higher accuracy.

[発明の効果] 以上述べた如く本発明によれば、本発明方法に従って操
業を行なうことにより、簡易な構成でしかも原料落下位
置を高精度に検出することができ、更にメンテナンス性
も良好となった。
[Effects of the Invention] As described above, according to the present invention, by operating according to the method of the present invention, the falling position of the raw material can be detected with high accuracy with a simple configuration, and maintainability is also improved. Ta.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を実施する為に構成される高炉の要
部を示す概略説明図、第2図及び第3図は従来技術を示
す概略説明図、第4図は振動検出センサへ9によって測
定される音圧レベルと時間、Ta、との関係を示すグラ
フ、第5図は振動検出センサー10によって測定される
音圧レベルと時間Tbとの関係を示すグラフである。
Fig. 1 is a schematic explanatory diagram showing the main parts of a blast furnace constructed to carry out the method of the present invention, Figs. 2 and 3 are schematic explanatory diagrams showing the prior art, and Fig. 4 is a vibration detection sensor 9 FIG. 5 is a graph showing the relationship between the sound pressure level measured by the vibration detection sensor 10 and time Tb.

Claims (1)

【特許請求の範囲】[Claims] 回転シュート式高炉に装入される原料の装入落下位置を
推定する方法であって、長尺部材を原料の落下空間に亘
って高炉横断方向に挿入配置すると共に、該長尺部材の
炉外両端部に該長尺部材の振動検出センサーを設け、回
転シュートからの落下原料が前記長尺部材に衝突したと
きに発生する音響振動が該長尺部材を伝わって各振動検
出センサーへ伝達される迄の時間差を読み取ることによ
って原料が長尺部材に衝突する位置を推定することを特
徴とする回転シュート式高炉の装入原料落下位置推定方
法。
A method for estimating the charging and falling position of raw materials to be charged into a rotary chute blast furnace, comprising: inserting and arranging a long member in the transverse direction of the blast furnace across the falling space of the raw materials; Vibration detection sensors for the elongated member are provided at both ends, and acoustic vibrations generated when the falling raw material from the rotating chute collides with the elongated member are transmitted through the elongated member to each vibration detection sensor. A method for estimating the falling position of charged material in a rotary chute blast furnace, characterized by estimating the position where the material collides with a long member by reading the time difference.
JP3213986A 1986-02-17 1986-02-17 Method for estimating falling position of raw material charged into rotary chute type blast furnace Pending JPS62192511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3213986A JPS62192511A (en) 1986-02-17 1986-02-17 Method for estimating falling position of raw material charged into rotary chute type blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3213986A JPS62192511A (en) 1986-02-17 1986-02-17 Method for estimating falling position of raw material charged into rotary chute type blast furnace

Publications (1)

Publication Number Publication Date
JPS62192511A true JPS62192511A (en) 1987-08-24

Family

ID=12350563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3213986A Pending JPS62192511A (en) 1986-02-17 1986-02-17 Method for estimating falling position of raw material charged into rotary chute type blast furnace

Country Status (1)

Country Link
JP (1) JPS62192511A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998032882A1 (en) * 1997-01-29 1998-07-30 Paul Wurth S.A. Device for directly monitoring the charging process on the inside of a shaft furnace
JP2020015935A (en) * 2018-07-24 2020-01-30 日本製鉄株式会社 Method of measuring drop position of blast furnace burden, method of charging blast furnace burden, and charging system for blast furnace burden
CN111172340A (en) * 2019-12-27 2020-05-19 河钢股份有限公司承德分公司 Blast furnace bunker preparing device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998032882A1 (en) * 1997-01-29 1998-07-30 Paul Wurth S.A. Device for directly monitoring the charging process on the inside of a shaft furnace
US6261513B1 (en) 1997-01-29 2001-07-17 Paul Wurth, S.A. Device for directly monitoring the charging process on the inside of a shaft furnace
JP2020015935A (en) * 2018-07-24 2020-01-30 日本製鉄株式会社 Method of measuring drop position of blast furnace burden, method of charging blast furnace burden, and charging system for blast furnace burden
CN111172340A (en) * 2019-12-27 2020-05-19 河钢股份有限公司承德分公司 Blast furnace bunker preparing device
CN111172340B (en) * 2019-12-27 2021-11-19 河钢股份有限公司承德分公司 Blast furnace bunker preparing device

Similar Documents

Publication Publication Date Title
EP0259428B1 (en) Position measuring apparatus and method
US4232548A (en) Liquid flow meter
JPH02278158A (en) Method for uninvasively measuring fluidized bed level of two phase fluidized bed in structure for treating material
JPS62192511A (en) Method for estimating falling position of raw material charged into rotary chute type blast furnace
NO327159B1 (en) Procedure for modern measurement of dry cargo flow rate
JP5387066B2 (en) Blast furnace gas flow distribution estimation method, blast furnace gas flow distribution estimation device, and blast furnace gas flow distribution estimation program
JPH09235605A (en) Device for estimating dropping position of charged material in blast furnace
JP2001141578A (en) Temperature detection method and temperature detection device
JPS596888B2 (en) Method for detecting deposits on blast furnace walls
SU1428923A1 (en) Flowmeter
GB2326235A (en) Measuring thickness of cement kiln linings
JPH0598324A (en) Method for counting charging time of raw material in bell-less blast furnace charging device
JPS6191307A (en) Detection of descending of charge in blast furnace
JPH032428B2 (en)
JP2548727B2 (en) Measuring method of powder flow rate in lock hopper system
JPS60248805A (en) Detection of condition of packing material in blast furnace
JPH06271916A (en) Method for measuring slag level in blast furnace
JPS59221583A (en) Method of monitoring internal state of vertical type furnace
JPS6038446B2 (en) Method for detecting burden deposition distribution in blast furnace
JPS59166609A (en) Measurement of condition inside blast furnace
JPS61254840A (en) Detection of erosion of blast furnace wall
JPS62142710A (en) Method for determining dropped position of charged material for blast furnace
JPS61139612A (en) Method for measuring layer thickness and descending speed of packing material in blast furnace
JPH04350108A (en) Method for controlling blast furnace
JPH0257665B2 (en)